Lecture 16 :The Mean Value Theorem

We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero?
In this section we will answer this question and a related question: How are two functions with the same derivative related?
Below we look at two important theorems which give us more information on the behavior of a continuous function on a closed interval $[a, b]$, when we add the extra assumption that the function is differentiable on the open interval (a, b).

Rolle's Theorem

2

Rolle's Theorem Suppose that

- $y=f(x)$ is continuous at every point of the closed interval $[a, b]$ and
- differentiable at every point of its interior (a, b) and
- $f(a)=f(b)$,
then there is at least one point c in (a, b) at which $f^{\prime}(c)=0$.
The graphs of some functions satisfying the hypotheses of the theorem are shown below:

Let $q(x)=x^{3}-x^{2}-x$. The graph $y=q(x)$ is shown on the left above. We see that $q(-1)=-1=q(1)$. Since $q(x)$ is a polynomial it is continuous on the interval $[-1,1]$ and differentiable on the the open interval $(-1,1)$.
Therefore Rolle's theorem applies and we know that there is some number c with $-1<c<1$ for which $q^{\prime}(c)=0$. That is the tangent to the graph is horizontal at c. (See the corresponding turning point on the graph above).
We can make similar conclusions for the function $h(x)=x^{3}+2 x^{2}-x-1$, the graph of which is shown on the right above.
Example Let $h(x)=x^{3}+2 x^{2}-x-1$. Find a number c such that $-2<c<1$ so that the tangent to the graph of $y=h(x)$ is horizontal at $x=c$.
Since $h(-2)=1=h(1)$ and $h(x)$ is continuous at every point of the interval $[-2,1]$ and differentiable at every point of its interior $(-2,1)$, Rolles Theorem guarantees that there is at least one point c in the interval $(-2,1)$ with $h^{\prime}(c)=0$.
Here, we have $h^{\prime}(x)=3 x^{2}+4 x-1$. To find a value of c with $-2<c<1$ such that $h^{\prime}(c)=0$, we must solve the quadratic $3 c^{2}+4 c-1=0$. We get $c=\frac{-4 \pm \sqrt{16+12}}{6}=\frac{-2 \pm \sqrt{7}}{3} \approx-1.55, .215$. Note: Finding or estimating the value of such a c is not always easy.

Note the result does not always work if one of the conditions above is violated. Note that in the graph of the piecewise defined function $h(x)$ below, we have $h(-1)=1=h(1)=h(9)$. However there are no values of c with $h^{\prime}(c)=0$ (horizontal tangent) on the graph. Why does Rolle's theorem not apply here?

Example: Movement of a particle If $s=f(t)$ is a smooth function describing the position of an object in a straight line. If the object is in the same position at times $t=a$ and $t=b$ then $f(a)=f(b)$ and by Rolle's theorem there must be a time c in between when $v(c)=f^{\prime}(c)=0$, that is the object comes to rest.

Using Rolles Theorem With The intermediate Value Theorem

Example Consider the equation $x^{3}+3 x+1=0$. We can use the Intermediate Value Theorem to show that has at least one real solution:
If we let $f(x)=x^{3}+3 x+1$, we see that $f(-1)=-3<0$ and $f(1)=5>0$. Since $f(x)$ is a polynomial, it is continuous everywhere and the Intermediate Value Theorem guarantees that there is a number c with $-1<c<1$ for which $f(c)=0$ (in other words c is a root of the equation $x^{3}+3 x+1=0$). We can use Rolle's Theorem to show that there is only one real root of this equation.

Proof by Contradiction Assume Statement X is true. Show that this leads to a contradiction. Conclusion: Statement X cannot be true.

The Mean Value Theorem
This is a slanted version of Rolle's theorem:

Mean Value Theorem $\mathscr{Q} \quad$ Suppose

- $y=f(x)$ is continuous on a closed interval $[a, b]$ and
- differentiable on the interval's interior (a, b).

Then there is at least one point c in (a, b) where

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \quad \text { or } \quad f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

Geometrically the mean value theorem says that somewhere between A and B , the graph has a tangent parallel to the chord(secant) AB.

Physical Interpretation Recall $\frac{f(b)-f(a)}{b-a}$ is the average rate of change of the function f on the interval $[a, b]$ and $f^{\prime}(c)$ is the instantaneous rate of change at the point c. The Mean Value Theorem says that at some point in the interval $[a, b]$ the instantaneous rate of change is equal to the average rate of change over the interval (as long as the function is continuous on $[a, b]$ and differentiable on (a, b).)

Sometimes we can find a value of c that satisfies the conditions of the mean Value Theorem.
Example Let $f(x)=x^{3}+2 x^{2}-x-1$, find all numbers c that satisfy the conditions of the Mean Value Theorem in the interval $[-1,2]$.
f is continuous on the closed interval $[-1,2]$ and differentiable on the open interval $(-1,2)$. Therefore the Mean Value theorem applies to f on $[-1,2]$.
The value of $\frac{f(b)-f(a)}{b-a}$ here is :
Fill in the blanks: The Mean Value Theorem says that there exists a (at least one) number c in the interval \qquad such that $f^{\prime}(c)=$ \qquad .

