Volumes by Disks and Washers

Volume of a cylinder A cylinder is a solid where all cross sections are the same. The volume of a cylinder is $A \cdot h$ where A is the area of a cross section and h is the height of the cylinder.

For a solid S for which the cross sections vary, we can approximate the volume using a Riemann sum.

9
The areas of the cross sections (taken perpendicular to the x-axis) of the solid shown on the left above vary as x varies. The areas of these cross sections are thus a function of $x, A(x)$, defined on the interval $[a, b]$. The volume of a slice of the solid above shown in the middle picture, is approximately the volume of a cylinder with height Δx and cross sectional area $A\left(x_{i}^{*}\right)$. In the picture on the right, we use 7 such slices to approximate the volume of the solid. The resulting Riemann sum is

$$
V \approx \sum_{i=1}^{7} A\left(x_{i}^{*}\right) \Delta x
$$

The volume is the limit of such Riemann sums:

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x=\int_{a}^{b} A(x) d x
$$

Thus if we have values for the cross sectional area at discrete points $x_{0}, x_{1}, \ldots, x_{n}$, we can estimate the volume from the data using a Riemann sum. On the other hand if we have a formula for the function $A(x)$ for $a \leq x \leq b$, we can find the volume using the Fundamental theorem of calculus, or in the event that we cannot find an antiderivative for $A(x)$, we can estimate the volume using a Riemann sum.

$$
V=\int_{a}^{b} A(x) d x . \quad \mathscr{O}
$$

Example The base of a solid is the region enclosed by the curve $y=\frac{1}{x}$ and the lines $y=0, x=1$ and $x=3$. Each cross section perpendicular to the x-axis is an isosceles right angled triangle with the hypotenuse across the base. Find the volume of the solid.

Let f be a continuous function on $[a, b]$ with $f(x) \geq 0$ for all $x \in[a, b]$. Let R denote the region between the curve $y=f(x)$, the x-axis and the lines $x=a$ and $x=b$. When this region is revolved around the x-axis, it generates a solid, S , with circular cross sections of radius $f(x)$. The area of the cross section of S at x is the area of a circle with radius $f(x)$;

$$
A(x)=\pi[f(x)]^{2}
$$

and the volume of the solid (of revolution) generated by R is

$$
V=\int_{a}^{b} \pi[f(x)]^{2} d x
$$

Example 2 Find the volume of a sphere of radius 3.

What is the equation of the curve, $y=f(x)$ which generates the sphere as a solid of revolution as described above?

What is the area of a cross section of the sphere at x, where $-3 \leq x \leq 3$?

What is the volume of the sphere?

Example Find the volume of the solid obtained from revolving the region bounded by the curve $y=\sqrt{x+1}, x=0, x=3$ and $y=0$ (the x axis) about the x axis.

Method of Washers

Let $f(x)$ and $g(x)$ be continuous functions on the interval $[a, b]$ with $f(x) \geq g(x) \geq 0$. Let \underline{R} denote the region bounded above by $y=f(x)$, below by $y=g(x)$ and the lines $x=a$ and $x=b$. Let S be the solid obtained by revolving the region R around the x axis. The cross sections of S are washers with area is given by

$$
A(x)=\pi(\text { outer radius })^{2}-\pi(\text { inner radius })^{2}=\pi\left[f(x)^{2}\right]-\pi[g(x)]^{2} .
$$

The volume of S is given by

$$
V=\int_{a}^{b} \pi\left[f(x)^{2}\right]-\pi[g(x)]^{2} d x=\int_{a}^{b} \pi\left[f(x)^{2}-g(x)^{2}\right] d x
$$

Example Find the volume of the solid obtained by rotating the region bounded by the curves $y=x^{2}$ and $y=\sqrt{x}$ and the lines $x=0$ and $x=1$ about the x axis. We see from the pictures below how the formula is derived:

Rotating about a line $y=c$

9

We may also rotate a region between two curves $y=f(x)$ and $y=g(x)$ and the lines $x=a$ and $x=b$ around a line of the form $y=c$ to generate a solid, S. Let us assume that $|f(x)-c| \geq|g(x)-c| \geq 0$ $\overline{\text { for } a \leq x \leq b}$. The cross sections of S are washers with area

$$
A(x)=\pi(\text { outer radius })^{2}-\pi(\text { inner radius })^{2}=\pi(f(x)-c)^{2}-\pi(g(x)-c)^{2}
$$

Hence the volume of such a solid is given by

$$
V=\int_{a}^{b} \pi(f(x)-c)^{2}-\pi(g(x)-c)^{2} d x
$$

Example What is the volume of the solid generated by rotating the region bounded by the curves $y=x^{2}$ and $y=\sqrt{x}$ and the lines $x=0$ and $x=1$ about the line $y=-1$.

$$
\begin{gathered}
V=\int_{0}^{1} \pi(\sqrt{x}-(-1))^{2}-\pi\left(x^{2}-(-1)\right)^{2} d x=\pi \int_{0}^{1}(\sqrt{x}+1)^{2}-\left(x^{2}+1\right)^{2} d x \\
=\pi \int_{0}^{1}(x+2 \sqrt{x}+1)-\left(x^{4}+2 x^{2}+1\right) d x=\pi \int_{0}^{1} x+2 \sqrt{x}+1-x^{4}-2 x^{2}-x d x \\
=\pi\left[\frac{x^{2}}{2}+2 \cdot \frac{2}{3} \cdot x^{3 / 2}-\frac{x^{5}}{5}-2 \frac{x^{3}}{3}\right]_{0}^{1}=\pi\left[\frac{1}{2}+\frac{4}{3}-\frac{1}{5}-\frac{2}{3}\right]=\pi \frac{29}{30}
\end{gathered}
$$

Working with respect to the y axis

Example Let S be a solid bounded by the parallel planes perpendicular to the y axis, $y=c$ and $y=d$. If for each y in the interval $[c, d]$ the cross sectional area of S perpendicular to the y axis is $A(y)$, the volume of the solid S is

$$
V=\int_{c}^{d} A(y) d y
$$

(Provided that $A(y)$ is an integrable function of y)
Example Find the volume of a pyramid with height 10 in . and square base whose sides have length 4 in.

