Lecture 3 : The Natural Exponential Function: \(f(x) = \exp(x) = e^x \)

Last day, we saw that the function \(f(x) = \ln x \) is one-to-one, with domain \((0, \infty)\) and range \((-\infty, \infty)\). We can conclude that \(f(x) \) has an inverse function \(f^{-1}(x) = \exp(x) \) which we call the natural exponential function. The definition of inverse functions gives us the following:

\[
y = f^{-1}(x) \quad \text{if and only if} \quad x = f(y)
\]

\[
y = \exp(x) \quad \text{if and only if} \quad x = \ln(y)
\]

The cancellation laws give us:

\[
f^{-1}(f(x)) = x \quad \text{and} \quad f(f^{-1}(x)) = x
\]

\[
\exp(\ln x) = x \quad \text{and} \quad \ln(\exp(x)) = x
\]

We can draw the graph of \(y = \exp(x) \) by reflecting the graph of \(y = \ln(x) \) in the line \(y = x \).

We have that the graph \(y = \exp(x) \) is one-to-one and continuous with domain \((-\infty, \infty)\) and range \((0, \infty)\). Note that \(\exp(x) > 0 \) for all values of \(x \). We see that

\[
\exp(0) = 1 \quad \text{since} \quad \ln 1 = 0
\]
\[
\exp(1) = e \quad \text{since} \quad \ln e = 1,
\]
\[
\exp(2) = e^2 \quad \text{since} \quad \ln(e^2) = 2,
\]
\[
\exp(-7) = e^{-7} \quad \text{since} \quad \ln(e^{-7}) = -7.
\]

In fact for any rational number \(r \), we have

\[
\exp(r) = e^r \quad \text{since} \quad \ln(e^r) = r \ln e = r,
\]
by the laws of Logarithms.

When \(x \) is rational or irrational, we define \(e^x \) to be \(\exp(x) \).

\[
e^x = \exp(x)
\]

Note: This agrees with definitions of \(e^x \) given elsewhere, since the definition is the same when \(x \) is a rational number and the exponential function is continuous.

Restating the above properties given above in light of this new interpretation of the exponential function, we get:

\[
\begin{align*}
e^x &= y \text{ if and only if } \ln y = x \\
e^{\ln x} &= x \quad \text{and} \quad \ln e^x &= x
\end{align*}
\]

Solving Equations

We can use these formulas to solve equations.

Example Solve for \(x \) if \(\ln(x + 1) = 5 \)

Example Solve for \(x \) if \(e^{x-4} = 10 \)

Limits

From the graph we see that

\[
\lim_{x \to -\infty} e^x = 0, \quad \lim_{x \to \infty} e^x = \infty.
\]

Example Find the limit \(\lim_{x \to \infty} \frac{e^x}{10e^x-1} \).
Rules of Exponents

The following rules of exponents follow from the rules of logarithms:

\[e^{x+y} = e^x e^y, \quad e^{x-y} = \frac{e^x}{e^y}, \quad (e^x)^y = e^{xy}. \]

Proof We have \(\ln(e^{x+y}) = x + y = \ln(e^x) + \ln(e^y) = \ln(e^xe^y) \). Therefore \(e^{x+y} = e^x e^y \). The other rules can be proven similarly.

Example Simplify \(\frac{e^x e^{2x+1}}{(e^x)^2} \).

Derivatives

\[
\begin{align*}
\frac{d}{dx} e^x &= e^x \\
\frac{d}{dx} e^{g(x)} &= g'(x)e^{g(x)}
\end{align*}
\]

Proof We use logarithmic differentiation. If \(y = e^x \), we have \(\ln y = x \) and differentiating, we get \(\frac{1}{y} \frac{dy}{dx} = 1 \) or \(\frac{dy}{dx} = y = e^x \). The derivative on the right follows from the chain rule.

Example Find \(\frac{d}{dx} e^{\sin^2 x} \) and \(\frac{d}{dx} \sin^2(e^{x^2}) \).

