Math 10550, Exam III
November 27, 2007

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a) (b) (c) (d) (e)
2. (a) (b) (c) (d) (e)
3. (a) (b) (c) (d) (e)
4. (a) (b) (c) (d) (e)
5. (a) (b) (c) (d) (e)
6. (a) (b) (c) (d) (e)
7. (a) (b) (c) (d) (e)
8. (a) (b) (c) (d) (e)
9. (a) (b) (c) (d) (e)
10. (a) (b) (c) (d) (e)

Please do NOT write in this box.

Multiple Choice
11.
12.
13.
Total
Multiple Choice

1. (7 pts.) Solving the equation \(x^2 - 2 + \cos\left(\frac{\pi x}{2}\right) = 0 \) using Newton’s method with initial approximation \(x_1 = 1 \), what is \(x_2 \)?

(a) \(x_2 = \frac{1}{2} \)
(b) \(x_2 = 1 \)
(c) \(x_2 = \pi \)

(d) \(x_2 = \frac{\pi}{2} - 1 \)
(e) \(x_2 = \frac{6 - \pi}{4 - \pi} \)

2. (7 pts.) The area of an ellipse

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
\]

of semi-axis \(a\) and \(b\) is known to be \(\pi ab\). Use this (or some other geometric fact) to evaluate the integral

\[
\int_{-a}^{a} \frac{b}{a} \sqrt{a^2 - x^2} dx
\]

(a) \(\pi a^2 b^2\)
(b) \(\pi a b^2\)
(c) \(\sqrt{\pi} ab\)
(d) \(2\pi a^2 b\)
(e) \(\frac{1}{2} \pi ab\)
3. (7 pts.) Calculate the indefinite integral

\[\int \frac{3x + 3\sqrt{x}}{\sqrt{x}} \, dx = \]

(a) \(3x^2 + C \) \hspace{1cm} (b) \(3x^{3/2} + C \) \hspace{1cm} (c) \(3x + 2x^{3/2} + C \)
(d) \(x + \sqrt{x} + C \) \hspace{1cm} (e) \(x^{3/2} + C \)

4. (7 pts.) Calculate the definite integral

\[\int_0^\pi |\cos x| \, dx = \]

(a) \(\frac{\pi}{2} \) \hspace{1cm} (b) \(\pi \) \hspace{1cm} (c) \(1 \)
(d) \(2 \) \hspace{1cm} (e) \(2\pi \)
5. (7 pts.) Calculate
\[\int 6 \tan^5 x \sec^2 x \, dx = \]
(a) \(\tan x \sec x + C \)
(b) \(\sec^6 x + C \)
(c) \(\tan^5 x + C \)
(d) \(\tan^6 x + C \)
(e) \(\sec^4 x + C \)

6. (7 pts.) Which of the following estimate holds for the integral
\[I = \int_0^1 (1 + \cos^2 x) \, dx? \]
(a) \(0 \leq I < \frac{\pi}{6} \)
(b) \(1 \leq I \leq 2 \)
(c) \(2 < I \leq 3 \)
(d) \(I \leq 1 + \cos^2 1 \)
(e) \(0 < I < 1 \)
7. (7 pts.) Find the volume of the solid obtained by rotating the region bounded by
\(y = x^6, \ y = 1, \) and \(x = 0, \) about the \(y \)-axis.

(a) \(3\pi \) \hspace{1cm} (b) \(\frac{4\pi}{3} \) \hspace{1cm} (c) \(\frac{3\pi}{4} \) \hspace{1cm} (d) \(4\pi \) \hspace{1cm} (e) \(\frac{\pi}{4} \)

8. (7 pts.) Consider the function

\[g(x) = -\int_{\sin x}^{0} \sqrt{t^3 + 1} \, dt. \]

Then \(g'(x) = \)

(a) \(\sqrt{\sin^3 x + 1} \cos x \) \hspace{1cm} (b) \((\sin^3 x + 1) \cos x \) \hspace{1cm} (c) \(3(\sin^2 x) \sqrt{\sin^3 x + 1} \)

(d) \(\sin^3 x \cos x \) \hspace{1cm} (e) \(\sqrt{\sin^3 x + 1} \)
9. (7 pts.) Calculate the integral
\[
\int_{-2}^{2} \frac{x^3}{1 + \cos^2 x} \, dx.
\]
(a) \(\frac{1}{16}\)
(b) \(\frac{1}{8}\)
(c) 0
(d) 16
(e) 8

10. (7 pts.) Which of the following is a Riemann sum corresponding to the integral
\[
\int_{1}^{2} \sin x \, dx?
\]
(a) \(\frac{2}{n} \sum_{i=1}^{n} \sin(1 + \frac{i}{n})\)
(b) \(\frac{1}{n} \sum_{i=1}^{n} \sin(1 + \frac{i}{n})\)
(c) \(\frac{1}{n} \sum_{i=1}^{n} \sin(\frac{2i}{n})\)
(d) \(\frac{1}{n} \sum_{i=1}^{n} \sin(1 + \frac{2i}{n})\)
(e) \(\frac{2}{n} \sum_{i=1}^{n} \sin(\frac{2i}{n})\)
11. (10 pts.) Find the area of the region bounded by the curves $y = \sin x$, $y = \cos x$ and the vertical lines $x = 0$, $x = \frac{\pi}{2}$.
12. (10 pts.) Find the coordinates of the point on the line $x + y + 1 = 0$ that is closest to the origin. Hint: the computations are a bit easier if you minimize the square of the distance to the origin.
13. (10 pts.) A cylindrical can without a top is made to contain π cubic centimeters of liquid. Find the dimensions (height and radius of the cylinder) that will minimize the cost of the metal to make the can.
Math 10550, Exam III
November 27, 2007

• The Honor Code is in effect for this examination. All work is to be your own.
• No calculators.
• The exam lasts for 1 hour and 15 min.
• Be sure that your name is on every page in case pages become detached.
• Be sure that you have all 9 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a) (b) (c) (d) (●)
2. (a) (b) (c) (d) (●)
3. (a) (b) (●) (d) (e)
4. (a) (b) (c) (●) (e)
5. (a) (b) (c) (●) (e)
6. (a) (●) (c) (d) (e)
7. (a) (b) (●) (d) (e)
8. (●) (b) (c) (d) (e)
9. (a) (b) (●) (d) (e)
10. (a) (●) (c) (d) (e)

Please do NOT write in this box.

Multiple Choice

11. ____________
12. ____________
13. ____________
Total ____________