FIGURE 16

Each cross section of the pyramid perpendicular to the y axis is a square. To determine the length of the side of the square at y, we consider the triangle below, bounded by the y axis, the x axis and the line along the side of the pyramid directly above the x axis. The length of the side of the cross sectional square at y is $2 L$ and the cross sectional area at y is $A(y)=4 L^{2}$. We would like to express this in terms of y.

By simiar triangles we have $\frac{10-y}{L}=\frac{10}{2}$. This gives $2(10-y)=10 L$ and $L=\frac{10-y}{5}$. Therefore the cross sectional area at y is given by $A(y)=4 L^{2}=\frac{4}{25}(10-y)^{2}=\frac{4}{25}\left(100-20 y+y^{2}\right)$. By the formula, the volume of the pyramid is

$$
\begin{gathered}
\int_{0}^{10} \frac{4}{25}\left(100-20 y+y^{2}\right) d y=\frac{4}{25} \int_{0}^{10}\left(100-20 y+y^{2}\right) d y=\frac{4}{25}\left[100 y-10 y^{2}+y^{3} / 3\right]_{0}^{10} \\
=160 / 3
\end{gathered}
$$

Solids of Revolution; Revolving around the y axis

Let $f(y)$ be a continuous function on $[c, d]$ with $f(y) \geq 0$ for all $y \in[c, d]$. Let \underline{R} denote the region between the curve $x=f(y)$ and the y-axis and the lines $y=c$ and $y=d$. When the region R is revolved around the y-axis, it generates a solid with circular cross sections of radius $f(y)$. The area of the cross section at y is the area of such a circle;

$$
A(y)=\pi[f(y)]^{2}
$$

and the volume of the solid (of revolution) generated by R is

$$
V=\int_{c}^{d} \pi[f(y)]^{2} d y
$$

Example Find the volume of the solid generated by revolving the region bounded by the curve $x=y^{2}$ and the lines $y=0, y=2$ and $x=0$ (the y axis) about the y axis.

$$
V=\int_{0}^{2} \pi y^{4} d y=\left.\pi \frac{y^{5}}{5}\right|_{0} ^{2}=\pi \frac{32}{5}
$$

Method of Washers with respect to y axis

Let $f(y)$ and $g(y)$ be continuous functions on the interval $[c, d]$ with $f(y) \geq g(y) \geq 0$. Let R denote the region bounded by the curves $x=f(y), x=g(y)$ and the lines $y=c$ and $y=d$. Let S be the solid obtained by revolving the region R around the y axis. The cross sections of S are washers with area is given by

$$
A(y)=\pi(\text { outer radius })^{2}-\pi(\text { inner radius })^{2}=\pi\left[f(y)^{2}\right]-\pi[g(y)]^{2} .
$$

The volume of S is given by

$$
V=\int_{c}^{d} \pi\left[f(y)^{2}\right]-\pi[g(y)]^{2} d x=\int_{c}^{d} \pi\left[f(y)^{2}-g(y)^{2}\right] d y
$$

Example Find the volume of the solid generated by revolving the region bounded by $x=\sqrt{1-y^{2}}$ and the line $x=1 / 2$ about the y axis.

The curve $x=\sqrt{1-y^{2}}$ and the line $x=1 / 2$ meet when $\sqrt{1-y^{2}}=1 / 2$ or $y^{2}=3 / 4$ giving us $y= \pm \frac{\sqrt{3}}{2}$. We see that a cross section of this solid is a washer with area
$A(y)=\pi(\text { outer radius })^{2}-\pi(\text { inner radius })^{2}=\pi\left(\sqrt{1-y^{2}}\right)^{2}-\pi(1 / 2)^{2}=\pi\left(1-y^{2}-1 / 4\right)=\pi\left(3 / 4-y^{2}\right)$.
The volume is given by

$$
\begin{gathered}
V=\int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} A(y) d y=\int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} A(y) d y=\int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} \pi\left(3 / 4-y^{2}\right) d y \\
=\left.\pi\left(3 / 4 y-\frac{y^{3}}{3}\right)\right|_{-\frac{\sqrt{3}}{2}} ^{\frac{\sqrt{3}}{2}}=\pi\left(\frac{3}{4}\left(\frac{\sqrt{3}}{2}\right)-\frac{\left(\frac{\sqrt{3}}{2}\right)^{3}}{3}\right)-\left(\pi\left(\frac{3}{4}\left(\frac{-\sqrt{3}}{2}\right)-\frac{\left(\frac{-\sqrt{3}}{2}\right)^{3}}{3}\right)\right)=2 \pi\left(\frac{3}{4}\left(\frac{\sqrt{3}}{2}\right)-\frac{\left(\frac{\sqrt{3}}{2}\right)^{3}}{3}\right)=\pi \frac{\sqrt{3}}{2}
\end{gathered}
$$

