Name:		
Instructor:		

Math 10550, Practice Exam III November 20, 2024

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 12 pages of the test.
- Each multiple choice question is worth 7 points. Your score will be the sum of the best 10 scores on the multiple choice questions plus your score on questions 13-15.

PLE	ASE MARK	YOUR AN	SWERS WITH	H AN X, not a	circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)
11.	(a)	(b)	(c)	(d)	(e)
12.	(a)	(b)	(c)	(d)	(e)

Please do NOT	write in this box.
Multiple Choice	
13.	
14.	
15.	
Total	

Name: _______
Instructor: ______

Multiple Choice

1.(7 pts.) How many inflection points does the curve $y = \frac{x^4}{12} - \frac{x^3}{3}$ have?

- (a) 1
- (b) 3
- (c) 2
- (d) 4
- (e) 0

2.(7 pts.) Evaluate $\lim_{x \to -\infty} \frac{3x^3 - 2x + 1}{2x^2 + x + 1}$

(a) 0

(b) $-\frac{3}{2}$

(c) $\frac{3}{2}$

(d) $-\infty$

(e) Does not exist

Name: _______
Instructor: ______

3.(7 pts.) The slant asymptote of $y = \frac{2x^4 + x^3 + 5}{x^3 - 3x^2 + 2}$ is given by

- (a) There are no slant asymptotes.
- $(b) \quad y = 2x + 7$

(c) y = x + 4

 $(d) \quad y = 2x - 5$

(e) y = 2x + 4

4.(7 pts.) Evaluate $\lim_{x \to -\infty} \frac{\sqrt{4x^6 + 5}}{x^3 + 1}$.

- (a) 3/2
 - (b) 6
- (c) -2
- (d) 2
- (e) 4

Instructor:

5.(7 pts.) If we want to use Newton's method to find an approximate solution to

$$\cos(x) - x = 0$$

with initial approximation $x_1 = \frac{\pi}{2}$, what is x_2 ?

- (a)
- $\frac{3\pi}{4}$ (b) 0 (c) $\frac{\pi}{2}$ (d) π (e)

6.(7 pts.) A bug being chased by a kitten (both moving in a straight line) enters a kitchen with velocity 1 ft/sec, and accelerates at $\frac{2}{\sqrt{t}}$ ft/sec². How fast is the bug moving 9 seconds later.

- (a) 13 ft/sec
- 7 ft/sec (b)
- (c) 5 ft/sec

- 4 ft/sec (d)
- (e) 37 ft/sec

Name:

Instructor:

7.(7 pts.) Find the left endpoint approximation to the definite integral

$$\int_{-1}^{3} \frac{6}{2+x} dx$$

using four approximating rectangles of equal base width.

- (a)
- (b)

- (c) 25 (d) $\frac{71}{5}$ (e) $\frac{25}{2}$

8.(7 pts.) If f(x) is a continuous function with

$$\int_{-2}^{-1} f(x) dx = 2, \quad \int_{-2}^{2} f(x) dx = 1 \text{ and } \int_{2}^{5} f(x) dx = 2$$

find $\int_{-1}^{5} f(x) dx$.

- (a)
- (b) 3 (c) 0 (d) 1
- (e)

Name: _____ Instructor:

9.(7 pts.) Calculate the following definite integral

$$\int_{1}^{3} \frac{\sqrt{x} + x^3}{x^{5/2}} \, dx.$$

 $\frac{3}{2}$ (a)

(c) $\frac{5}{2}$

(b) $2\sqrt{3}$ (d) $2\sqrt{3} - \frac{1}{3}$

(e) $2\sqrt{3} + \frac{1}{2}$

10.(7 pts.) The graph shown below is that of f(x) for $-1 \le x \le 4$ where

$$f(x) = \begin{cases} 2 & \text{if } -1 \le x \le 0\\ \sqrt{4 - x^2} & \text{if } 0 < x \le 2\\ 4 - 2x & \text{if } 2 \le x \le 4 \end{cases}$$

Which of the following equals $\int_{-1}^{4} f(x)dx$?

(a) $\pi - 2$

(b) π

(c) $6 + \pi$

(d) $2\pi - 2$

(e) 0

Name: Instructor:

11.(7 pts.) If $f(x) = \int_{x^3}^1 \sqrt{1 + \sin(t)} dt$, then f'(x) =

- (a) $\sqrt{1 + \sin(x^3)}$
 - (b) $\sqrt{1 + \sin(x)}$ (c) $-\sqrt{1 + \sin(x^3)}$
- (d) $-3x^2\sqrt{1+\sin(x^3)}$ (e) $3x^2\sqrt{1+\sin(x^3)}$

Name: _______
Instructor: _____

12.(7 pts.) The graph of f(x) is shown below:

which of the following gives the graph of an antiderivative for the function f(x)?

(a)

(b)

(c)

(d)

(e)

Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

13.(10 pts.) A page of a book is to have a total area of 150 square inches, with 1 inch margins at the top and sides, and a 2 inch margin at the bottom. Find the dimensions in inches of the page which will have the largest print area.

Name:			
Instruct	or:		

14.(10 pts.) A particle is moving in a straight line with acceleration

$$a(t) = 4\left(t^2 - \frac{1}{3}\right) \text{ ft/}s^2,$$

where distance is measured in feet and time in seconds. The initial velocity of the particle is v(0) = 0 ft/s and the initial position of the particle is s(0) = 0.

(a) Find the velocity of the particle at time t (i.e. find v(t)).

(b) Find the position of the particle at time t (i.e. find s(t)).

(c) Find the values of t for which v(t) = 0 on the interval $[0, \infty)$.

(d) Find the <u>distance</u> travelled by the particle on the time interval $0 \le t \le 2$.

Name:	
Instructor:	

15.(10 pts.) Evaluate the definite integral shown below using right endpoint approximations and the limit definition of the definite integral

$$\int_0^2 \frac{x}{2} \, dx$$

Note:
$$1 + 2 + 3 + \dots + n = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
.

Verify your answer using the fundamental theorem of calculus.

Name:		
Instructor:	ANSWERS	

Math 10550, Practice Exam III November 20, 2024

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 12 pages of the test.
- Each multiple choice question is worth 7 points. Your score will be the sum of the best 10 scores on the multiple choice questions plus your score on questions 13-15.

PLE	ASE MARK Y	OUR ANSWI	ERS WITH AI	X, not a circ	ele!
1.	(a)	(b)	(ullet)	(d)	(e)
2.	(a)	(b)	(c)	(•)	(e)
3.	(a)	(●)	(c)	(d)	(e)
4.	(a)	(b)	(•)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(●)
6.	(•)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(●)
8.	(a)	(b)	(c)	(●)	(e)
9.	(a)	(●)	(c)	(d)	(e)
10.	(ullet)	(b)	(c)	(d)	(e)
11.	(a)	(b)	(c)	(•)	(e)
12.	(a)	(•)	(c)	(d)	(e)

Please do NOT	write in this box.
Multiple Choice	
13.	
14.	
15.	
Total	