Math 10550, Practice Exam III

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 12 problems.

Good Luck!

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>7</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>8</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

DO NOT WRITE IN THIS BOX!

Total multiple choice: __________

9. __________

10. __________

11. __________

12. __________

Total: __________
Multiple Choice Questions

1. (7 pts.) Solving the equation $3x - \cos x = 0$ using the Newton’s method with initial approximation $x_1 = 0$, what is x_2?

(a) $\frac{1}{3}$ (b) $-\frac{1}{3}$ (c) 0 (d) $\frac{1}{4}$ (e) $\frac{1}{2}$

2. (7 pts.) A farmer has 4000 feet of fencing and wants to fence off a rectangular field that border a straight river. No fence is needed along the river. Find the dimension of this rectangle that will maximize the area.

(a) $1000 ft \times 1000 ft$ (b) $2000 ft \times 1000 ft$
(c) $1200 ft \times 800 ft$ (d) $2000 ft \times 2000 ft$
(e) $2000 ft \times 500 ft$
3. (7 pts.) Calculate the following indefinite integral

\[\int \frac{x^2 + 1}{\sqrt{x}} \, dx = \]

(a) \(\frac{2}{5} x^{5/2} + 2x^{1/2} + C \)

(b) \(\frac{1}{3} x^3 + x + C \)

(c) \(\frac{2}{3} x^{5/2} - \frac{1}{2} x^{1/2} + C \)

(d) \(\frac{2}{5} x^{5/2} + 2x^{1/2} \)

(e) \(\frac{2}{3} x^{5/2} - \frac{1}{2} x^{1/2} \)

4. (7 pts.) Calculate the following definite integral

\[\int_0^3 |x - 1| \, dx = \]

(a) \(\frac{3}{2} \)

(b) \(\frac{5}{2} \)

(c) 1

(d) \(\frac{9}{2} \)

(e) -2
5. (7 pts.) What is the indefinite integral

\[\int x\sqrt{x-1} \, dx =? \]

(a) \(\frac{2}{5} x^{5/2} + \frac{2}{3} x^{3/2} \)
(b) \(\frac{1}{3} (x-1)^3 - \frac{1}{2} (x-1)^2 + C \)
(c) \(\frac{2}{5} (x-1)^{5/2} + \frac{2}{3} (x-1)^{3/2} + C \)
(d) \(\frac{2}{5} x^{5/2} + \frac{2}{3} x^{3/2} + C \)
(e) \(\frac{2}{5} (x-1)^{5/2} + \frac{2}{3} (x-1)^{3/2} \)

6. (7 pts.) The equation of the slant asymptote of the curve \(y = \frac{3x^3 + 2x^2 + x + 3}{x^2 + 2x} \) is:

(a) \(y = 0 \)
(b) \(y = 3x + 1 \)
(c) \(y = 3x - 2 \)
(d) \(y = 3x + 2 \)
(e) \(y = 3x - 4 \)
7. (7 pts.) Evaluate the definite integral
\[\int_0^2 \sqrt{4 - x^2} \, dx. \]

Hint: A definite integral represents an area.

(a) 8 (b) \(2\pi\) (c) \(-\frac{16}{3}\) (d) \(\pi\) (e) \(\frac{16}{3}\)

8. (7 pts.) Let \(g(x) = \int_0^x \sqrt{1 + \sin^2 t} \, dt\). Find \(g'(x)\).

(a) \(3x^2\sqrt{1 + \sin^2 x}\) (b) \(\sqrt{1 + \sin^2 x^3}\)
(c) \(\frac{\sin x^3 \cdot \cos x^3}{\sqrt{1 + \sin^2 x^3}}\) (d) \(3x^2 \sqrt{1 + \sin^2 x^3}\)
(e) \(\sqrt{1 + \sin^2 x}\)
9. (11 pts.) Calculate the area bounded by the curves $y = x^2 + 2x + 3$ and $y = 2x + 4$.

Partial Credit

You must show your work on the partial credit problems to receive credit!
10. (11 pts.)

(a) Evaluate the definite integral \(\int_0^2 x^2 \, dx \) by the limit definition.

Hint: \(1^2 + 2^2 + 3^2 + \cdots + n^2 = \sum_{i=1}^{n} i^2 = \frac{n(n + 1)(2n + 1)}{6} \)

(b) Verify your result using the fundamental theorem of calculus.
11. (11 pts.) Find the point on the line $3x + y = 9$ that is closest to the point $(1, -2)$.
12. (11 pts.) If 1200 \(cm^2 \) of material is available to make a box with a square base and an open top, find the largest possible volume of the box.
The Honor Code is in effect for this examination. All work is to be your own.
No calculators.
The exam lasts for 1 hour and 15 minutes.
Be sure that your name is on every page in case pages become detached.
Be sure that you have all 12 problems.

Good Luck!

<table>
<thead>
<tr>
<th>PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. [●] b [●] c [●] d [●] e</td>
</tr>
<tr>
<td>2. a [●] c [●] d [●] e</td>
</tr>
<tr>
<td>3. [●] b [●] c [●] d [●] e</td>
</tr>
<tr>
<td>4. a [●] c [●] d [●] e</td>
</tr>
<tr>
<td>5. a b [●] d [●] e</td>
</tr>
<tr>
<td>6. a b c [●] d [●]</td>
</tr>
<tr>
<td>7. a [●] c [●] d [●] e</td>
</tr>
<tr>
<td>8. a b c [●] e</td>
</tr>
</tbody>
</table>

DO NOT WRITE IN THIS BOX!

Total multiple choice: ____________

9. ____________
10. ____________
11. ____________
12. ____________

Total: ____________