Name: \qquad
Instructor: \qquad

Math 10560, Practice for Quiz 1
 August 22, 2023

- The Honor Code is in effect for this quiz. All work is to be your own.
- No calculators.
- The quiz lasts for 25 Minutes .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 6 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	(c)	(d)	(e)
2. (a)	(b)	(c)	(d)	(e)
3. (a)	(b)	(c)	(d)	(e)
4. (a)	(b)	(c)	(d)	(e)
5. (a)	(b)	(c)	(d)	(e)

Name: \qquad
Instructor: \qquad

Multiple Choice

1. (2 pts) If $f(x)=\cos (x)$ and $g(x)=x-\frac{\pi}{2}$, which of the following is the graph of $y=2 f(g(x))$?
(Make sure you look carefully at the labels on both axes.)
We are given, $f(x)=\cos x$ and $g(x)=x-\frac{\pi}{2}$. So,

$$
2 f(g(x))=2 \cos \left(x-\frac{\pi}{2}\right)=2 \sin (x)
$$

The graph of $2 f(g(x))$ will be the graph of $\sin (x)$ but multiplied by 2 .
(a)

(b)

(c)

(d)

(e)

Name:
Instructor:
2. (2 pts) What is the value of

$$
\begin{gathered}
\cos \left(\frac{7 \pi}{6}\right) \\
\cos \left(\frac{7 \pi}{6}\right)=\cos \left(\pi+\frac{\pi}{6}\right)=-\cos \frac{\pi}{6}=-\frac{\sqrt{3}}{2}
\end{gathered}
$$

(a) $\frac{\sqrt{3}}{2}$
(b) $\frac{1}{2}$
(c) $-\frac{1}{2}$
(d) $-\frac{\sqrt{3}}{2}$
(e) $-\frac{1}{\sqrt{3}}$

Name: \qquad
Instructor: \qquad
3. $(2 \mathrm{pts})$ Let $f(x)=\frac{1}{x-2}$ and $g(x)=\frac{1}{x-3}$. What is the domain of the function $f \circ g(x)$?

We want to know the domain of $f \circ g(x)=f(g(x))$. Firstly, the denominator of g should be non-zero, i.e $x \neq 3$.
Similarly, the denominator of $f(g(x))$ cannot be zero, i.e $g(x) \neq 2$. If $g(x)=2$, or $\frac{1}{x-3}=2$ or $x=\frac{7}{2}$.
Hence,

$$
\{x \mid x \neq 3 \text { and } x \neq 7 / 2\}=(-\infty, 3) \cup(3,7 / 2) \cup(7 / 2, \infty) .
$$

(a) $\quad\{x \mid x \neq 3\}=(-\infty, 3) \cup(3, \infty)$
(b) $\quad\{x \mid x \neq 2\}=(-\infty, 2) \cup(2, \infty)$
(c) $\quad\{x \mid x \neq 3$ and $x \neq 7 / 2\}=(-\infty, 3) \cup(3,7 / 2) \cup(7 / 2, \infty)$
(d) $\quad\{x \mid x \neq 3$ and $x \neq 2\}=(-\infty, 2) \cup(2,3) \cup(3, \infty)$
(e) $\quad\{$ all values of $x\}=(-\infty, \infty)$

Name: \qquad
Instructor: \qquad
4. (2 pts) The following table shows the position, $s(t)$, at time t, of a particle moving on an axis, where t is measured in seconds and distance is measured in feet.

t	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1
$s(t)$	1	-3	1	0	1	-1	-4	4	3	2	1	0

Which of the following is the most reasonable estimate of the velocity of the particle, $v(t)$, at time $t=1$ second given the data available?

To estimate the velocity at $t=1$ we compute $\frac{s(1+h)-s(1)}{h}$, for $1+h$ close to 1 from the given data.
Note that $\frac{s(1+h)-s(1)}{h}=-10 \mathrm{ft} / \mathrm{s}$ for $h=0.1,-0.1,-0.2,-0.3$ (corresponding to $t=1.1,0.9,0.8,0.7)$. Hence, $-10 \mathrm{ft} / \mathrm{sec}$ is the most reasonable estimate for the velocity of the particle.
(a) $v(1) \approx-10 \mathrm{ft} / \mathrm{sec}$
(b) $v(1) \approx 1 \mathrm{ft} / \mathrm{sec}$
(c) $v(1) \approx 10 \mathrm{ft} / \mathrm{sec}$
(d) $v(1) \approx 100 \mathrm{ft} / \mathrm{sec}$
(e) $v(1) \approx-1 \mathrm{ft} / \mathrm{sec}$

Name: \qquad
Instructor: \qquad
5. (2 pts) The height of a particle moving along a vertical axis is given by $H(t)=\sin \left(\frac{\pi t}{6}\right)$ feet, where t is measured in seconds. What is the average speed of the particle in the first 2 seconds i.e. over the time interval $0 \leq t \leq 2$.

The average speed over the time interval $0 \leq t \leq 2$ will be slope of the secant line joining $t=0$ and $t=2$. Therefore the average speed is

$$
\frac{H(2)-H(0)}{2-0}=\frac{\sin \left(\frac{2 \pi}{6}\right)-\sin 0}{2}=\frac{\sqrt{3}}{4}
$$

(a) $\frac{1}{4} \mathrm{ft} / \mathrm{sec}$
(b) $\frac{1}{2 \sqrt{2}} \mathrm{ft} / \mathrm{sec}$
(c) $\frac{\sqrt{3}}{2} \mathrm{ft} / \mathrm{sec}$
(d) $\frac{\sqrt{3}}{4} \mathrm{ft} / \mathrm{sec}$
(e) $\frac{\sqrt{1}}{2} \mathrm{ft} / \mathrm{sec}$

Name: \qquad
Instructor: ANSWERS

Math 10560, Practice for Quiz 1
 August 22, 2023

- The Honor Code is in effect for this quiz. All work is to be your own.
- No calculators.
- The quiz lasts for 25 Minutes .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 6 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (-)	(b)	(c)	(d)	(e)
2. (a)	(b)	(c)	($)$	(e)
3. (a)	(b)	(-)	(d)	(e)
4. ()	(b)	(c)	(d)	(e)
5. (a)	(b)	(c)	(${ }^{\text {) }}$	(e)

