
Lecture 27 :Absolute Convergence, Ratio and Root test.

Definition A series
∑

an is called absolutely convergent if the series of absolute values
∑
|an| is

convergent.
If the terms of the series an are positive, absolute convergence is the same as convergence.

Example Are the following series absolutely convergent?

∞∑
n=1

(−1)n+1

n3
,

∞∑
n=1

(−1)n

n
.

Definition A series
∑

an is called conditionally convergent if the series is convergent but not
absolutely convergent.

Which of the series in the above example is conditionally convergent?

Theorem If a series is absolutely convergent, then it is convergent, that is if
∑
|an| is conver-

gent, then
∑

an is convergent.

Proof Let us assume that
∑
|an| is convergent. Since

0 ≤ an + |an| ≤ 2|an|,

we have that
∑

(an + |an|) is convergent by the comparison test. By the laws of limits∑
an =

∑
(an + |an|)−

∑
|an|

is convergent, since it is the difference of two convergent series.

Example Are the following series convergent (test for absolute convergence)

∞∑
n=1

(−1)n+1

n3
,

∞∑
n=1

sin(n)

n4
.
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The Ratio Test

This test is useful for determining absolute convergence.

Let
∑∞

n=1 an be a series (the terms may be positive or negative).

Let L = limn→∞

∣∣∣an+1

an

∣∣∣.
• If L < 1, then the series

∑∞
n=1 an converges absolutely (and hence is convergent).

• If L > 1 or ∞, then the series
∑∞

n=1 an is divergent.

• If L = 1, then the Ratio test is inconclusive and we cannot determine if the series converges or
diverges using this test.

This test is especially useful where factorials and powers of a constant appear in terms of a series.

Example Test the following series for convergence

∞∑
n=1

(−1)n−1 2n

n!
,

∞∑
n=1

nn

n!
,

∞∑
n=1

(−1)n
( n

5n

) ∞∑
n=1

(−1)n

n2
.

Note that when the ratio test is inconclusive for an alternating series, the alternating series test may
work.
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The Root Test

Let
∑∞

n=1 an be a series (the terms may be positive or negative).

• If limn→∞
n
√
|an| = L < 1, then the series

∑∞
n=1 an converges absolutely (and hence is convergent).

• If limn→∞
n
√
|an| = L > 1 or limn→∞

n
√
|an| =∞, then the series

∑∞
n=1 an is divergent.

• If limn→∞
n
√
|an| = 1, then the Root test is inconclusive and we cannot determine if the series

converges or diverges using this test.

Example Test the following series for convergence:

∞∑
n=1

(−1)n−1
( 2n

n + 1

)n

,
∞∑

n=1

( n

2n + 1

)n

,
∞∑

n=1

( ln n

n

)n

.
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Rearranging sums

If we rearrange the terms in a finite sum, the sum remains the same. This is not always the case for
infinite sums (infinite series). It can be shown that:

• If a series
∑

an is an absolutely convergent series with
∑

an = s, then any rearrangement of
∑

an

is convergent with sum s.

• It a series
∑

an is a conditionally convergent series, then for any real number r, there is a rear-
rangement of

∑
an which has sum r.

Example The series
∑∞

n=1
(−1)n

2n is absolutely convergent with
∑∞

n=1
(−1)n

2n = 2
3

and hence any rearrange-
ment of the terms has sum 2

3
.

Example Alternating Harmonic series
∑∞

n=1
(−1)n

n
is conditionally convergent, it can be shown

that its sum is ln 2,

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− · · ·+ (−1)n 1

n
+ · · · = ln 2.

Now we rearrange the terms taking the positive terms in blocks of one followed by negative terms in
blocks of 2

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+

1

7
· · · =(

1− 1

2

)
− 1

4
+
(1

3
− 1

6

)
− 1

8
+
(1

5
− 1

10

)
− 1

12
+
(1

7
− 1

14

)
− · · · =(1

2

)
− 1

4
+
(1

6

)
− 1

8
+
( 1

10

)
− 1

12
+
( 1

14

)
· · · =

1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− · · ·+ (−1)n 1

n
+ . . . ) =

1

2
ln 2.

Obviously, we could continue in this way to get the series to sum to any number of the form (ln 2)/2n.

4


