Lecture 4 : Calculating Limits using Limit Laws

Click on this symbol to view an interactive demonstration in Wolfram Alpha.
Using the definition of the limit, $\lim _{x \rightarrow a} f(x)$, we can derive many general laws of limits, that help us to calculate limits quickly and easily. The following rules apply to any functions $f(x)$ and $g(x)$ and also apply to left and right sided limits:

Suppose that c is a constant and the limits

$$
\lim _{x \rightarrow a} f(x) \quad \text { and } \quad \lim _{x \rightarrow a} g(x)
$$

exist (meaning they are finite numbers).
2 Then

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) ;$ (the limit of a sum is the sum of the limits).
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$;
(the limit of a difference is the difference of the limits).
3. $\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$;
(the limit of a constant times a function is the constant times the limit of the function).
4. $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$;
(The limit of a product is the product of the limits).
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$;
(the limit of a quotient is the quotient of the limits provided that the limit of the denominator is not 0)

Example If I am given that

$$
\lim _{x \rightarrow 2} f(x)=2, \quad \lim _{x \rightarrow 2} g(x)=5, \quad \lim _{x \rightarrow 2} h(x)=0
$$

find the limits that exist (are a finite number):

$$
\begin{gathered}
\text { (a) } \begin{array}{c}
\lim _{x \rightarrow 2} \frac{2 f(x)+h(x)}{g(x)}=\frac{\lim _{x \rightarrow 2}(2 f(x)+h(x))}{\lim _{x \rightarrow 2} g(x)} \text { since } \lim _{x \rightarrow 2} g(x) \neq 0 \\
=\frac{2 \lim _{x \rightarrow 2} f(x)+\lim _{x \rightarrow 2} h(x)}{\lim _{x \rightarrow 2} g(x)}=\frac{2(2)+0}{5}=\frac{4}{5} \\
\begin{array}{ll}
\text { (b) } \lim _{x \rightarrow 2} \frac{f(x)}{h(x)} & \text { (c) } \lim _{x \rightarrow 2} \frac{f(x) h(x)}{g(x)}
\end{array}
\end{array}>.
\end{gathered}
$$

Note 1 If $\lim _{x \rightarrow a} g(x)=0$ and $\lim _{x \rightarrow a} f(x)=b$, where b is a finite number with $b \neq 0$, Then: the values of the quotient $\frac{f(x)}{g(x)}$ can be made arbitrarily large in absolute value as $x \rightarrow a$ and thus
the limit does not exist.
If the values of $\frac{f(x)}{g(x)}$ are positive as $x \rightarrow a$ in the above situation, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\infty$, If the values of $\frac{f(x)}{g(x)}$ are negative as $x \rightarrow a$ in the above situation, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=-\infty$, If on the other hand, if $\lim _{x \rightarrow a} g(x)=0=\lim _{x \rightarrow a} f(x)$, we cannot make any conclusions about the limit.

Example Find $\lim _{x \rightarrow \pi^{-}} \frac{\cos x}{x-\pi}$.
As x approaches π from the left, $\cos x$ approaches a finite number -1 .
As x approaches π from the left, $x-\pi$ approaches 0 .
Therefore as x approaches π from the left, the quotient $\frac{\cos x}{x-\pi}$ approaches ∞ in absolute value. The values of both $\cos x$ and $x-\pi$ are negative as x approaches π from the left, therefore

$$
\lim _{x \rightarrow \pi^{-}} \frac{\cos x}{x-\pi}=\infty
$$

More powerful laws of limits can be derived using the above laws 1-5 and our knowledge of some basic functions. The following can be proven reasonably easily (we are still assuming that c is a constant and $\lim _{x \rightarrow a} f(x)$ exists);
6. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$, where n is a positive integer (we see this using rule 4 repeatedly).
7. $\lim _{x \rightarrow a} c=c$, where c is a constant (easy to prove from definition of limit and easy to see from the graph, $y=c$).
8. $\lim _{x \rightarrow a} x=a$, (follows easily from the definition of limit)
9. $\lim _{x \rightarrow a} x^{n}=a^{n}$ where n is a positive integer (this follows from rules 6 and 8).
10. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$, where n is a positive integer and $a>0$ if n is even. (proof needs a little extra work and the binomial theorem)
11. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$ assuming that the $\lim _{x \rightarrow a} f(x)>0$ if n is even. (We will look at this in more detail when we get to continuity)

