Name:	
Instructor:	

Math 10560, Practice for Quiz 1 August 22, 2023

- The Honor Code is in effect for this quiz. All work is to be your own.
- No calculators.
- \bullet The quiz lasts for 25 Minutes .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 6 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!						
1.	(a)	(b)	(c)	(d)	(e)	
2.	(a)	(b)	(c)	(d)	(e)	
3.	(a)	(b)	(c)	(d)	(e)	
4.	(a)	(b)	(c)	(d)	(e)	
5.	(a)	(b)	(c)	(d)	(e)	

Name: Instructor:

Multiple Choice

1.(2 pts) If $f(x) = \cos(x)$ and $g(x) = x - \frac{\pi}{2}$, which of the following is the graph of y = 2f(g(x))?

(Make sure you look carefully at the labels on both axes.)

We are given, $f(x) = \cos x$ and $g(x) = x - \frac{\pi}{2}$. So,

$$2f(g(x)) = 2\cos\left(x - \frac{\pi}{2}\right) = 2\sin(x).$$

The graph of 2f(g(x)) will be the graph of $\sin(x)$ but multiplied by 2.

(a)

(b)

(c)

(d)

(e)

Name: _____ Instructor:

2.(2 pts) What is the value of

$$\cos\left(\frac{7\pi}{6}\right)$$

$$\cos\left(\frac{7\pi}{6}\right) = \cos\left(\pi + \frac{\pi}{6}\right) = -\cos\frac{\pi}{6} = -\frac{\sqrt{3}}{2}$$

- (a) $\frac{\sqrt{3}}{2}$ (b) $\frac{1}{2}$ (c) $-\frac{1}{2}$ (d) $-\frac{\sqrt{3}}{2}$ (e) $-\frac{1}{\sqrt{3}}$

Name: _______
Instructor:

3.(2 pts) Let $f(x) = \frac{1}{x-2}$ and $g(x) = \frac{1}{x-3}$. What is the domain of the function $f \circ g(x)$?

We want to know the domain of $f \circ g(x) = f(g(x))$. Firstly, the denominator of g should be non-zero, i.e $x \neq 3$.

Similarly, the denominator of f(g(x)) cannot be zero, i.e $g(x) \neq 2$. If g(x) = 2, or $\frac{1}{x-3} = 2$ or $x = \frac{7}{2}$. Hence,

$$\{x|x \neq 3 \text{ and } x \neq 7/2\} = (-\infty, 3) \cup (3, 7/2) \cup (7/2, \infty).$$

(a)
$$\{x | x \neq 3\} = (-\infty, 3) \cup (3, \infty)$$

(b)
$$\{x | x \neq 2\} = (-\infty, 2) \cup (2, \infty)$$

(c)
$$\{x | x \neq 3 \text{ and } x \neq 7/2\} = (-\infty, 3) \cup (3, 7/2) \cup (7/2, \infty)$$

(d)
$$\{x | x \neq 3 \text{ and } x \neq 2\} = (-\infty, 2) \cup (2, 3) \cup (3, \infty)$$

(e) {all values of
$$x$$
} = $(-\infty, \infty)$

Name: Instructor:

4.(2 pts) The following table shows the position, s(t), at time t, of a particle moving on an axis, where t is measured in seconds and distance is measured in feet.

t	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1
s(t)	1	-3	1	0	1	-1	-4	4	3	2	1	0

Which of the following is the most reasonable estimate of the velocity of the particle, v(t), at time t=1 second given the data available?

To estimate the velocity at t = 1 we compute $\frac{s(1+h) - s(1)}{h}$, for 1+h close to 1 from the given data.

Note that $\frac{s(1+h)-s(1)}{h}=-10$ ft/s for h=0.1,-0.1,-0.2,-0.3 (corresponding to t=1.1,0.9,0.8,0.7). Hence, -10 ft/sec is the most reasonable estimate for the velocity of the particle.

- (a) $v(1) \approx -10 \text{ ft/sec}$ (b) $v(1) \approx 1 \text{ ft/sec}$ (c) $v(1) \approx 10 \text{ ft/sec}$

- (d) $v(1) \approx 100 \text{ ft/sec}$ (e) $v(1) \approx -1 \text{ ft/sec}$

Name: Instructor:

5.(2 pts) The height of a particle moving along a vertical axis is given by $H(t) = \sin\left(\frac{\pi t}{6}\right)$ feet, where t is measured in seconds. What is the average speed of the particle in the first 2 seconds i.e. over the time interval $0 \le t \le 2$.

The average speed over the time interval $0 \le t \le 2$ will be slope of the secant line joining t = 0 and t = 2. Therefore the average speed is

$$\frac{H(2) - H(0)}{2 - 0} = \frac{\sin\left(\frac{2\pi}{6}\right) - \sin 0}{2} = \frac{\sqrt{3}}{4}.$$

- (a) $\frac{1}{4}$ ft/sec
- (b) $\frac{1}{2\sqrt{2}}$ ft/sec (c) $\frac{\sqrt{3}}{2}$ ft/sec

- (d) $\frac{\sqrt{3}}{4}$ ft/sec
- (e) $\frac{\sqrt{1}}{2}$ ft/sec

Name:		
Instructor:	ANSWERS	

Math 10560, Practice for Quiz 1 August 22, 2023

- The Honor Code is in effect for this quiz. All work is to be your own.
- No calculators.
- ullet The quiz lasts for 25 Minutes .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 6 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!						
1.	(ullet)	(b)	(c)	(d)	(e)	
2.	(a)	(b)	(c)	(•)	(e)	
3.	(a)	(b)	(•)	(d)	(e)	
4.	(•)	(b)	(c)	(d)	(e)	
5.	(a)	(b)	(c)	(•)	(e)	