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Math 10550, Exam III
November 19, 2013

The Honor Code is in effect for this examination. All work is to be your own.
No calculators.

The exam lasts for 1 hour and 15 min.

Be sure that your name is on every page in case pages become detached.

Be sure that you have all 11 pages of the test.
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Multiple Choice

242 1
1.(6 pts.) The slant asymptote of y = % is given by
x JE—
(a) y=3 (b) y=x+3 () y==
(d) z=1 () y=1
We find the slant asymptote by long division.
T+ 3
r—1) z*4+2z+1
—2? 4
3z +1
-3z +3
4

Thus the slant asymptote is y =z + 3

2.(6 pts.) The equation z° + 2z — 1 = 0 has one solution between 0 and 1. Find the result
of one iteration of Newton’s method applied to this equation with 1 as the starting point
(i.e. find z5 using Newton’s method applied to the equation with z; = 1).

3 5 1 5
2 e - 1 e
@) O © 5 (@) © =
Recall that Newton’s method uses the formula
. / ($1)
EhTy (1)

For the given f(x), we have f(1) =1+1—1= 1. Also, since f'(z) = 5z* + 1, we have
f'(1) =5(1) +1 = 6. So Newton’s method gives
f _ 1.5
fay - 66

(L’gzl—
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3.(6 pts.) A car racing on a straight road crosses the starting line with a velocity of 88
60
ft /sec. From this point on it accelerates at _tft /sec?. How fast in ft/sec will the car be

going 4 seconds after the car has crossed the starting line?

(a) 328 ft/sec (b) 292 ft/sec (c) 208 ft/sec
(d) 244 ft/sec (e) 152 ft/sec

Acceleration is the derivative of velocity, so to find the change in velocity we compute
the definite integral of the acceleration over the time interval.

4
60
—tdt = 120V/1|3 = 120v4 — 120(0) = 240

0

Thus the change in velocity is 240 ft/sec. We add this to the starting velocity to find

that the velocity of the car after 4 seconds is 88 + 240 = 328 ft/sec.

4.(6 pts.) The graph of a piecewise defined function f(z) consisting of a semicircle and
3 straight lines, is shown below. Use the graph to calculate the value of Ry, the right

10
endpoint approximation to (z)dz using 5 approximating rectangles.
0
R S S RS A
(197 RN S T
2 3 6 8 0
_1,,,,,,,,,,,,,,,,,,,,,,,,,,: ,,,,,,,,,,,,,,,,,
Y N T NS A N
(a) R5 =8 (b) R5 =5 (C) R5 =12
(d) R5 =6 (6) R5 =16

The function takes the values f(2) = 2,f(4) =0, f(6) = 1,f(8) = 1, and f(10) = 2.
The width of each rectangle is 2, since we divide up an interval 10 units long into 5 pieces.
We then get the sum Rs = 2f(2)+2f(4)+2f(6)+2f(8)+2f(10) = 4+0+2+2+4 = 12
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5.(6 pts.) If f(z) = /0 xcos(t2)dt, then f'(z) =
(a)  —25cos(5z?) (b)  5cos(bz?) () —bcos(5x?)
(d)  5cos(25x?) (e) —5cos(25x?)

Letting g(z) = [ cos(t?)dt, we see that f(x) = g(5x). Then the chain rule says that
f'(z) = 5¢'(5z). By the fundamental theorem of calculus, ¢’(5z) = cos((5x)?). Thus we
see that f'(x) = 5cos((5x)?) = 5 cos(25x?).

S5z u
Alternatively: if we let u(x) = 5z, then / cos(t?)dt = / cos(t?)dt and
0 0

di:v i cos(t?)dt = % i cos(t*)dt - Z—Z = [cos(u?)] - 5 = 5cos(252?).
6.(6 pts.) Evaluate /(4 — 32%) (42 + 1)dx.
(a) —3622+16+C (b)  —12z* — 323 + 162? + 4z + C
(c) —zx4—x3+8x2+4x+0 (d)  —22°—2*+ 8%+ 422+ C

(e) -3zt —2*+82+4z+C

First, we expand the integrand as (4 —32%)(4z +1) = —122% — 322 4 162 + 4. We then
can find the integral term by term, and obtain

/(4 —32%)(4x + 1)dr = =32 —2° + 82° + 4z + C
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7.(6 pts.) Evaluate the integral /  sin(z?)dz.
0

@) 1-— () 2 © 1 @ 3 ©

We perform the substitution v = u(xz) = z? to simplify the integrand. Note that
du = 2zdz, u(0) = 0,u(y/m) = 7. Now we can write the integral as

/ sin(u) du
O 2

Note that the upper limit has become u(1/pi) = 7 since the integral is now with respect
to u. Now we find

g 1 "
/ sin(w) 2 = L(Zcosu))| =1 - (—1)) =1
; 2 2 L2
’ 1
8.(6 pts.) Evaluat dz.
(6 pts.) Evaluate /1\/5(1+2\/5)2x
1 4 1 8
- = - 1 2
(@) (b) 5 (c) = (d) O
d
We will use the substitution rule. Notice that if u = u(x) = 1 4 2y/x then du = \/—I_
x

and u(1) = 3, u(9) = 14 2v/9 = 7. Therefore, by the substitution rule
Tdu -1 11 4