Example Evaluate the following limits and justify each step:
(a) $\lim _{x \rightarrow 3} \frac{x^{3}+2 x^{2}-x+1}{x-1}$
(b) $\quad \lim _{x \rightarrow 1} \sqrt[3]{x+1}$
(c) Determine the infinite limit (see note 1 above, say if the limit is $\infty,-\infty$ or D.N.E.) $\lim _{x \rightarrow 2^{-}} \frac{x+1}{(x-2)}$.

Polynomial and Rational Functions

Please review the relevant parts of Lectures 3, 4 and 7 from the Algebra/Precalculus review page. This demonstration will help you visualize some rational functions:

Direct Substitution (Evaluation) Property If f is a polynomial or a rational function and a is in the domain of f, then $\lim _{x \rightarrow a} f(x)=f(a)$. This follows easily from the rules shown above. (Note that this is the case in part (a) of the example above)
if $f(x)=\frac{P(x)}{Q(x)}$ is a rational function where $P(x)$ and $Q(x)$ are polynomials with $\underline{Q(a)=0}$, then:
If $P(a) \neq 0$, we see from note 1 above that $\lim _{x \rightarrow a} \frac{P(x)}{Q(x)}= \pm \infty$ or D.N.E. and is not equal to $\pm \infty$. $\overline{\text { If } P(a)=0}$ we can cancel a factor of the polynomial $P(x)$ with a factor of the polynomial $Q(x)$ and the resulting rational function may have a finite limit or an infinite limit or no limit at $x=a$. The limit of the new quotient as $x \rightarrow a$ is equal to $\lim _{x \rightarrow a} \frac{P(x)}{Q(x)}$ by the following observation which we made in the last lecture:

Note 2: If $h(x)=g(x)$ when $x \neq a$, then $\lim _{x \rightarrow a} h(x)=\lim _{x \rightarrow a} g(x)$ provided the limits exist.
Example Determine if the following limits are finite, equal to $\pm \infty$ or D.N.E. and are not equal to $\pm \infty$:
(a) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}$.
(b) $\lim _{x \rightarrow 1^{-}} \frac{x^{2}-x-6}{x-1}$.
(c) Which of the following is true:

1. $\lim _{x \rightarrow 1} \frac{x^{2}-x-6}{x-1}=+\infty, \quad$ 2. $\lim _{x \rightarrow 1} \frac{x^{2}-x-6}{x-1}=-\infty, \quad$ 3. $\lim _{x \rightarrow 1} \frac{x^{2}-x-6}{x-1}$ D.N.E. and is not $\pm \infty$,

Example Evaluate the limit (finish the calculation)

$$
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-(3)^{2}}{h}
$$

$\lim _{h \rightarrow 0} \frac{(3+h)^{2}-(3)^{2}}{h}=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=$

Example Evaluate the following limit:

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+25}-5}{x^{2}}
$$

Recall also our observation from the last day which can be proven rigorously from the definition (this is good to keep in mind when dealing with piecewise defined functions):

Theorm $\quad \lim _{x \rightarrow a} f(x)=L \quad$ if and only if $\quad \lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)$.
Example Evaluate the limit if it exists:

$$
\lim _{x \rightarrow-2} \frac{3 x+6}{|x+2|}
$$

The following theorems help us calculate some important limits by comparing the behavior of a function with that of other functions for which we can calculate limits:

Theorem If $f(x) \leq g(x)$ when x is near a(except possible at a) and the limits of $f(x)$ and $g(x)$ both exist as x approaches a, then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)
$$

The Sandwich (squeeze) Theorem \quad If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
$$

then

$$
\lim _{x \rightarrow a} g(x)=L
$$

Recall last day, we saw that $\lim _{x \rightarrow 0} \sin (1 / x)$ does not exist because of how the function oscillates near $x=0$. However we can see from the graph below and the above theorem that $\lim _{x \rightarrow 0} x^{2} \sin (1 / x)=0$, since the graph of the function is sandwiched between $y=-x^{2}$ and $y=x^{2}$:

Example Calculate the limit $\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}$.
We have $-1 \leq \sin (1 / x) \leq 1$ for all x,
multiplying across by x^{2} (which is positive), we get $-x^{2} \leq x^{2} \sin (1 / x) \leq x^{2}$ for all x,
Using the Sandwich theorem, we get

$$
0=\lim _{x \rightarrow 0}-x^{2} \leq \lim _{x \rightarrow o} x^{2} \sin (1 / x) \leq \lim _{x \rightarrow 0} x^{2}=0
$$

Hence we can conclude that

$$
\lim _{x \rightarrow 0} x^{2} \sin (1 / x)=0
$$

Example Decide if the following limit exists and if so find its values:
$\lim _{x \rightarrow o} x^{100} \cos ^{2}(\pi / x)$

Extra Examples, attempt the problems before looking at the solutions

Decide if the following limits exist and if a limit exists, find its value.
(1) $\lim _{x \rightarrow 1} x^{4}+2 x^{3}+x^{2}+3$
(2) $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{(x-2)^{2}}$.
(3) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{|x|}\right)$.
(4) $\lim _{x \rightarrow 0} \frac{|x|}{x^{2}+x+10}$.
(5) $\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}$.
(6) If $2 x \leq g(x) \leq x^{2}-x+2$ for all x, evaluate $\lim _{x \rightarrow 1} g(x)$.
(7) Determine if the following limit is finite, $\pm \infty$ or D.N.E. and is not $\pm \infty$.

$$
\lim _{x \rightarrow 1^{-}} \frac{(x-3)(x+2)}{(x-1)(x-2)}
$$

Extra Examples, attempt the problems before looking at the solutions

Decide if the following limits exist and if a limit exists, find its value.
(1) $\lim _{x \rightarrow 1} x^{4}+2 x^{3}+x^{2}+3$

Since this is a polynomial function, we can calculate the limit by direct substitution:

$$
\lim _{x \rightarrow 1} x^{4}+2 x^{3}+x^{2}+3=1^{4}+2(1)^{3}+1^{2}+3=7
$$

(2) $\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{(x-2)^{2}}$.

This is a rational function, where both numerator and denominator approach 0 as x approaches 2. We factor the numerator to get

$$
\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{(x-2)^{2}}=\lim _{x \rightarrow 2} \frac{(x-1)(x-2)}{(x-2)^{2}}
$$

After cancellation, we get

$$
\lim _{x \rightarrow 2} \frac{(x-1)(x-2)}{(x-2)^{2}}=\lim _{x \rightarrow 2} \frac{(x-1)}{(x-2)}
$$

Now this is a rational function where the numerator approaches 1 as $x \rightarrow 2$ and the denominator approaches 0 as $x \rightarrow 2$. Therefore

$$
\lim _{x \rightarrow 2} \frac{(x-1)}{(x-2)}
$$

does not exist.
We can analyze this limit a little further, by checking out the left and right hand limits at 2. As x approaches 2 from the left, the values of $(x-1)$ are positive (approaching a constant 1) and the values of $(x-2)$ are negative (approaching 0). Therefore the values of $\frac{(x-1)}{(x-2)}$ are negative and become very large in absolute value. Therefore

$$
\lim _{x \rightarrow 2^{-}} \frac{(x-1)}{(x-2)}=-\infty
$$

Similarly, you can show that

$$
\lim _{x \rightarrow 2^{-}} \frac{(x-1)}{(x-2)}=+\infty
$$

and therefore the graph of $y=\frac{(x-1)}{(x-2)}$ has a vertical asymptote at $x=2$. (check it out on your calculator)
(3) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{|x|}\right)$.