Integrals

\[
\begin{align*}
\int e^x \, dx &= e^x + C \\
\int g'(x)e^{g(x)} \, dx &= e^{g(x)} + C
\end{align*}
\]

Example Find \(\int x e^{x^2+1} \, dx \).
Old Exam Questions

Old Exam Question The function \(f(x) = x^3 + 3x + e^{2x} \) is one-to-one. Compute \(f^{-1}'(1) \).

Old Exam Question Compute the limit
\[
\lim_{x \to \infty} \frac{e^x - e^{-x}}{e^{2x} - e^{-2x}}.
\]

Old Exam Question Compute the Integral
\[
\int_0^{\ln 2} \frac{e^x}{1 + e^x} \, dx.
\]
Extra Examples (please attempt these before looking at the solutions)

Example Find the domain of the function \(g(x) = \sqrt{50 - e^x} \).

Example Solve for \(x \) if \(\ln(\ln(x^2)) = 10 \)

Example Let \(f(x) = e^{4x+3} \), Show that \(f \) is a one-to-one function and find the formula for \(f^{-1}(x) \).

Example Evaluate the integral
\[
\int_{3e^2}^{3e^4} \frac{1}{x\left(\ln \left(\frac{x}{3} \right) \right)^3} \, dx.
\]

Example Find the limit \(\lim_{x \to -\infty} \frac{e^x}{10e^x - 1} \) and \(\lim_{x \to 0} \frac{e^x}{10e^x - 1} \).

Example Find \(\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (\cos x) e^{\sin x} \, dx \).

Example Find the first and second derivatives of \(h(x) = \frac{e^x}{10e^x - 1} \). Sketch the graph of \(h(x) \) with horizontal, and vertical asymptotes, showing where the function is increasing and decreasing and showing intervals of concavity and convexity.
Example Find the domain of the function \(g(x) = \sqrt{50 - e^x} \).

The domain of \(g \) is \(\{ x | 50 - e^x \geq 0 \} \).

\[
50 - e^x \geq 0 \quad \text{if and only if} \quad 50 \geq e^x \\
\text{if and only if} \quad \ln 50 \geq \ln(e^x) = x \quad \text{or} \quad x \leq \ln 50
\]

since \(\ln(x) \) is an increasing function.

Example Solve for \(x \) if \(\ln(\ln(x^2)) = 10 \)

We apply the exponential function to both sides to get

\[
e^{\ln(\ln(x^2))} = e^{10} \quad \text{or} \quad \ln(x^2) = e^{10}.
\]

Applying the exponential function to both sides again, we get

\[
e^{\ln(x^2)} = e^{e^{10}} \quad \text{or} \quad x^2 = e^{e^{10}}.
\]

Taking the square root of both sides, we get

\[
x = \sqrt{e^{e^{10}}}.\]

Example Let \(f(x) = e^{4x+3} \), Show that \(f \) is a one-to-one function and find the formula for \(f^{-1}(x) \).

We have the domain of \(f \) is all real numbers. To find a formula for \(f^{-1} \), we use the method given in lecture 1.

\[
y = e^{4x+3} \quad \text{is the same as} \quad x = f^{-1}(y).
\]

we solve for \(x \) in the equation on the left, first we apply the logarithm function to both sides

\[
\ln(y) = \ln(e^{4x+3}) = 4x + 3 \quad \rightarrow \quad 4x = \ln(y) - 3 \quad \rightarrow \quad x = \frac{\ln(y) - 3}{4} = f^{-1}(y).
\]

Now we switch the \(x \) and \(y \) to get

\[
y = \frac{\ln(x) - 3}{4} = f^{-1}(x).
\]

Example Evaluate the integral

\[
\int_{3e^2}^{3e^4} \frac{1}{x \left(\ln \frac{x}{3} \right)^3} \, dx.
\]

We try the substitution \(u = \ln \frac{x}{3} \).

