Table

TABLE OF INTEGRATION FORMULAS Constants of integration have been omitted.

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1}$$
 $(n \neq -1)$ 2. $\int \frac{1}{x} dx = \ln|x|$

$$2. \int \frac{1}{x} dx = \ln|x|$$

$$3. \int e^x dx = e^x$$

$$4. \int a^x dx = \frac{a^x}{\ln a}$$

$$5. \int \sin x \, dx = -\cos x$$

$$\mathbf{6.} \int \cos x \, dx = \sin x$$

$$\mathbf{7.} \int \sec^2 x \, dx = \tan x$$

$$8. \int \csc^2 x \, dx = -\cot x$$

9.
$$\int \sec x \tan x \, dx = \sec x$$

9.
$$\int \sec x \tan x \, dx = \sec x$$
 10. $\int \csc x \cot x \, dx = -\csc x$

11.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$

11.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
 12. $\int \csc x \, dx = \ln|\csc x - \cot x|$

$$13. \int \tan x \, dx = \ln|\sec x|$$

$$14. \int \cot x \, dx = \ln|\sin x|$$

$$15. \int \sinh x \, dx = \cosh x$$

$$\mathbf{16.} \int \cosh x \, dx = \sinh x$$

17.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right)$$

17.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right)$$
 18. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \left(\frac{x}{a} \right), \quad a > 0$

*19.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right|$$

*19.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right|$$
 *20. $\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right|$

Faced with an integral, we must use a problem solving approach to finding the right method or combination of methods to apply.

Faced with an integral, we must use a problem solving approach to finding the right method or combination of methods to apply.

It may be possible to Simplify the integral e.g.

$$\int \cot x dx = \int \frac{\cos x}{\sin x} dx.$$

Faced with an integral, we must use a problem solving approach to finding the right method or combination of methods to apply.

It may be possible to **Simplify the integral** e.g.

$$\int \cot x dx = \int \frac{\cos x}{\sin x} dx.$$

It may be possible to simplify or solve the integral with a substitution e.g.

$$\int \frac{1}{x(\ln x)^{10}} dx$$

Faced with an integral, we must use a problem solving approach to finding the right method or combination of methods to apply.

It may be possible to **Simplify the integral** e.g.

$$\int \cot x dx = \int \frac{\cos x}{\sin x} dx.$$

It may be possible to simplify or solve the integral with a substitution e.g.

$$\int \frac{1}{x(\ln x)^{10}} dx$$

▶ if it is of the form

$$\int \sin^n x \cos^m x dx, \qquad \int \tan^n x \sec^m x dx \qquad \int \sin(nx) \cos(mx) dx$$

we can deal with it using the **standard methods for trigonometric functions** we have studied.

Faced with an integral, we must use a problem solving approach to finding the right method or combination of methods to apply.

lt may be possible to **Simplify the integral** e.g.

$$\int \cot x dx = \int \frac{\cos x}{\sin x} dx.$$

It may be possible to simplify or solve the integral with a substitution e.g.

$$\int \frac{1}{x(\ln x)^{10}} dx$$

if it is of the form

$$\int \sin^n x \cos^m x dx, \qquad \int \tan^n x \sec^m x dx \qquad \int \sin(nx) \cos(mx) dx$$

we can deal with it using the standard methods for trigonometric functions we have studied.

▶ If we are trying to **integrate a rational function**, we apply the techniques of the previous section.

Faced with an integral, we must use a problem solving approach to finding the right method or combination of methods to apply.

It may be possible to **Simplify the integral** e.g.

$$\int \cot x dx = \int \frac{\cos x}{\sin x} dx.$$

It may be possible to simplify or solve the integral with a substitution e.g.

$$\int \frac{1}{x(\ln x)^{10}} dx$$

▶ if it is of the form

$$\int \sin^n x \cos^m x dx, \qquad \int \tan^n x \sec^m x dx \qquad \int \sin(nx) \cos(mx) dx$$

we can deal with it using the standard methods for trigonometric functions we have studied.

- If we are trying to integrate a rational function, we apply the techniques of the previous section.
- ► We should check if **integration by parts** will work.

