Lecture 25 : Integral Test

In this section, we see that we can sometimes decide whether a series converges or diverges by comparing it to an improper integral. The analysis in this section only applies to series $\sum a_n$, with positive terms, that is $a_n > 0$.

Integral Test Suppose f(x) is a positive decreasing continuous function on the interval $[1, \infty)$ with $f(n) = a_n$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\int_1^{\infty} f(x) dx$ converges, that is:

If
$$\int_{1}^{\infty} f(x)dx$$
 is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
If $\int_{1}^{\infty} f(x)dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

Note The result is still true if the condition that f(x) is decreasing on the interval $[1, \infty)$ is relaxed to "the function f(x) is decreasing on an interval $[M, \infty)$ for some number $M \ge 1$."

We can get some idea of the proof from the following examples:

We know from a previous lecture that

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \text{ converges if } p > 1 \text{ and diverges if } p \le 1.$$

Example In the picture below, we compare the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ to the improper integral $\int_1^{\infty} \frac{1}{x^2} dx$.

$$\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \frac{1}{5^{2}} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^{2}}$$

y

y

 $y = \frac{1}{x^{2}}$

 $y = \frac{1}{x^{2}}$

 $y = \frac{1}{2^{2}}$

 $area = \frac{1}{3^{2}}$

 $area = \frac{1}{4^{2}}$

 $area = \frac{1}{5^{2}}$

We see that

$$s_n = 1 + \sum_{n=2}^n \frac{1}{n^2} < 1 + \int_1^\infty \frac{1}{x^2} dx = 1 + 1 = 2.$$

Since the sequence $\{s_n\}$ is increasing (because each $a_n > 0$) and bounded, we can conclude that the sequence of partial sums converges and hence the series

$$\sum_{i=1}^{\infty} \frac{1}{n^2}$$
 converges.

NOTE We are not saying that $\sum_{i=1}^{\infty} \frac{1}{n^2} = \int_1^{\infty} \frac{1}{x^2} dx$ here.

Example In the picture below, we compare the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ to the improper integral $\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$.

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots$$

This time we draw the rectangles so that we get

$$s_n > s_{n-1} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n-1}} > \int_1^n \frac{1}{\sqrt{x}} dx$$

Thus we see that $\lim_{n\to\infty} s_n > \lim_{n\to\infty} \int_1^n \frac{1}{\sqrt{x}} dx$. However, we know that $\int_1^n \frac{1}{\sqrt{x}} dx$ grows without bound and hence since $\int_1^\infty \frac{1}{\sqrt{x}} dx$ diverges, we can conclude that $\sum_{k=1}^\infty \frac{1}{\sqrt{n}}$ also diverges.

Example Use the integral test to determine if the following series converges:

$$\sum_{n=1}^{\infty} \frac{2}{3n+5}$$

Example Use the integral test to determine if the following series converges:

p-series

We can use the result quoted above from our section on improper integrals to prove the following result on the **p-series**, $\sum_{i=1}^{\infty} \frac{1}{n^p}$.

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges for } p > 1, \text{ diverges for } p \le 1.$$

Example Determine if the following series converge or diverge:

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}, \qquad \sum_{n=1}^{\infty} n^{-15}, \qquad \sum_{n=10}^{\infty} n^{-15}, \qquad \sum_{n=100}^{\infty} \frac{1}{\sqrt[5]{n}},$$