Lecture 1 : Inverse functions

One-to-one Functions A function \(f \) is one-to-one if it never takes the same value twice or

\[f(x_1) \neq f(x_2) \text{ whenever } x_1 \neq x_2. \]

Example The function \(f(x) = x \) is one to one, because if \(x_1 \neq x_2 \), then \(f(x_1) \neq f(x_2) \).

On the other hand the function \(g(x) = x^2 \) is not a one-to-one function, because \(g(-1) = g(1) \).

Graph of a one-to-one function If \(f \) is a one to one function then no two points \((x_1, y_1), \ (x_2, y_2)\) have the same \(y \)-value. Therefore no horizontal line cuts the graph of the equation \(y = f(x) \) more than once.

Example Compare the graphs of the above functions

![Graphs of functions](image)

Determining if a function is one-to-one

Horizontal Line test: A graph passes the Horizontal line test if each horizontal line cuts the graph at most once.

Using the graph to determine if \(f \) is one-to-one
A function \(f \) is one-to-one if and only if the graph \(y = f(x) \) passes the Horizontal Line Test.

Example Which of the following functions are one-to-one?

![Graphs of functions](image)

Using the derivative to determine if \(f \) is one-to-one
A function whose derivative is always positive or always negative is a one-to-one function. Why?

Example Is the function \(g(x) = \sqrt{4x + 4} \) a one-to-one function?
Inverse functions

Inverse Functions If f is a one-to-one function with domain A and range B, we can define an inverse function f^{-1} (with domain B) by the rule

\[f^{-1}(y) = x \text{ if and only if } f(x) = y. \]

This is a sound definition of a function, precisely because each value of y in the domain of f^{-1} has exactly one x in A associated to it by the rule $y = f(x)$.

Example If $f(x) = x^3 + 1$, use the equivalence of equations given above find $f^{-1}(9)$ and $f^{-1}(28)$.

Note that the domain of f^{-1} equals the range of f and the range of f^{-1} equals the domain of f.

Example Let $g(x) = \sqrt{4x+4}$. What is Domain f?
What is Range g?
Does g^{-1} exist?
What is Domain g^{-1}?
What is Range g^{-1}?
What is $g^{-1}(4)$?

Finding a Formula For $f^{-1}(x)$

Given a formula for $f(x)$, we would like to find a formula for $f^{-1}(x)$. Using the equivalence

\[x = f^{-1}(y) \text{ if and only if } y = f(x) \]

we can sometimes find a formula for f^{-1} using the following method:

1. In the equation $y = f(x)$, if possible solve for x in terms of y to get a formula $x = f^{-1}(y)$.
2. Switch the roles of x and y to get a formula for f^{-1} of the form $y = f^{-1}(x)$.

Example Let $f(x) = \frac{2x+1}{x-3}$, find a formula for $f^{-1}(x)$.
Composing f and f^{-1}.

We have

$$\text{if } x = f^{-1}(y) \text{ then } y = f(x).$$

Substituting $f(x)$ for y in the equation on the left, we get

$$f^{-1}(f(x)) = x.$$

Similarly

$$\text{if } x = f(y) \text{ then } y = f^{-1}(x)$$

and substituting $f^{-1}(x)$ for y in the equation on the left, we get

$$f(f^{-1}(x)) = x.$$

Example Above, we found that if $f(x) = \frac{2x+1}{x-3}$, then $f^{-1}(x) = \frac{3x+1}{x-2}$. We can check the above formula for the composition:

$$f(f^{-1}(x)) = f\left(\frac{3x + 1}{x-2}\right) = 2\left(\frac{\frac{3x+1}{x-2}+1}{\frac{3x+1}{x-2}}\right) - 3 = \frac{(6x + 2 + x - 2)/(x-2)}{(3x + 1 - 3x + 6)/(x-2)} = \frac{7x}{7} = x.$$

You should also check that $f^{-1}(f(x)) = x$.

Graph of $y = f^{-1}(x)$

Since the equation $y = f^{-1}(x)$ is the same as the equation $x = f(y)$, the graphs of both equations are identical. To graph the equation $x = f(y)$, we note that this equation results from switching the roles of x and y in the equation $y = f(x)$. This transformation of the equation results in a transformation of the graph amounting to reflection in the line $y = x$. Thus

the graph of $y = f^{-1}(x)$ is a reflection of the graph of $y = f(x)$ in the line $y = x$ and vice versa.

Note The reflection of the point (x_1, y_1) on the line $y = x$ is (y_1, x_1). Therefore if the point (x_1, y_1) is on the graph of $y = f^{-1}(x)$, we must have (y_1, x_1) on the graph of $y = f(x)$.

The graphs of $f(x) = \frac{2x+1}{x-3}$ and $f^{-1}(x) = \frac{3x+1}{x-2}$ are shown below.
We can derive properties of the graph of \(y = f^{-1}(x) \) from properties of the graph of \(y = f(x) \), since they are reflections of each other in the line \(y = x \). For example:

Theorem If \(f \) is a one-to-one continuous function defined on an interval, then its inverse \(f^{-1} \) is also one-to-one and continuous. (Thus \(f^{-1}(x) \) has an inverse, which has to be \(f(x) \), by the equivalence of equations given in the definition of the inverse function.)

Theorem If \(f \) is a one-to-one differentiable function with inverse function \(f^{-1} \) and \(f'(f^{-1}(a)) \neq 0 \), then the inverse function is differentiable at \(a \) and

\[
(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}.
\]

proof \(y = f^{-1}(x) \) if and only if \(x = f(y) \). Using implicit differentiation we differentiate \(x = f(y) \) with respect to \(x \) to get

\[
1 = f'(y) \frac{dy}{dx} \quad \text{or} \quad \frac{1}{f'(y)} = \frac{dy}{dx}.
\]

or

\[
(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = (f^{-1})'(x)
\]

Geometrically this means that if \((a, f^{-1}(a))\) is a point on the curve \(y = f^{-1}(x) \), then the point \((f^{-1}(a), a)\) is on the curve \(y = f(x) \) and the slope of the tangent to the curve \(y = f^{-1}(x) \) at \((a, f^{-1}(a))\) is the reciprocal of the tangent to the curve \(y = f(x) \) at the point \((f^{-1}(a), a)\). The graphs of the function \(f(x) = \frac{2x+1}{x-3} \) and \(f^{-1}(x) = \frac{3x+1}{x-2} \) are shown below. You can verify that \(-7 = (f^{-1})'(3) = \frac{1}{f'(10)}\).

![Graph of functions and their inverses](image)

Note To use the above formula for \((f^{-1})'(a)\), you do not need the formula for \(f^{-1}(x)\), you only need the value of \(f^{-1}\) at \(a\) and the value of \(f\) at \(f^{-1}(a)\).

Example Consider the function \(f(x) = \sqrt{4x+4} \) defined above. Find \((f^{-1})'(4)\).

What does the formula from the theorem say?

Use the equivalence of the equations \(y = f^{-1}(x) \) and \(x = f(y) \) to find \(f^{-1}(4)\).

Put this in the formula from the theorem to find \((f^{-1})'(4)\).
Example Let \(f(x) = x^3 + 1 \), find \((f^{-1})'(28) \).

Example If \(f \) is a one-to-one function with the following properties:

\[
f(10) = 21, \quad f'(10) = 2, \quad f^{-1}(10) = 4.5, \quad f'(4.5) = 3.
\]

Find \((f^{-1})'(10) \).