Name: _____

Instructor:

Math 10550, Exam I September 25, 3024

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 13 pages of the test.
- Each multiple choice question is worth 7 points. Your score will be the sum of the best 10 scores on the multiple choice questions plus your score on questions 13-15.

PLE	ASE	MARK YOUR	ANSWERS	WITH AN X,	not a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)
11.	(a)	(b)	(c)	(d)	(e)
12.	(a)	(b)	(c)	(d)	(e)

Plea	ase do NOT	write in this bo	ox.
Multiple Choice			
	6.		
	13.		
	14.		
	15.		
	Total		

Name: ______ Instructor: ______

Multiple Choice

1.(7 pts.) Compute

$$\lim_{x \to 2} \frac{\sqrt{x^2 + 21} - 5}{x - 2}.$$

Solution:

$$\lim_{x \to 2} \frac{\sqrt{x^2 + 21} - 5}{x - 2} = \lim_{x \to 2} \frac{\sqrt{x^2 + 21} - 5}{x - 2} \frac{\sqrt{x^2 + 21} + 5}{\sqrt{x^2 + 21} + 5}$$
$$= \lim_{x \to 2} \frac{x^2 - 4}{(x - 2)(\sqrt{x^2 + 21} + 5)}$$
$$= \lim_{x \to 2} \frac{(x - 2)(x + 2)}{(x - 2)(\sqrt{x^2 + 21} + 5)}$$
$$= \lim_{x \to 2} \frac{x + 2}{\sqrt{x^2 + 21} + 5}$$
$$= \frac{4}{\sqrt{25} + 5}$$
$$= \frac{4}{10}$$
$$= \frac{2}{5}.$$
(b) 0 (c) $\frac{1}{10}$ (d) $\frac{1}{120}$ (e) 4

2.(7 pts.) Compute

(a) $\frac{2}{5}$

$$\lim_{x \to 0} \frac{\sin(2x)}{\sin(5x)}.$$

Solution: If we try to just "plug in" then we get

$$\lim_{x \to 0} \frac{\sin(2x)}{\sin(5x)} = \frac{0}{0},$$

which is hogwash.

$$\lim_{x \to 0} \frac{\sin(2x)}{\sin(5x)} = \lim_{x \to 0} \frac{\sin(2x)}{2x} \cdot \frac{5x}{\sin(5x)} \cdot \frac{2x}{5x} = \frac{2}{5}$$

since $\lim_{y \to 0} \frac{\sin y}{y} = 1$.

Name:	
Instructor:	

- (a) (b) 0
- $\frac{5}{2}$ $\frac{2}{5}$ (c) (d) 1
- (e) Does not exist.

- **3.**(7 pts.) Compute $\lim_{x \to -1^{-}} \frac{x^2 + x}{x^2 + 2x + 1}$ (a) $-\infty$ (b) -1
- (c) = 0

(d) Does not exist and is not
$$\infty$$
 or $-\infty$.

(e) $+\infty$

Solution: First, note that $\lim_{x \to -1^{-}} \frac{x^2 + x}{x^2 + 2x + 1} = \lim_{x \to -1^{-}} \frac{x(x+1)}{(x+1)(x+1)} = \lim_{x \to -1^{-}} \frac{x}{x+1}$. Now if you plug in x = -1 you get $\frac{-1}{0}$. Now, since we are looking at the limit from the left, we must argue if the limit goes to $+\infty$ or $-\infty$. Indeed the limit of the numerator is the constant -1. Additionally, the when approaching -1 from the left, the denominator takes on negative values closer and closer to 0. So $\lim_{x \to -1^{-}} \frac{x^2 + x}{x^2 + 2x + 1} = +\infty$.

4.(7 pts.) For what values of c is the function f given by

$$f(x) = \begin{cases} x^2 + c^2 x - 3 & x < 2\\ cx + 5 & x \ge 2 \end{cases}$$

continuous at x = 2?

- (a) c = 1 only
- (b) c = 2 and c = -1
- (c) c = 0 only
- (d) No value of c makes f continuous at x = 2
- (e) c = 2 only

Solution: In order for f(x) to be continuous at x = 2 we need

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2).$$

We have $\lim_{x\to 2^-} f(x) = 2^2 + 2c^2 - 3$ and f(2) = 2c + 5, and so $2^2 + 2c^2 - 3 = 2c + 5$. Therefore c = 2, -1.

5.(7 pts.) Let $f(x) = \sqrt{2x^2 + 1}$. Which of the following limits equals f'(2)?

(a)
$$\lim_{h \to 2} \frac{\sqrt{2(x+h)^2 + 1} - 3}{h}$$

(b)
$$\lim_{x \to 0} \frac{\sqrt{2x^2 + 1} - 3}{x}$$

(c)
$$\lim_{x \to 2} \frac{\sqrt{2x^2 + 1} - 3}{x - 2}$$

(d)
$$\lim_{h \to 2} \frac{\sqrt{2(x+h)^2 + 1} - \sqrt{2x^2 + 1}}{h}$$

(e)
$$\lim_{h \to 0} \frac{\sqrt{2(x+h)^2 + 1} - \sqrt{2x^2 + 1}}{h}$$

Solution: Note that for any *a* we have $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$. Now, $f(2) = \sqrt{2(2^2) + 1} = \sqrt{9} = 3$. So $f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{\sqrt{2x^2 + 1} - 3}{x - 2}$.