Let $f(x)=\frac{1}{x}-\frac{1}{|x|}$. We write this function as a piecewise defined function:

$$
f(x)= \begin{cases}\frac{1}{x}-\frac{1}{x}=0 & x>0 \\ \frac{1}{x}+\frac{1}{x}=\frac{2}{x} & x \leq 0\end{cases}
$$

$\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{|x|}\right)$ exists only if the left and right hand limits exist and are equal. $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{|x|}\right)=\lim _{x \rightarrow 0^{+}} 0=0$ and $\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{|x|}\right)=\lim _{x \rightarrow 0^{-}} \frac{2}{x}=-\infty$.
Since the limits do not match, we have

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{|x|}\right) \text { D.N.E. }
$$

(4) $\lim _{x \rightarrow 0} \frac{|x|}{x^{2}+x+10}$.

Since $\lim _{x \rightarrow 0} x^{2}+x+10=10 \neq 0$, we have

$$
\lim _{x \rightarrow 0} \frac{|x|}{x^{2}+x+10}=\frac{\lim _{x \rightarrow 0}|x|}{\lim _{x \rightarrow 0}\left(x^{2}+x+10\right)}=\frac{\lim _{x \rightarrow 0}|x|}{10} .
$$

Now

$$
|x|=\left\{\begin{array}{cc}
x & x>0 \\
-x & x \leq 0
\end{array} .\right.
$$

Clearly $\lim _{x \rightarrow 0^{+}}|x|=0=\lim _{x \rightarrow 0^{-}}|x|$. Hence $\lim _{x \rightarrow 0}|x|=0$ and

$$
\lim _{x \rightarrow 0} \frac{|x|}{x^{2}+x+10}=\frac{\lim _{x \rightarrow 0}|x|}{10}=\frac{0}{10}=0 .
$$

(5) $\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}$.

Since $\lim _{h \rightarrow 0} \sqrt{4+h}-2=0=\lim _{h \rightarrow 0} h$, we cannot determine whether this limit exists or not from the limit laws without some transformation. We have

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}=\lim _{h \rightarrow 0} \frac{(\sqrt{4+h}-2)(\sqrt{4+h}+2)}{h(\sqrt{4+h}+2)}=\lim _{h \rightarrow 0} \frac{\left.(\sqrt{4+h})^{2}-4\right)}{h(\sqrt{4+h}+2)} \\
& =\lim _{h \rightarrow 0} \frac{(4+h)-4}{h(\sqrt{4+h}+2)}=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{4+h}+2)}=\lim _{h \rightarrow 0} \frac{1}{(\sqrt{4+h}+2)}=\frac{1}{4} .
\end{aligned}
$$

(6) If $2 x \leq g(x) \leq x^{2}-x+2$ for all x, evaluate $\lim _{x \rightarrow 1} g(x)$.

We use the Sandwich theorem here. Since $2 x \leq g(x) \leq x^{2}-x+2$, we have

$$
\lim _{x \rightarrow 1} 2 x \leq \lim _{x \rightarrow 1} g(x) \leq \lim _{x \rightarrow 1}\left(x^{2}-x+2\right),
$$

therefore

$$
2 \leq \lim _{x \rightarrow 1} g(x) \leq 2
$$

and hence

$$
\lim _{x \rightarrow 1} g(x)=2 .
$$

(7) Determine if the following limit is finite, $\pm \infty$ or D.N.E. and is not $\pm \infty$.

$$
\lim _{x \rightarrow 1^{-}} \frac{(x-3)(x+2)}{(x-1)(x-2)}
$$

Let $P(x)=(x-3)(x+2)$ and $Q(x)=(x-1)(x-2)$. We have $P(1)=-6 \neq 0$ and $Q(1)=0$. Therefore the values of $\frac{P(x)}{Q(x)}=\frac{(x-3)(x+2)}{(x-1)(x-2)}$ get larger in absolute value as x approaches 1 .
As x approaches 1 from the left, $(x-3)<0, \quad(x-2)<0, \quad(x-1)<0$, and $(x+2)>0$, therefore the quotient $\frac{(x-3)(x+2)}{(x-1)(x-2)}<0$ as x approaches 1 from the left and therefore

$$
\lim _{x \rightarrow 1^{-}} \frac{(x-3)(x+2)}{(x-1)(x-2)}=-\infty
$$