▶ If the integral contains an expression of the form $\sqrt{\pm x^2 \pm a^2}$ we can use a **trigonometric substitution**. If the integral contains an expression of the form $\sqrt[n]{ax + b}$, the function may become a rational function when we use $u = \sqrt[n]{ax + b}$, a rationalizing substitution. This may also work for integrals with expressions of the form $\sqrt[n]{g(x)}$ with $u = \sqrt[n]{g(x)}$

- ▶ If the integral contains an expression of the form $\sqrt{\pm x^2 \pm a^2}$ we can use a **trigonometric substitution.** If the integral contains an expression of the form $\sqrt[n]{ax+b}$, the function may become a rational function when we use $u = \sqrt[n]{ax+b}$, a rationalizing substitution. This may also work for integrals with expressions of the form $\sqrt[n]{g(x)}$ with $u = \sqrt[n]{g(x)}$
- You may be able to manipulate the integrand to change its form. e.g.

$$\int \sec x dx = \int \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x}$$

- ▶ If the integral contains an expression of the form $\sqrt{\pm x^2 \pm a^2}$ we can use a **trigonometric substitution.** If the integral contains an expression of the form $\sqrt[n]{ax+b}$, the function may become a rational function when we use $u = \sqrt[n]{ax+b}$, a rationalizing substitution. This may also work for integrals with expressions of the form $\sqrt[n]{g(x)}$ with $u = \sqrt[n]{g(x)}$
- You may be able to manipulate the integrand to change its form. e.g.

$$\int \sec x dx = \int \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x}$$

▶ The integral may resemble something you have already seen and you may see that a change of format or substitution will convert the integral to some basic integral that you have already worked through e.g.

$$\int \sin x \cos x e^{\sin x} dx$$

- ▶ If the integral contains an expression of the form $\sqrt{\pm x^2 \pm a^2}$ we can use a **trigonometric substitution.** If the integral contains an expression of the form $\sqrt[n]{ax+b}$, the function may become a rational function when we use $u = \sqrt[n]{ax+b}$, a rationalizing substitution. This may also work for integrals with expressions of the form $\sqrt[n]{g(x)}$ with $u = \sqrt[n]{g(x)}$
- You may be able to manipulate the integrand to change its form. e.g.

$$\int \sec x dx = \int \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x}$$

▶ The integral may resemble something you have already seen and you may see that a change of format or substitution will convert the integral to some basic integral that you have already worked through e.g.

$$\int \sin x \cos x e^{\sin x} dx$$

▶ Your solution may involve several steps.

Outline How you would approach the following integrals:

 $ightharpoonup \int \ln x \ dx$

- $ightharpoonup \int \ln x \ dx$
- ▶ Integration by parts ; let $u = \ln x$, dv = dx

- $ightharpoonup \int \ln x \ dx$
- ▶ Integration by parts ; let $u = \ln x$, dv = dx
- $ightharpoonup \int \tan x \ dx$

- $ightharpoonup \int \ln x \ dx$
- ▶ Integration by parts ; let $u = \ln x$, dv = dx
- $ightharpoonup \int \tan x \ dx$
- write as $\int \tan x \ dx = \int \frac{\sin x}{\cos x} \ dx$, let $u = \cos x$

- $ightharpoonup \int \ln x \ dx$
- ▶ Integration by parts ; let $u = \ln x$, dv = dx
- $ightharpoonup \int \tan x \ dx$
- write as $\int \tan x \ dx = \int \frac{\sin x}{\cos x} \ dx$, let $u = \cos x$

- $ightharpoonup \int \ln x \ dx$
- ▶ Integration by parts ; let $u = \ln x$, dv = dx
- $ightharpoonup \int \tan x \ dx$
- write as $\int \tan x \ dx = \int \frac{\sin x}{\cos x} \ dx$, let $u = \cos x$
- ▶ Substitution, let $u = \sin x$

- $ightharpoonup \int \ln x \ dx$
- ▶ Integration by parts ; let $u = \ln x$, dv = dx
- $ightharpoonup \int \tan x \ dx$
- write as $\int \tan x \ dx = \int \frac{\sin x}{\cos x} \ dx$, let $u = \cos x$
- $ightharpoonup \int \sin^3 x \cos x \ dx$
- ▶ Substitution, let $u = \sin x$