\[
du = \frac{3}{x} \cdot \frac{1}{3} \, dx = \frac{1}{x} \, dx, \quad u(3e^2) = 2, \quad u(3e^4) = 4.
\]

\[
\int_{3e^2}^{3e^4} \frac{1}{x \left(\ln \frac{x}{3} \right)^3} \, dx = \int_{2}^{4} \frac{1}{u^3} \, du = \left. \frac{u^{-2}}{-2} \right|_{2}^{4} = \frac{1}{-2u^2} \bigg|_{2}^{4}
\]
We use substitution. Let \(y = \frac{e^x}{10e^x - 1} \).

\[
\frac{1}{(-2)(16)} - \frac{1}{(-2)(4)} = \frac{1}{8} - \frac{1}{32} = \frac{3}{32}
\]

Example Find the limit \(\lim_{x \to -\infty} \frac{e^x}{10e^x - 1} \) and \(\lim_{x \to 0} \frac{e^x}{10e^x - 1} \).

\[
\lim_{x \to -\infty} \frac{e^x}{10e^x - 1} = \frac{\lim_{x \to -\infty} e^x}{\lim_{x \to -\infty} (10e^x - 1)} = 0 - 1 = 0.
\]

\[
\lim_{x \to 0} \frac{e^x}{10e^x - 1} = \frac{\lim_{x \to 0} e^x}{\lim_{x \to 0} (10e^x - 1)} = \frac{1}{10 - 1} = \frac{1}{9}.
\]

Example Find \(\int_0^2 (\cos x)e^{\sin x} \, dx \).

We use substitution. Let \(u = \sin x \), then \(du = \cos x \, dx \), \(u(0) = 0 \) and \(u(\pi/2) = 1 \).

\[
\int_0^2 (\cos x)e^{\sin x} \, dx = \int_0^1 e^u \, du = e^u \bigg|_0^1 = e^1 - e^0 = e - 1.
\]

Example Find the first and second derivatives of \(h(x) = \frac{e^x}{10e^x - 1} \). Sketch the graph of \(h(x) \) with horizontal, and vertical asymptotes, showing where the function is increasing and decreasing and showing intervals of concavity and convexity.

y-int: \(h(0) = \frac{1}{9} \)

x-int: \(h(x) = 0 \) if and only if \(e^x = 0 \), this is impossible, so there is no \(x \) intercept.

H.A.: In class, we saw \(\lim_{x \to -\infty} \frac{e^x}{10e^x - 1} = \frac{1}{10} \) and above, we saw \(\lim_{x \to -\infty} \frac{e^x}{10e^x - 1} = 0 \).

So the H.A.’s are \(y = 0 \) and \(y = \frac{1}{10} \).

V.A.: The graph has a vertical asymptote at \(x \) if \(10e^x = 1 \), that is if \(e^x = \frac{1}{10} \) or \(x = \ln(\frac{1}{10}) \).

Inc/Dec (h'(x)) To determine where the graph is increasing or decreasing, we calculate the derivative using the quotient rule

\[
h'(x) = \frac{(10e^x - 1)e^x - e^x(10e^x)}{(10e^x - 1)^2} = \frac{e^x(10e^x - 1 - 10e^x)}{(10e^x - 1)^2} = \frac{-e^x}{(10e^x - 1)^2}.
\]

Since \(h'(x) \) is always negative, the graph of \(y = h(x) \) is always decreasing.

Concave/Convex To determine intervals of concavity and convexity, we calculate the second derivative.

\[
h''(x) = \frac{d}{dx} h'(x) = \frac{d}{dx} \left(\frac{-e^x}{(10e^x - 1)^2} \right) = -\frac{d}{dx} \left(\frac{e^x}{(10e^x - 1)^2} \right).
\]

I’m going to use logarithmic differentiation here

\[
y = \frac{e^x}{(10e^x - 1)^2} \quad \rightarrow \quad \ln(y) = \ln(e^x) - 2 \ln(10e^x - 1) = x - 2 \ln(10e^x - 1)
\]

differentiating both sides, we get

\[
\frac{1}{y} \frac{dy}{dx} = 1 - 2 \cdot \frac{1}{10e^x - 1} \cdot 10e^x = 1 - \frac{20e^x}{10e^x - 1}.
\]

