
Lecture 18 : Direction Fields and Euler’s Method

A Differential Equation is an equation relating an unknown function and one or more of its derivatives.

Examples Population growth : dP
dt

= kP, or dP
dt

= kP (1− P
K

).

Motion of a spring with a mass m attached: md2x
dt2

= −kx.
Body of mass m falling under the action of gravity g encounters air resistance. The velocity of the falling

body at time t satisfies the equation : mdv(t)
dt

= mg − k[v(t)]2.
General Examples

y′ = x− y, y′ = yx, y′ + xy = x2.

The Order of a differential equation is the order of the highest derivative that occurs in the equation.

Example The differential equation

2
d2x

dt2
= −10x has order

The differential equation
dv(t)

dt
= 32− 10[v(t)]2 has order

A function y = f(x) is a solution of a differential equation if the equation is satisfied when y = f(x)
and its appropriate derivatives are substituted into the equation.

Example Match the following differential equations with their solutions:

Equation Solution

dP
dt

= 2P y = x− 1

y′ = x− y y = ln |1 + ex|

y′ = ex

1+ex P (t) = 10e2t

y = x− 1 + 1
ex

When asked to Solve a differential equation we aim to find all possible solutions. Our solution will be a
family of functions. A General Solution is a solution involving constants which can be specialized to
give any particular solution. Example The general solutions to the differential equations given above
are

Equation General Solution

dP
dt

= 2P P (t) = Ke2t

y′ = x− y y = x− 1 + C
ex

y′ = ex

1+ex y = ln |1 + ex|+ C

Example For the differential equation
dy

dx
=

ex

1 + ex
,
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we can find the general solution using methods of integration. (we will solve the others using the
methods of separable equations and Linear First order equations.)

The graph below shows a sketch of some solutions from the family of solutions :
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Note that only one of these solution curves passes through the point (0, ln 2), i.e. satisfies the require-
ment y(0) = ln 2.

An Initial Value Problem asks for a specific solution to a differential equation satisfying an initial
condition of the form y(t0) = y0.

Example Problem: Using the general solution given above, find a solution to the initial value problem
y′ = x− y with the property that y(0) = 0.

(At the end of this lecture, we give an approximate numerical solution to this problem using Euler’s
method. )

There are many techniques for solving differential equations which you will study in a course on differ-
ential equations. In this course, we will look at a numerical method for approximating a specific solution
to a differential equation, Euler’s method, two methods to solve specific types of first order equations
and a method for second order linear equations with constant coefficients. If you take a course on linear
algebra and differential equations, you will learn methods to help solve equations of higher order.

Direction Fields

If we have a differential equation of the type

y′ = F (x, y)

where F (x, y) is an expression in x and y only, then the slope of a solution curve at a point (x, y) is
F (x, y). We can use the formula to calculate the slopes of the graphs of the solutions of the differential
equation that pass through particular points on the plane. We can draw a picture of these slopes by
drawing a small line (or arrow )indicating the direction of the curve at each point we have considered.

Example Consider the equation y′ = y − x.
The graph of any solution to this differential equation passing through the point (x, y) = (2, 1) has slope

.
The graph of any solution to this differential equation passing through the point (x, y) = (0, 1)has slope
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.
The graph of any solution to this differential equation passing through the point (x, y) = (−1, 1)has
slope .
etc....

We can get some idea of what the graphs of the solutions to differential equation look like by drawing
a Direction Field where we draw a short line segment (or arrow) with slope y− x at each point (x, y)
on the plane to indicate the direction of a solution running through that point. The picture below
shows a computer generated direction field for the equation y′ = y − x.
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For any Differential equation of the form y′ = F (x, y) we can make a direction field by drawing an
arrow with slope F (x, y) at many points in the plane. The more points we include, the better the
picture we get of the behavior of the solutions.

We can use this picture to give a rough sketch of a solution to an initial value problem.

Example Below is a sketch of a solution to the differential equation y′ = y − x, where y(1) = 3.
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we see that a solution to the initial value problem y′ = y − x, y(1) = 3 passes through the point (1.3)
and follows the direction of the arrows.

Sketch a solution to the equation with y(2) = 0 on the vector field above.
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Euler’s Method (Following The Arrows)

Euler’s method makes precise the idea of following the arrows in the direction field to get an ap-
proximate solution to a differential equation of the form y′ = F (x, y) satisfying the initial condition
y(x0) = y0.
For such an initial value problem we can use a computer to generate a table of approximate numerical
values of y for values of x in an interval [x0, b]. This is called a numerical solution to the problem.