- $ightharpoonup \int \ln x \ dx$
- ▶ Integration by parts ; let $u = \ln x$, dv = dx
- $ightharpoonup \int \tan x \ dx$
- write as $\int \tan x \ dx = \int \frac{\sin x}{\cos x} \ dx$, let $u = \cos x$
- $\int \sin^3 x \cos x \, dx$
- ▶ Substitution, let $u = \sin x$
- ► Trig. substitution, $x = 5\sin\theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, $\int \frac{1}{\sqrt{25-x^2}} dx = \sin^{-1}\left(\frac{x}{5}\right)$

- $ightharpoonup \int \ln x \ dx$
- ▶ Integration by parts ; let $u = \ln x$, dv = dx
- $ightharpoonup \int \tan x \ dx$
- write as $\int \tan x \ dx = \int \frac{\sin x}{\cos x} \ dx$, let $u = \cos x$
- $\int \sin^3 x \cos x \, dx$
- ▶ Substitution, let $u = \sin x$
- ► Trig. substitution, $x = 5\sin\theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, $\int \frac{1}{\sqrt{25-x^2}} dx = \sin^{-1}\left(\frac{x}{5}\right)$
- $ightharpoonup \int \sec x \ dx$

- $ightharpoonup \int \ln x \ dx$
- ▶ Integration by parts ; let $u = \ln x$, dv = dx
- $ightharpoonup \int \tan x \ dx$
- write as $\int \tan x \ dx = \int \frac{\sin x}{\cos x} \ dx$, let $u = \cos x$
- $ightharpoonup \int \sin^3 x \cos x \ dx$
- ▶ Substitution, let $u = \sin x$
- ► Trig. substitution, $x = 5\sin\theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, $\int \frac{1}{\sqrt{25-x^2}} dx = \sin^{-1}\left(\frac{x}{5}\right)$
- $ightharpoonup \int \sec x \ dx$
- ► $\int \sec x dx = \int \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x}$ Let $u = \sec x + \tan x$.

- $ightharpoonup \int \ln x \ dx$
- ▶ Integration by parts ; let $u = \ln x$, dv = dx
- $ightharpoonup \int \tan x \ dx$
- write as $\int \tan x \ dx = \int \frac{\sin x}{\cos x} \ dx$, let $u = \cos x$
- $ightharpoonup \int \sin^3 x \cos x \ dx$
- ▶ Substitution, let $u = \sin x$
- ► Trig. substitution, $x = 5\sin\theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, $\int \frac{1}{\sqrt{25-x^2}} dx = \sin^{-1}\left(\frac{x}{5}\right)$
- $ightharpoonup \int \sec x \ dx$

- $ightharpoonup \int \ln x \ dx$
- ▶ Integration by parts ; let $u = \ln x$, dv = dx
- $ightharpoonup \int \tan x \ dx$
- write as $\int \tan x \ dx = \int \frac{\sin x}{\cos x} \ dx$, let $u = \cos x$
- $\int \sin^3 x \cos x \, dx$
- ▶ Substitution, let $u = \sin x$
- ► Trig. substitution, $x = 5\sin\theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, $\int \frac{1}{\sqrt{25-x^2}} dx = \sin^{-1}\left(\frac{x}{5}\right)$
- $ightharpoonup \int \sec x \ dx$
- ► $\int \sec x dx = \int \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x}$ Let $u = \sec x + \tan x$.
- $ightharpoonup \int e^{\sqrt{x}} dx$
- ► Try the substitution $w = \sqrt{x}$

- $ightharpoonup \int \ln x \ dx$
- ▶ Integration by parts ; let $u = \ln x$, dv = dx
- $ightharpoonup \int \tan x \ dx$
- write as $\int \tan x \ dx = \int \frac{\sin x}{\cos x} \ dx$, let $u = \cos x$
- $ightharpoonup \int \sin^3 x \cos x \ dx$
- ▶ Substitution, let $u = \sin x$
- ► Trig. substitution, $x = 5\sin\theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, $\int \frac{1}{\sqrt{25-x^2}} dx = \sin^{-1}\left(\frac{x}{5}\right)$
- $ightharpoonup \int \sec x \ dx$
- ► $\int \sec x dx = \int \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x}$ Let $u = \sec x + \tan x$.
- $ightharpoonup \int e^{\sqrt{x}} dx$
- ▶ Try the substitution $w = \sqrt{x}$