Multiplying across by \(y = \frac{e^x}{(10e^x - 1)^2} \), we get

\[
\frac{dy}{dx} = \frac{e^x}{(10e^x - 1)^2} - \frac{e^x}{(10e^x - 1)^2} \cdot \frac{20e^x}{10e^x - 1}.
\]

\[
\frac{dy}{dx} = \frac{e^x}{(10e^x - 1)^2} - \frac{20e^x}{10e^x - 1}.
\]
\[
\frac{e^x (10e^x - 1) - e^x (20e^x)}{(10e^x - 1)^3} = \frac{e^x (-1 - 10e^x)}{(10e^x - 1)^3} = \frac{-e^x (1 + 10e^x)}{(10e^x - 1)^3}
\]

\[
h''(x) = -\frac{dy}{dx} = \frac{e^x (1 + 10e^x)}{(10e^x - 1)^3}
\]

We see that the numerator is always positive here. From our calculations above, we have \(10e^x - 1 < 0\) if \(x < \ln(1/10)\) and \(10e^x - 1 > 0\) if \(x > \ln(1/10)\).

Therefore \(h''(x) < 0\) if \(x < \ln(1/10)\) and \(h''(x) > 0\) if \(x > \ln(1/10)\) and

The graph of \(y = h(x)\) is concave down if \(x < \ln(1/10)\) and concave up if \(x > \ln(1/10)\).

Putting all of this together, you should get a graph that looks like:

Check it and other functions out in Mthematica

\[
\ln(2) = N[\text{Log}[1/10]]
\]
\[
\text{Out}[2] = -2.30259
\]

\[
\ln(3) = \text{Plot}[\text{Exp}[x]/(10 \text{Exp}[x] - 1),
\{x, -10, 10\}]
\]
\[
\text{Out}[3] = \text{Plot}[\text{Exp}[x]/(10 \text{Exp}[x] - 1),
\{x, -10, 10\}]
\]

Answers to Old Exam Questions

Old Exam Question The function \(f(x) = x^3 + 3x + e^{2x} \) is one-to-one. Compute \(f^{-1}'(1) \).

We use the formula

\[
(f^{-1})'(1) = \frac{1}{f'(f^{-1}(1))}
\]

\(b = f^{-1}(1) \) same as \(f(b) = 1 \rightarrow b^3 + 3b + e^{2b} = 1. \)

Solving for \(b \) is very difficult, but we can work by trail and error. If we try \(b = 0 \), we see that it works, since \(e^0 = 1 \). Therefore \(f^{-1}(1) = 0. \)

We also need to calculate \(f'(x) \), we get \(f'(x) = 3x^2 + 3 + 2e^{2x}. \)

\[
(f^{-1})'(1) = \frac{1}{f'(f^{-1}(1))} = \frac{1}{f'(0)} = \frac{1}{3 + 2} = \frac{1}{5}.
\]

Old Exam Question Compute the limit

\[
\lim_{x \to \infty} \frac{e^x - e^{-x}}{e^{2x} - e^{-2x}}.
\]

We divide both numerator and denominator by the highest power of \(e^x \) in the denominator which is \(e^{2x} \) in this case.

\[
\lim_{x \to \infty} \frac{e^x - e^{-x}}{e^{2x} - e^{-2x}} = \lim_{x \to \infty} \frac{(e^x - e^{-x})/e^{2x}}{(e^{2x} - e^{-2x})/e^{2x}} = \lim_{x \to \infty} \frac{e^{-x} - e^{-3x}}{1 - e^{-4x}} = 0.
\]

Old Exam Question Compute the Integral

\[
\int_{0}^{\ln 2} \frac{e^x}{1 + e^x} dx.
\]

We make the substitution \(u = 1 + e^x \). We have

\[
du = e^x dx, \quad u(0) = 2, \quad u(\ln 2) = 1 + e^{\ln 2} = 3.
\]

We get

\[
\int_{0}^{\ln 2} \frac{e^x}{1 + e^x} dx = \int_{2}^{3} \frac{1}{u} du = \ln |u| \bigg|_{2}^{3} = \ln 3 - \ln 2 = \ln(3/2).
\]