Example Estimate y(4) where y(x) is a solution to the differential equation y′ = y−x which satisfies
the initial condition y(2) = 0, on the interval 2 ≤ x ≤ 4.

Euler’s method approximates the path of the solution curve with a series of line segments following the
directions of the arrows in the direction fields.

1. First we choose the Step Size of our approximation, which will be the change in the value of
x on each line segment. In general a smaller step size means shorter line segments and a better
approximation.

2. The first point on our approximating curve is determined by the initial condition y(x0) = y0.
The corresponding point on the curve is

(x0, y0).

3. To get the next (defining) point on the curve, we follow the arrow in the direction field which
starts at (x0, y0) (with slope F (x0, y0)) and which ends at x1 = x0 + h. (where h is the step
size). We can write down algebraic formulas for the endpoint of this arrow (x1, y1). We know that

x1 = x0 + h . We have the slope of the arrow is F (x0, y0) = y1−y0

x1−x0
= y1−y0

h
. Therefore

y1 − y0 = hF (x0, y0) or y1 = y0 + hF (x0, y0) .

4. We can now draw the first segment of our approximating curve as the line segment between the
points (x0, y0) and (x1, y1).

5. To get the next (defining) point on the curve, , we follow the arrow in the direction field which
starts at (x1, y1) (with slope F (x1, y1)) and which ends at x2 = x1 + h. In other words, we repeat
the process starting at (x1, y1). By the same argument, we get the following equations for the
point (x2, y2):

x2 = x1 + h, and y2 = y1 + hF (x1, y1).

6. The second line segment of our approximating curve is the line between (x1, y1) and (x2, y2).

7. We repeat the process until xn = a, if we wish to approximate y(a). Note that we should choose
the step size, h, so that a−x0

h
is an integer n.

In summary, to use this approximation;

• We first decide on the step size h. (If we want to estimate y(x0 + L) where y is a solution to the
IVP y′ = F (x, y), y(x0) = y0, and we wish to use n steps, then the step size should be L/n. )
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• Our series of approximations is then given by

Initial point = (x0, y0).

y1 = y0 + hF (x0, y0) new point on approximate curve = (x1, y1) = (x0 + h, y1)

y2 = y1 + hF (x1, y1) new point on approximate curve = (x2, y2) = (x0 + 2h, y2)

y3 = y2 + hF (x2, y2) new point on approximate curve = (x3, y3) = (x0 + 3h, y3)

...

yi = yi−1 + hF (xi−1, yi−1) corresponding point on approximate curve = (xi, yi) = (x0 + ih, yi)

...

Example Use Euler’s method with step size h = 0.2 to find an approximation for y(4), where y is a
solution to the initial value problem

y′ = y − x, y(2) = 0.

i xi = x0 + ih yi = yi−1 + h(yi−1 − xi−1)
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In the above picture, we show the approximate solution in red alongside the real solution to the Initial
value problem in green. In general a smaller step size should give a more accurate approximation.

5



Extra Example Use Euler’s method with step size h = 0.2 to find an approximation for y(2), where
y is a solution to the initial value problem

y′ = x− y, y(0) = 0.

i xi = x0 + ih yi = yi−1 + h(xi−1 − yi−1)
0 0 0
1 0.2
2
3
4
5
6
7
8
9
10

We can compare our numerical solution to the actual values of y along the curve when x = x0, x1, . . . , xn =
2, since we know that the solution is y = x− 1 + 1

ex .

i xi yi = yi−1 + h(xi−1 − yi−1) xi − 1 + 1
exi

error = xi − 1 + 1
exi
− yi

0 0 0 0 0
1 0.2 0 0.0187 0.0187
2 0.4 0.04 0.0703 .0303
3 0.6 0.1120 0.1488 0.0368
4 0.8 0.2096 0.2493 0.0397
5 1.0 0.327 0.3679 .0402
6 1.2 0.4621 0.5012 0.03905
7 1.4 0.6097 0.6466 0.03688
8 1.6 0.7678 0.8019 0.03412
9 1.8 0.9342 0.9653 0.03108
10 2.0 1.107 1.1353 0.02796
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Here is a picture of some solutions and a picture of the direction field for the differential equation
y′ = x− y.

Here is a picture of our numerical approximation in blue alongside the real solution in red.
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