- $ightharpoonup \int \ln x \ dx$
- ▶ Integration by parts ; let $u = \ln x$, dv = dx
- $ightharpoonup \int \tan x \ dx$
- write as $\int \tan x \ dx = \int \frac{\sin x}{\cos x} \ dx$, let $u = \cos x$
- $ightharpoonup \int \sin^3 x \cos x \ dx$
- ▶ Substitution, let $u = \sin x$
- ► Trig. substitution, $x = 5\sin\theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, $\int \frac{1}{\sqrt{25-x^2}} dx = \sin^{-1}\left(\frac{x}{5}\right)$
- $ightharpoonup \int \sec x \ dx$
- $ightharpoonup \int e^{\sqrt{x}} dx$
- ▶ Try the substitution $w = \sqrt{x}$

- $ightharpoonup \int \ln x \ dx$
- ▶ Integration by parts ; let $u = \ln x$, dv = dx
- $ightharpoonup \int \tan x \ dx$
- write as $\int \tan x \ dx = \int \frac{\sin x}{\cos x} \ dx$, let $u = \cos x$
- $ightharpoonup \int \sin^3 x \cos x \ dx$
- ▶ Substitution, let $u = \sin x$
- ► Trig. substitution, $x = 5\sin\theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, $\int \frac{1}{\sqrt{25-x^2}} dx = \sin^{-1}\left(\frac{x}{5}\right)$
- $ightharpoonup \int \sec x \ dx$
- $ightharpoonup \int e^{\sqrt{x}} dx$
- ▶ Try the substitution $w = \sqrt{x}$

- Use integration by parts now with y = w, $dv = e^{w} dw$.

 Annette Pilkington

 Strategy for Integration

Outline How you would approach the following integrals:

 $ightharpoonup \int \sin(7x)\cos(4x) dx$

- $ightharpoonup \int \sin(7x)\cos(4x) dx$
- Use $\sin(mx)\cos(nx) = \frac{1}{2}\left[\sin((m-n)x) + \sin((m+n)x)\right]$

- $ightharpoonup \int \sin(7x)\cos(4x) dx$
- Use $\sin(mx)\cos(nx) = \frac{1}{2}\left[\sin((m-n)x) + \sin((m+n)x)\right]$

- $ightharpoonup \int \sin(7x)\cos(4x) dx$
- Use $\sin(mx)\cos(nx) = \frac{1}{2}\left[\sin((m-n)x) + \sin((m+n)x)\right]$
- $ightharpoonup \int \cos^2 x \ dx$
- ▶ Use the half angle formula: $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$.

- $ightharpoonup \int \sin(7x)\cos(4x) dx$
- Use $\sin(mx)\cos(nx) = \frac{1}{2}\left[\sin((m-n)x) + \sin((m+n)x)\right]$
- $ightharpoonup \int \cos^2 x \ dx$
- ▶ Use the half angle formula: $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$.

- $ightharpoonup \int \sin(7x)\cos(4x) dx$
- Use $\sin(mx)\cos(nx) = \frac{1}{2}\left[\sin((m-n)x) + \sin((m+n)x)\right]$
- $ightharpoonup \int \cos^2 x \ dx$
- ▶ Use the half angle formula: $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$.
- ▶ Partial Fractions $\int \frac{1}{x^2-9} dx = \frac{A}{x-3} + \frac{B}{x+3}$

- $ightharpoonup \int \sin(7x)\cos(4x) dx$
- Use $\sin(mx)\cos(nx) = \frac{1}{2}\left[\sin((m-n)x) + \sin((m+n)x)\right]$
- $ightharpoonup \int \cos^2 x \ dx$
- ▶ Use the half angle formula: $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$.
- ▶ Partial Fractions $\int \frac{1}{x^2-9} dx = \frac{A}{x-3} + \frac{B}{x+3}$

- $ightharpoonup \int \sin(7x)\cos(4x) dx$
- Use $\sin(mx)\cos(nx) = \frac{1}{2}\left[\sin((m-n)x) + \sin((m+n)x)\right]$
- $ightharpoonup \int \cos^2 x \ dx$
- ▶ Use the half angle formula: $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$.
- ▶ Partial Fractions $\int \frac{1}{x^2-9} dx = \frac{A}{x-3} + \frac{B}{x+3}$
- $ightharpoonup \int \frac{x}{x+3} dx$

More Challenging Integrals

The following integrals may require multiple steps:

More Challenging Integrals

The following integrals may require multiple steps:

- ► Substitute $u = x^3$, $du = 3x^2 dx$

- ► Substitute $u = x^3$, $du = 3x^2 dx$

- ► Substitute $u = x^3$, $du = 3x^2 dx$
- ▶ Use tan^{-1} formula or substitute $u = tan \theta$.

