Project 1: The shape of a Can

The attached Project appears in Section 4.5 of your book. (You may want to rework it using a fixed but unspecified value \(V \) for the volume of the can).

Please keep in mind the following points as you work through the project:

You should read through Example 2 in Section 4.5 of your book before you start on Part 1.

Part 1 The area of the metal used to make a can in this case is \(8r^2 + 2\pi rh \).

Part 2 The area of the metal used to make a can in this case is \(2\pi rh + \) (The area of the hexagon in the picture).

Part 3 The critical points for this part actually occur when

\[
\frac{\sqrt[3]{V}}{k} = \sqrt[3]{\frac{\pi h}{r}} \frac{\left(\frac{h}{r} - 2\pi \right)}{\left(4\sqrt{3} - \pi \frac{h}{r} \right)}.
\]

There is a misprint in the book.
For this part calculate \(C'(r) \) and set it equal to zero. Then rearrange the equation you get to look like the one above, keeping in mind that

\[
V = \pi r^2 h = \pi r^3 \frac{h}{r} \quad \text{and} \quad r^3 = \frac{V}{\pi \frac{h}{r}} \quad \text{which gives} \quad r = \sqrt[3]{\frac{V}{\pi \frac{h}{r}}}.
\]

To verify that you have a minimum when

\[
\frac{\sqrt[3]{V}}{k} = \sqrt[3]{\frac{\pi h}{r}} \frac{\left(\frac{h}{r} - 2\pi \right)}{\left(4\sqrt{3} - \pi \frac{h}{r} \right)}.
\]

it is best to consider \(C'(r) \) as a function of \(x = h/r \). Remember that the chain rule allows you to convert \(C'(r) \) to \(C'(x) \), namely \(C'(x) = C''(r) \frac{dr}{dx} \). When you write \(C'(x) \) as a function of \(x \) it is possible to see that you have a minimum when

\[
\frac{\sqrt[3]{V}}{k} = \sqrt[3]{\frac{\pi h}{r}} \frac{\left(\frac{h}{r} - 2\pi \right)}{\left(4\sqrt{3} - \pi \frac{h}{r} \right)}.
\]

Part 4 To plot the graph of the function \(f(x) \), you may use any graphing software or you may use the graphing techniques learned in the course. Please include a printout of your graph with your project.

To graph the function \(f(x) = \sin x \) on the interval \([0, 6\pi]\) with Mathematica, you can use the command given below. To execute this command, click on the command, then choose Evaluation from the main menu, and choose Evaluate Cells from the menu. Alternatively click on the command and Press Shift Return on your keyboard.

\[
\text{In[1] := Plot[Sin[x], \{x, 0, 6 \text{ Pi}\}]}
\]

You may download Mathematica for free from the OIT website under Software. It is also available on all university computers in the computer labs.
In this project we investigate the most economical shape for a can. We first interpret this to mean that the volume \(V \) of a cylindrical can is given and we need to find the height \(h \) and radius \(r \) that minimize the cost of the metal to make the can (see the figure). If we disregard any waste metal in the manufacturing process, then the problem is to minimize the surface area of the cylinder. We solved this problem in Example 2 in Section 4.5 and we found that \(h = 2r \); that is, the height should be the same as the diameter. But if you go to your cupboard or your supermarket with a ruler, you will discover that the height is usually greater than the diameter and the ratio \(h/r \) varies from 2 up to about 3.8. Let’s see if we can explain this phenomenon.

1. The material for the cans is cut from sheets of metal. The cylindrical sides are formed by bending rectangles; these rectangles are cut from the sheet with little or no waste. But if the top and bottom discs are cut from squares of side \(2r \) (as in the figure), this leaves considerable waste metal, which may be recycled but has little or no value to the can makers. If this is the case, show that the amount of metal used is minimized when

\[
\frac{h}{r} = \frac{8}{\pi} = 2.55
\]

2. A more efficient packing of the discs is obtained by dividing the metal sheet into hexagons and cutting the circular lids and bases from the hexagons (see the figure). Show that if this strategy is adopted, then

\[
\frac{h}{r} = \frac{4\sqrt{3}}{\pi} = 2.21
\]

3. The values of \(h/r \) that we found in Problems 1 and 2 are a little closer to the ones that actually occur on supermarket shelves, but they still don’t account for everything. If we look more closely at some real cans, we see that the lid and the base are formed from discs with radius larger than \(r \) that are bent over the ends of the can. If we allow for this we would increase \(h/r \). More significantly, in addition to the cost of the metal we need to incorporate the manufacturing of the can into the cost. Let’s assume that most of the expense is incurred in joining the sides to the rims of the cans. If we cut the discs from hexagons as in Problem 2, then the total cost is proportional to

\[
4\sqrt{3} r^2 + 2\pi rh + k(4\pi r + h)
\]

where \(k \) is the reciprocal of the length that can be joined for the cost of one unit area of metal. Show that this expression is minimized when

\[
\frac{\sqrt{V}}{k} = \sqrt{\frac{\pi h}{r}} \cdot \frac{2\pi - h/r}{\pi h/r - 4\sqrt{3}}
\]

4. Plot \(\sqrt{V}/k \) as a function of \(x = h/r \) and use your graph to argue that when a can is large or joining is cheap, we should make \(h/r \) approximately 2.21 (as in Problem 2). But when the can is small or joining is costly, \(h/r \) should be substantially larger.

5. Our analysis shows that large cans should be almost square but small cans should be tall and thin. Take a look at the relative shapes of the cans in a supermarket. Is our conclusion usually true in practice? Are there exceptions? Can you suggest reasons why small cans are not always tall and thin?

This project can be completed anytime after you have studied Section 4.5 in the textbook.

Discs cut from squares

Discs cut from hexagons