
Lecture 16 : Arc Length

In this section, we derive a formula for the length of a curve y = f(x) on an interval [a, b]. We will
assume that f is continuous and differentiable on the interval [a, b] and we will assume that
its derivative f ′ is also continuous on the interval [a, b]. We use Riemann sums to approximate the

length of the curve over the interval and then take the limit to get an integral.

We see from the picture above that

L = lim
n→∞

n∑
i=1

|Pi−1Pi|

Letting ∆x = b−a
n

= |xi−1 − xi|, we get

|Pi−1Pi| =
√

(xi − xi−1)2 + (f(xi)− f(xi−1))2 = ∆x

√
1 +

[f(xi)− f(xi−1)

xi − xi−1

]2
Now by the mean value theorem from last semester, we have f(xi)−f(xi−1)

xi−xi−1
= f ′(x∗i ) for some x∗i in the

interval [xi−1, xi]. Therefore

L = lim
n→∞

n∑
i=1

|Pi−1Pi| = lim
n→∞

n∑
i=1

√
1 + [f ′(x∗i )]

2∆x =

∫ b

a

√
1 + [f ′(x)]2dx

giving us

L =

∫ b

a

√
1 + [f ′(x)]2dx or L =

∫ b

a

√
1 +

[dy
dx

]2
dx

Example Find the arc length of the curve y = 2x3/2

3
from (1, 2

3
) to (2, 4

√
2

3
).
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Example Find the arc length of the curve y = ex+e−x

2
, 0 ≤ x ≤ 2.

Example Set up the integral which gives the arc length of the curve y = ex, 0 ≤ x ≤ 2. Indicate
how you would calculate the integral. (the full details of the calculation are included at the end of your
lecture).

For a curve with equation x = g(y), where g(y) is continuous and has a continuous derivative on the
interval c ≤ y ≤ d, we can derive a similar formula for the arc length of the curve between y = c and
y = d.

L =

∫ d

c

√
1 + [g′(y)]2dy or L =

∫ d

c

√
1 +

[dx
dy

]2
dy

Example Find the length of the curve 24xy = y4 + 48 from the point (4
3
, 2) to (11

4
, 4).

We cannot always find an antiderivative for the integrand to evaluate the arc length. However, we can
use Simpson’s rule to estimate the arc length.

Example Use Simpson’s rule with n = 10 to estimate the length of the curve

x = y +
√
y, 2 ≤ y ≤ 4

dx/dy = 1 +
1

2
√
y

L =

∫ 4

2

√
1 +

[dx
dy

]2
dy =

∫ 4

2

√
1 +

[
1 +

1

2
√
y

]2
dy =

∫ 4

2

√
2 +

1
√
y

+
1

4y
dy
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With n = 10, Simpson’s rule gives us

L ≈ S10 =
∆y

3

[
g(2)+4g(2.2)+2g(2.4)+4g(2.6)+2g(2.8)+4g(3)+2g(3.2)+4g(3.4)+2g(3.6)+4g(3.8)+g(4)

]
where g(y) =

√
2 + 1√

y
+ 1

4y
and ∆y = 4−2

10
.

yi y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

yi 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

g(yi) =
√

2 + 1√
y

+ 1
4y
≈ 1.68 1.67 1.66 1.65 1.64 1.63 1.62 1.62 1.61 1.61 1.60

We get
S10 ≈ 3.269185

The distance along a curve with equation y = f(x) from a fixed point (a, f(a)) is a function of x. It is
called the arc length function and is given by

s(x) =

∫ x

a

√
1 + [f ′(t)]2dt.

From the fundamental theorem of calculus, we see that s′(x) =
√

1 + [f ′(x)]2. In the language of
differentials, this translates to

ds =

√
1 +

(dy
dx

)2

dx or (ds)2 = (dx)2 + (dy)2

Example Find the arc length function for the curve y = 2x3/2

3
taking P0(1, 3/2) as the starting point.
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Worked Examples

Example Find the length of the curve y = ex, 0 ≤ x ≤ 2.

L =

∫ 2

0

√
1 +

[dy
dx

]2
dx =

∫ 2

0

√
1 +

[
ex
]2
dx =

∫ 2

0

√
1 + e2xdx

Let u = ex, du = udx or dx = du/u. u(0) = 1 and u(2) = e2. This gives∫ 2

0

√
1 + e2xdx =

∫ e2

1

√
1 + u2

u
du

Letting u = tan θ, where −π/2 ≤ θ ≤ π/2, we get
√

1 + u2 =
√

1 + tan2 θ =
√

sec2 θ = sec θ and
du = sec2 θdθ ∫ tan−1(e2)

π
4

sec θ

tan θ
sec2 θdθ

=

∫ tan−1(e2)

π
4

sec3 θ

tan θ
dθ =

∫ tan−1(e2)

π
4

sec3 θ tan θ

tan2 θ
dθ

=

∫ tan−1(e2)

π
4

sec3 θ tan θ

sec2 θ − 1
dθ

Letting w = sec θ, we have w(π
4
) =
√

2, w(tan−1(e2)) =
√

1 + e4 from a triangle and dw = sec θ tan θ.
Our integral becomes∫ √1+e4

√
2

w2

w2 − 1
dw =

∫ √1+e4

√
2

1 +
1

w2 − 1
dw =

∫ √1+e4

√
2

1 +
1/2

w − 1
− 1/2

w + 1
dw

= w +
1

2
ln |w − 1| − 1

2
ln |w + 1|

]√1+e4

√
2

= w +
1

2
ln
∣∣∣w − 1

w + 1

∣∣∣]
√

1+e4

√
2

=
√

1 + e4 −
√

2 +
1

2
ln
∣∣∣√1 + e4 − 1√

1 + e4 + 1

∣∣∣− 1

2

∣∣∣√2− 1√
2 + 1

∣∣∣.
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