- ► Substitute $u = x^3$, $du = 3x^2 dx$
- ▶ Use tan^{-1} formula or substitute $u = tan \theta$.

- ► Substitute $u = x^3$, $du = 3x^2 dx$
- ▶ Use tan^{-1} formula or substitute $u = tan \theta$.
- ▶ Partial Fractions $x^2 + 27x + 26 = (x + 26)(x + 1)$.

- ► Substitute $u = x^3$, $du = 3x^2 dx$
- ▶ Use tan^{-1} formula or substitute $u = tan \theta$.
- $\int \frac{1}{x^2 + 27x + 26} dx$
- ▶ Partial Fractions $x^2 + 27x + 26 = (x + 26)(x + 1)$.

- ► Substitute $u = x^3$, $du = 3x^2 dx$
- ▶ Use tan^{-1} formula or substitute $u = tan \theta$.
- ▶ Partial Fractions $x^2 + 27x + 26 = (x + 26)(x + 1)$.
- ▶ integration by parts with $u = \arctan x$ and $dv = \frac{x}{(1+x^2)^2}$.

- ► Substitute $u = x^3$, $du = 3x^2 dx$
- ▶ Use tan^{-1} formula or substitute $u = tan \theta$.
- $\int \frac{1}{x^2 + 27x + 26} dx$
- ▶ Partial Fractions $x^2 + 27x + 26 = (x + 26)(x + 1)$.
- ▶ integration by parts with u = arctanx and $dv = \frac{x}{(1+x^2)^2}$.
- ▶ $du = \frac{1}{1+x^2}$ and $v = \int \frac{x}{(1+x^2)^2} dx = (w = 1 + x^2) = \int \frac{1}{2} \cdot \frac{1}{w^2} = \frac{-1}{2w} = \frac{-1}{2(1+x^2)}$.

- ► Substitute $u = x^3$, $du = 3x^2 dx$
- ▶ Use tan^{-1} formula or substitute $u = tan \theta$.
- $\int \frac{1}{x^2 + 27x + 26} dx$
- ▶ Partial Fractions $x^2 + 27x + 26 = (x + 26)(x + 1)$.
- ▶ integration by parts with u = arctanx and $dv = \frac{x}{(1+x^2)^2}$.
- ▶ $du = \frac{1}{1+x^2}$ and $v = \int \frac{x}{(1+x^2)^2} dx = (w = 1 + x^2) = \int \frac{1}{2} \cdot \frac{1}{w^2} = \frac{-1}{2w} = \frac{-1}{2(1+x^2)}$.

- ► Substitute $u = x^3$, $du = 3x^2 dx$
- ▶ Use tan^{-1} formula or substitute $u = tan \theta$.
- ▶ Partial Fractions $x^2 + 27x + 26 = (x + 26)(x + 1)$.
- ▶ integration by parts with u = arctanx and $dv = \frac{x}{(1+x^2)^2}$.
- ▶ $du = \frac{1}{1+x^2}$ and $v = \int \frac{x}{(1+x^2)^2} dx = (w = 1 + x^2) = \int \frac{1}{2} \cdot \frac{1}{w^2} = \frac{-1}{2w} = \frac{-1}{2(1+x^2)}$.
- For the latter integral use trig substitution $x = \tan \theta$, we get $\int \sec^{-2}x \ dx = \int \cos^2 x \ dx$, we can use the half angle formula.