6.(7 pts.) Assume that f(x) is a continuous function which takes the following values:

x	-1	0	1	2
f(x)	-10	10	-1	3

Which of the following conclusions can we make by using the Intermediate Value Theorem:

Solution: We see that f(-1) < 0 < f(0) and hence there is $x_1 \in (-1,0)$ such that $f(x_1) = 0$ by the Intermediate Value Theorem (IVT) since f is continuous. Further f(0) > 0 > f(1) and hence there is $x_2 \in (0,1)$ such that $f(x_2) = 0$ by IVT. Lastly f(1) < 0 < f(2) and hence there is $x_3 \in (1,2)$ such that $f(x_3) = 0$ by IVT. We can conclude that there are at least 3 three solutions to f(x) = 0 (note that there could be more).

7.(7 pts.) The graph of f(x) is shown below:

Which of the following is the graph of f'(x)?

Solution: We observe that f(x) has two horizontal tangent lines. One has the x-coordinate located somewhere in the interval [-2,-1] and the other one at x = 0. Hence f'(x) has two zeroes at these two locations. Only graph (e) has this property.

8.(7 pts.) Find
$$f'(x)$$
, if
 $f(x) = 2x^2 \sin(\sqrt{x}) + \frac{1}{\sqrt{x}}$.
(a) $4x \cos(\sqrt{x}) - \frac{1}{2\sqrt{x^3}}$
(b) $\sqrt{x^3} \cos(\sqrt{x}) + 4x \sin(\sqrt{x}) - \frac{1}{2\sqrt{x^3}}$
(c) $-\sqrt{x^3} \cos(\sqrt{x}) + \sin(\sqrt{x}) + \frac{1}{2\sqrt{x^3}}$

(d)
$$2x^2 \cos(\sqrt{x}) + 4x \sin(\sqrt{x}) - \frac{1}{2\sqrt{x^3}}$$

(e)
$$-\sqrt{x^3}\cos(\sqrt{x}) + 4x\sin(\sqrt{x}) - \frac{1}{2\sqrt{x^3}}$$

Solution: Recall that the derivative of a sum is equal to the sum of the derivatives. The derivative of the first summand $2x^2 \sin(\sqrt{x})$ requires the product rule and the chain rule. Indeed, the derivative is $2x^2 \frac{d}{dx} (\sin(\sqrt{x}) + \frac{d}{dx} (2x^2) \sin(\sqrt{x}) = 2x^2 \cos(\sqrt{x})(1/2)x^{-1/2} + 4x \sin(\sqrt{x}) = \sqrt{x^3} \cos(\sqrt{x}) + 4x \sin(\sqrt{x}).$

The derivative of the second summand $\frac{1}{\sqrt{x}}$ simply requires the power rule and is equal

to
$$-\frac{1}{2\sqrt{x^3}}$$
.

Thus the derivative of $f(x) = \sqrt{x^3}\cos(\sqrt{x}) + 4x\sin(\sqrt{x}) - \frac{1}{2\sqrt{x^3}}$

9.(7 pts.) Find the derivative of $f(x) = \tan(\sin(x^2))$.

- (a) $\cot(\sin(x^2))\cos(x^2)$) (b) $-2x\sec^2(\sin(x^2))\cos(x^2)$)
- (c) $2x \sec^2(\sin(x^2)) \cos(x^2)$ (d) $2x \sec^2(\sin(x^2)) \sin(x^2)$
- (e) $2x \cot(\sin(x^2)) \cos(x^2)$)

Solution. Let $f_1(x) = \tan x$, $f_2(x) = \sin x$, $f_3(x) = x^2$. We have $f'_1(x) = \sec^2(x)$, $f'_2(x) = \cos x$, $f'_3(x) = 2x$. Note $f(x) = f_1(f_2(f_3(x)))$. By chain rule, $f'(x) = f'_1(f_2(f_3(x)))f'_2(f_3(x))f'_3(x) = 2x \sec^2(\sin x^2) \cos(x^2)$.

10.(7 pts.) If $f(x) = x \sin x + \cos x$, find f''(x).

- (a) $f''(x) = x \cos x + \sin x$
- (b) $f''(x) = -x \sin x \cos x$
- (c) $f''(x) = 3\cos x x\sin x$
- (d) $f''(x) = -x \sin x + \cos x$
- (e) $f''(x) = -\sin x \cos x$

Solution:

First note that $f'(x) = x \cos x + \sin x - \sin x = x \cos x$. Then $f''(x) = x(-\sin x) + \cos x$.