To find such a c we must solve the equation \qquad

Example A car passes a camera at a point A on the toll road with speed 50 mph . Sixty minutes later the same car passes a camera at a point B, located 100 miles down the road from camera A, traveling at 50 mph . Can we prove that the car was breaking the speed limit ($75 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.) at some point along the road?

We can also use this theorem to make inferences about the growth of a function from knowledge about its derivative:

Example If $f(0)=1, f^{\prime}(x)$ exists for all values of x and $f^{\prime}(x) \leq 4$ for all x, how large can $f(2)$ possibly be?

Example If $f(0)=5, f^{\prime}(x)$ exists for all x and $-1 \leq f^{\prime}(x) \leq 3$ for all x, show that

$$
-5 \leq f(10) \leq 35
$$

Mathematical Consequences

With the aid of the Mean Value Theorem we can now answer the questions we posed at the beginning of the section.
Consequence 1 If $f^{\prime}(x)=0$ at each point in an open interval (a, b), we can conclude that $f(x)=C$ for some constant C for all x in the interval (a, b).

Proof Let x_{1} and x_{2} be points in the interval $[a, b]$ with $x_{1}<x_{2}$. Now since $f^{\prime}(x)=0$ in the interval (a, b), we know that f is continuous on $\left[x_{1}, x_{2}\right]$ and differentiable on the interval (x_{1}, x_{2}). Therefore the Mean Value theorem applies and

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{\prime}(c)
$$

for some c with $x_{1}<c<x_{2}$. All such $f^{\prime}(c)$ equal 0 , therefore

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=0
$$

This gives

$$
f\left(x_{1}\right)-f\left(x_{2}\right)=0\left(x_{1}-x_{2}\right)=0 \text { and } f\left(x_{1}\right)=f\left(x_{2}\right)
$$

This works for all x_{1} and x_{2} in the interval (a, b), hence $f(x)$ is constant on the interval.
Consequence 2 If $f^{\prime}(x)=g^{\prime}(x)$ at each point x in an open interval (a, b), then there exists a constant C such that $f(x)=g(x)+C$ for all $x \in(a, b)$. That is $f-g$ is a constant function.

Example Find a function with $f^{\prime}(x)=3 x^{2}$ that runs through the point $(0,1)$.

Solution We must have $f(0)=1$, since the function passes through the point $(0,1)$.
Now it is not difficult to find a function $F(x)$ with $F^{\prime}(x)=3 x^{2}$ by guessing. In fact $F(x)=x^{3}$ will work.
By Consequence 2 above, the function $f(x)$ that we are searching for must have a formula $f(x)=$ $F(x)+C=x^{4}+C$ for some constant C, since $f^{\prime}(x)=3 x^{2}=F^{\prime}(x)$.
Now using the fact that $f(0)=1$, we solve for C : $f(0)=0^{4}+C$ implies that $C=1$ and

$$
f(x)=x^{4}+1
$$

Rolle's Theorem Suppose that

- $y=f(x)$ is continuous at every point of the closed interval $[a, b]$ and
- differentiable at every point of its interior (a, b) and
- $f(a)=f(b)$,
then there is at least one point c in (a, b) at which $f^{\prime}(c)=0$.
Proof of Rolle's Theorem: Because f is continuous on the closed interval $[a, b], f$ attains maximum and a minimum value on $[a, b]$. This maximum can occur at

1. at interior points where f^{\prime} is zero
2. at interior points where f^{\prime} does not exist
3. at the endpoints of the interval, a or b.

We are assuming that f has a derivative at every interior point. This rules out the possibility of 2 , leaving us with interior points where f^{\prime} is zero and two endpoints a and b.

If either the maximum or the minimum occurs at a point c between a and b where $f^{\prime}(c)=0$, then we have found a point c for Rolle's theorem.

If both the absolute maximum and minimum occur at $f(a)$ and $f(b)$, then, since $f(a)=f(b)=k$, when $a<x<b$ we cannot have $f(x)<f(a)$, nor can we have $f(x)>f(a)$. Therefor the function must be constant on the interval $[a, b]$, that is $f(x)=k$ for all $a \leq x \leq b$. Hence at every point in the interior of the interval, we have $f^{\prime}(x)=0$ and Rolle's theorem holds.

The Mean Value Theorem
This is a slanted version of Rolle's theorem:

Mean Value Theorem Suppose

- $y=f(x)$ is continuous on a closed interval $[a, b]$ and
- differentiable on the interval's interior (a, b).

Then there is at least one point c in (a, b) where

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \quad \text { or } \quad f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

Geometrically the mean value theorem says that somewhere between A and B , the graph has a tangent parallel to the chord(secant) AB.

Proof The chord AB coincides with the graph of the function

$$
g(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a) .
$$

Now consider the function

$$
h(x)=f(x)-g(x)
$$

We have that $h(x)$ is contionuous on $[a, b]$ and differentiable on (a, b), because both $f(x)$ and $g(x)$ are. Also $h(a)=0$ and $h(b)=0$, hence we can apply Rolle's theorem to show that there is a point c in the interval (a, b) at which $h^{\prime}(c)=0$. This gives $f^{\prime}(c)-g^{\prime}(c)=0$ or $f^{\prime}(c)=g^{\prime}(c)$. Thus we get:

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

and we are done with the proof.