- $\int \frac{\ln x}{x\sqrt{1+(\ln x)^2}} dx$
- $ightharpoonup u = \ln x$ followed by $w = 1 + u^2$

The following integrals may require multiple steps:

- $\int \frac{\ln x}{x\sqrt{1+(\ln x)^2}} dx$
- $ightharpoonup u = \ln x$ followed by $w = 1 + u^2$

- $\int \frac{\ln x}{x\sqrt{1+(\ln x)^2}} dx$
- $ightharpoonup u = \ln x$ followed by $w = 1 + u^2$

- ▶ multiply by $\frac{1+\sin x}{1+\sin x}$.

- $\int \frac{\ln x}{x\sqrt{1+(\ln x)^2}} dx$
- $ightharpoonup u = \ln x$ followed by $w = 1 + u^2$

- ightharpoonup multiply by $\frac{1+\sin x}{1+\sin x}$.

- $\int \frac{\ln x}{\sqrt{1+(\ln x)^2}} dx$
- $ightharpoonup u = \ln x$ followed by $w = 1 + u^2$

- ightharpoonup multiply by $\frac{1+\sin x}{1+\sin x}$.

- $\int \frac{\ln x}{\sqrt{1+(\ln x)^2}} dx$
- $\blacktriangleright u = \ln x$ followed by $w = 1 + u^2$

- $\int \frac{1+\sin x}{1-\sin x} dx. \text{ (Requires True Grit })$
- ightharpoonup multiply by $\frac{1+\sin x}{1+\sin x}$.

- $\tan x - \int \frac{2}{u^2} du + \int \sec^2 x - 1 dx$, where $u = \cos x$.

- $\int \frac{\ln x}{x\sqrt{1+(\ln x)^2}} dx$
- $ightharpoonup u = \ln x$ followed by $w = 1 + u^2$

- ightharpoonup multiply by $\frac{1+\sin x}{1+\sin x}$.

- $ightharpoonup = 2 \tan x + 2 \sec x x + C$

- $\int \frac{\ln x}{x \cdot \sqrt{1 + (\ln x)^2}} dx$
- $\blacktriangleright u = \ln x$ followed by $w = 1 + u^2$

- $\int \frac{1+\sin x}{1-\sin x} dx. \text{ (Requires True Grit })$
- ightharpoonup multiply by $\frac{1+\sin x}{1+\sin x}$.
- $\int \frac{1+\sin x}{1+\sin x} \cdot \frac{1+\sin x}{1+\sin x} dx = \int \frac{(1+\sin x)^2}{1+\sin x^2} dx = \int \frac{(1+\sin x)^2}{1+\sin x} dx.$
- $ightharpoonup = \int \sec^2 x \ dx + \int \frac{2\sin x}{\cos^2 x} \ dx + \int \tan^2 x \ dx =$ $\tan x - \int \frac{2}{u^2} du + \int \sec^2 x - 1 dx$, where $u = \cos x$.
- $ightharpoonup = 2 \tan x + 2 \sec x x + C$
- ▶ Note if you integrate this in Mathematica you get a different looking answer, but both differ by a constant

$$| \log | \operatorname{Simplify} \left[\left(-x \operatorname{Cos} \left[\frac{x}{2} \right] + (4+x) \operatorname{Sin} \left[\frac{x}{2} \right] \right) \middle/ \left(\operatorname{Cos} \left[\frac{x}{2} \right] - \operatorname{Sin} \left[\frac{x}{2} \right] \right) \right. \\ \left. - \left(2 \operatorname{Tan} [x] + 2 \operatorname{Sec} [x] - x \right) \right]$$

- $\int \frac{\ln x}{\sqrt{x}} dx$
- ► Let $u = \sqrt{x}$, $du = \frac{1}{2\sqrt{x}} dx = \frac{1}{2u} dx$

- $\int \frac{\ln x}{\sqrt{x}} dx$
- ► Let $u = \sqrt{x}$, $du = \frac{1}{2\sqrt{x}} dx = \frac{1}{2u} dx$
- ► Let $\int \frac{\ln x}{\sqrt{x}} dx = 2 \int \ln u^2 du$

- $\int \frac{\ln x}{\sqrt{x}} dx$
- ► Let $u = \sqrt{x}$, $du = \frac{1}{2\sqrt{x}} dx = \frac{1}{2u} dx$
- ► Let $\int \frac{\ln x}{\sqrt{x}} dx = 2 \int \ln u^2 du$
- $ightharpoonup = 4 \int \ln u \ du$, we use integration by parts on $\int \ln u \ du$.