11.(7 pts.) Let $h(x) = f \circ g(x) - \frac{f(x)}{g(x)}$. If f(3) = 0, g(3) = 1, f'(3) = 3, g'(3) = 4, f'(1) = 7, and g'(2) = 5, then find h'(3).

(a) 30 (b) 20 (c) 25 (d) 10 (e) 0

Solution: First, note that for any x, we have $h'(x) = f'(g(x))g'(x) - \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$. Therefore $h'(3) = f'(g(3))g'(3) - \frac{g(3)f'(3) - f(3)g'(3)}{(g(3))^2} = f'(1)g'(3) - \frac{g(3)f'(3) - f(3)g'(3)}{(g(3))^2} = 7 * 4 - \frac{1 * 3 - 0 * 4}{1^2} = 28 - 3 = 25$

12.(7 pts.) If $f(x) = x^3 - 3x^2 - 9x + 7$, find the *x*-coordinates of all points on the curve with horizontal tangent line.

- (a) x = 0 and x = 1
- (b) x = 3 and x = -1
- (c) x = 4 and x = -2
- (d) x = -3 and x = 1
- (e) No points on the curve have horizontal tangent line.

Solution: We solve $f'(x) = 3x^2 - 6x - 9 = 0$. So x = 3, -1.

Partial Credit

You must show your work on the partial credit problems to receive credit!

13.(10 pts.) Find the derivative of

$$f(x) = \sqrt{x+1}$$

using the limit definition of the derivative.

Please include all of the details in your calculation. Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{x+h+1} - \sqrt{x+1}}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{x+h+1} - \sqrt{x+1}}{h} * \frac{\sqrt{x+h+1} + \sqrt{x+1}}{\sqrt{x+h+1} + \sqrt{x+1}}$$

$$= \lim_{h \to 0} \frac{(x+h+1) - (x+1)}{h(\sqrt{x+h+1} + \sqrt{x+1})}$$

$$= \lim_{h \to 0} \frac{h}{h(\sqrt{x+h+1} + \sqrt{x+1})}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{x+h+1} + \sqrt{x+1}}$$

$$= \frac{1}{2\sqrt{x+1}}$$

Name:	
Instructor:	

14.(10 pts.) Let $y = x^2 + x$.

(a) Find the equation of the tangent line through the point (-1, 0).

Solution: $y'(-1) = (x^2 + x)'|_{x=-1} = 2x + 1|_{x=-1} = -1$. Hence the slope of the tangent line of $y = x^2 + x$ is -1 at (-1, 0). So the equation is y = -(x + 1) = -x - 1. (b) Find all points on the curve whose tangent line goes through the point (2, 5).

Solution: Suppose such a point has coordinate $(a, a^2 + a)$. Then the slope of the tangent line at that point is y'(a) = 2a + 1. On the other hand this slope is given by $\frac{a^2 + a - 5}{a - 2}$. Therefore $2a + 1 = \frac{a^2 + a - 5}{a - 2}$. So a = 1 or 3. Such points can be (1, 2) or (3, 12).

Name:

Instructor:

15.(10 pts.) Show that there is at least one solution of the equation

 $x^2 = 2 + \sin(\pi x).$

Justify your answer, identify the theorem you use and explain why the theorem applies. Solution:

First, note that finding a solution to $x^2 = 2 + \sin(\pi x)$ is equivalent to finding the zeros to the function $f(x) = 2 + \sin(\pi x) - x^2$. Indeed, f(x) is continuous since 2, $\sin(\pi x)$ and $-x^2$ are all continuous and the sum of continuous functions is again continuous.

Further note that $f(0) = 2 + \sin(0) - 0^2 = 2$ and $f(2) = 2 + \sin(2\pi) - 4 = -2$.

The intermediate value theorem states that for any continuous function on an interval [a, b] and a number N between f(a) and f(b) where $f(a) \neq f(b)$ there is a number $c \in (a, b)$ such that f(c) = N. We can apply the IVT to our case and conclude that since f(2) = -2 < 0 < 2 = f(0) there is some $c \in (0, 2)$ such that f(c) = 0.

Indeed for that c, we will have $c^2 = 2 + \sin(c\pi)$.

Rough Work

Name: _____

Instructor: <u>ANSWERS</u>

Math 10550, Exam I September 25, 3024

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 13 pages of the test.
- Each multiple choice question is worth 7 points. Your score will be the sum of the best 10 scores on the multiple choice questions plus your score on questions 13-15.

PLE	ASE	MARK YOUR AN	SWERS WITI	H AN X, not a	circle!
1.	(ullet)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(•)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(ullet)
4.	(a)	(•)	(c)	(d)	(e)
5.	(a)	(b)	(ullet)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(ullet)
8.	(a)	(ullet)	(c)	(d)	(e)
9.	(a)	(b)	(ullet)	(d)	(e)
10.	(a)	(b)	(c)	(ullet)	(e)
11.	(a)	(b)	(ullet)	(d)	(e)
12.	(a)	(ullet)	(c)	(d)	(e)

Please do NOT	write in this box.		
Multiple Choice			
6.			
13.			
14.			
15.			
Total			