/Igﬁuixzﬁ)f/g(u)fT 307 21

u=3
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6
9.(6 pts.) Evaluate / |z — 2|dx.
1
33 17 15
— — — 4
() % b) 8 © @ - (©
First, note that
-2 > 2
|z — 2| = v =
2—x x<2
and so we can write
6 2 6 1 2 1 6
/ |x—2|dx:/ Z—xdx—i-/ v —2dr = 2x — —2°| + =2 -2z
1 1 2 2 | 2 2
1 17
2 * 2



Name:

Instructor:

10.(6 pts.) If the following is a graph of the function f(z), which graph among the

answers is the graph of / f&)de?
0

10/

N\

—-1.0t

2 3\6/8 X
05

Note: The letter corresponding to the diagram is on the lower left.

1.0

. . — X
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Recall that g(z) := fom f(t)dt is equal to the area under the graph of f(¢) and that the
derivative of this integral function with respect to z is f(z). First notice that g(0) = 0,
which automatically eliminates three of the choices. We see that on the interval [0, 4] the
function ¢(z) is increasing, and on [4, 6] the function g(x) is decreasing. Thus x =4 is a
critical point, in fact it is a local maximum. Similarly, g(z) is increasing on [8, 00), and
so x = 8 is a local minimum. This information eliminates another choice, leaving one
left, namely




Name:

Instructor:

Partial Credit
You must show your work on the partial credit problems to receive credit!

2
11.(13 pts.) Evaluate the definite integral / (14 2*)dx by using right endpoint approx-

0
imations and the limit definition of the definite integral.
1
Hint: 12+ 22 + 3% + -+ +n’ = 6n(n+ 1(2n +1).

2
When we divide up the interval [0, 2] into n intervals, each interval has width —. Thus
n

2 2'
Ar = — and r; =04+ 1Ax = iAx = ' The right endpoint approximation tells us that
the area is approximated by R, ZZ L flz)Ax

We compute
4 2 "2 82
>osan=3 (14 é)(a)i(m—@)-

=1

2
The first term in the summation is just adding — together n times, so it contributes 2

to the sum. For the second part of the sum, we use the hint.

an :ngz ( n+1)(2n+1)):g(n(n+1T)Lg2n+1))

i=1

8
(Note that in the second step we’ve factored out — since it does not depend on i.)

n3
This shows that
Rn:2+é n(n+1)(2n + 1) |
3 n3

Using the limit definition of the integral, we find

2 4 (nn+1)(2n+1) 4 14 2
14 2%)dz = lim R, = li 24— =24 —(2) = — or 4=.
/0(—|—x)x Jim. nl_{go(—l—g( 3 )) +3() g ordg

Note that in going from the third to the fourth term above, we’ve used that
. nn+1)2n+1) . 2n +3n* +n

n—00 n3 n—00 n3

=2.
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12.(13 pts.) Find all the points on the hyperbola y*> — 2* = 4 that are closest to the
point (2,0).
The distance from a point (x,y) to the point (2,0) is given by the formula d =
(r — 2)2 + y2. Therefore we wish to find the points (z,y) on the hyperbola for which
the value
(= 2)% + 4
is minimal. It is equivalent to minimize the function
(z—2)* + ¢
As (z,y) is on the hyperbola, we can write y*> = 2 + 4. So we must minimize
fx)=(r—2)*+2°+4
To minimize, we derivate with respect to x and find critical points, that is we find real
zeros of
fz)=2x—-2)+2x=40—-4=0
which gives * = 1. Notice that x = 1 is indeed a minimum since for x < 1 one has
f'(x) < 0 and for x > 1 one has f’(z) > 0. Notice that when z = 1, the only y-values
for which (1,y) belongs on the hyperbola are those so that y*> =5, i.e. y = ++/5. Thus,
the points on the hyperbola which are closest to (2,0) are (1,++/5).

10
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13.(14 pts.) A page of a book is to have a total area of 150 square inches, with 1 inch
margins at the top and sides, and a 2 inch margin at the bottom. Find the dimensions
in inches of the page which will have the largest print area.

Let x denote the total width and y denote the total height. So the width of the printed
area is x — 2 and the height of the printed area is y — 3. Then the total area of the page
can be expressed as

Avotal = ry.
We are given that A = 150, so y = 150/z. We wish to maximize
At = (2= 2)(y = 3) = (2 — 2) (%-3) :156—31:—3%.

Differentiating with respect to x and finding critical points gives
A;)rint<w) =-3+—F =
so we must have 300 — 322 = 0, i.e. 22 = 100. So x = 10 inches.

Using the first derivative test shows that 10 is indeed a maximum. For x < 10, A}, ;,,, > 0,
and for z > 10, A}, <O0.

150
y = 150/, so we have y = 0= 15. Therefore the page which maximizes the printed

area has the dimensions 10 inches by 15 inches.

11
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