Midpoint Approximation

Sometimes, we need to approximate an integral of the form \(\int_{a}^{b} f(x) \, dx \) and we cannot find an antiderivative in order to evaluate the integral. Also we may need to evaluate \(\int_{a}^{b} f(x) \, dx \) where we do not have a formula for \(f(x) \) but we have data describing a set of values of the function.

Review

We might approximate the given integral using a Riemann sum. Already we have looked at the left end-point approximation and the right end point approximation to \(\int_{a}^{b} f(x) \, dx \) in Calculus 1. We also looked at **the midpoint approximation** \(M \):

Midpoint Rule If \(f \) is integrable on \([a, b]\), then

\[
\int_{a}^{b} f(x) \, dx \approx M_n = \sum_{i=1}^{n} f(\bar{x}_i) \Delta x = \Delta x (f(\bar{x}_1) + f(\bar{x}_2) + \cdots + f(\bar{x}_n)),
\]

where

\[
\Delta x = \frac{b - a}{n} \quad \text{and} \quad x_i = a + i \Delta x \quad \text{and} \quad \bar{x}_i = \frac{1}{2} (x_{i-1} + x_i) = \text{midpoint of } [x_{i-1}, x_i].
\]
Example Use the midpoint rule with \(n = 6 \) to approximate \(\int_1^4 \frac{1}{x} \, dx \).

\((= \ln(4) = 1.386294361) \)

Fill in the tables below:
Example Use the midpoint rule with $n = 6$ to approximate $\int_{1}^{4} \frac{1}{x} \, dx$.

$(\approx \ln(4) = 1.386294361)$

Fill in the tables below:

- $\Delta x = \frac{4-1}{6} = \frac{1}{2}$
Example Use the midpoint rule with \(n = 6 \) to approximate \(\int_{1}^{4} \frac{1}{x} \,dx \).

(= \ln(4) = 1.386294361)

Fill in the tables below:

\[\Delta x = \frac{4-1}{6} = \frac{1}{2} \]

\[\bar{x}_i = \frac{1}{2}(x_i - 1 + x_i) \]

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(x_0 = 1)</th>
<th>(x_1 = 3/2)</th>
<th>(x_2 = 2)</th>
<th>(x_3 = 5/2)</th>
<th>(x_4 = 3)</th>
<th>(x_5 = 7/2)</th>
<th>(x_6 = 4)</th>
</tr>
</thead>
</table>

\[M_6 = P_6 \sum f(\bar{x}_i) \Delta x = \frac{1}{2} \left(\frac{4}{5} + \frac{4}{7} + \frac{4}{9} + \frac{4}{11} + \frac{4}{13} + \frac{4}{15} \right) \equiv 1.376934177 \]
Example Use the midpoint rule with \(n = 6 \) to approximate \(\int_1^4 \frac{1}{x} \, dx \).

\(= \ln(4) = 1.386294361 \)

Fill in the tables below:

\[\Delta x = \frac{4 - 1}{6} = \frac{1}{2} \]

| \(x_i \) | \(x_0 = 1 \) | \(x_1 = 3/2 \) | \(x_2 = 2 \) | \(x_3 = 5/2 \) | \(x_4 = 3 \) | \(x_5 = 7/2 \) | \(x_6 = 4 \) |
|---|---|---|---|---|---|---|
\[\bar{x}_i = \frac{1}{2}(x_{i-1} + x_i) \]
\[f(\bar{x}_i) = \frac{1}{\bar{x}_i} \]
\[\bar{x}_1 = 5/4 \]
\[\bar{x}_2 = 7/4 \]
\[\bar{x}_3 = 9/4 \]
\[\bar{x}_4 = 11/4 \]
\[\bar{x}_5 = 13/4 \]
\[\bar{x}_6 = 15/4 \]

\[\frac{4}{5} \]
\[\frac{4}{7} \]
\[\frac{4}{9} \]
\[\frac{4}{11} \]
\[\frac{4}{13} \]
\[\frac{4}{15} \]
Example Use the midpoint rule with \(n = 6 \) to approximate \(\int_{1}^{4} \frac{1}{x} \, dx \).

\((= \ln(4) = 1.386294361) \)

Fill in the tables below:

\[\Delta x = \frac{4 - 1}{6} = \frac{1}{2} \]

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
x_i & x_0 = 1 & x_1 = 3/2 & x_2 = 2 & x_3 = 5/2 & x_4 = 3 & x_5 = 7/2 & x_6 = 4 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\bar{x}_i = \frac{1}{2}(x_i - 1 + x_i) & \bar{x}_1 = 5/4 & \bar{x}_2 = 7/4 & \bar{x}_3 = 9/4 & \bar{x}_4 = 11/4 & \bar{x}_5 = 13/4 & \bar{x}_6 = 15/4 \\
\hline
f(\bar{x}_i) = \frac{1}{\bar{x}_i} & 4/5 & 4/7 & 4/9 & 4/11 & 4/13 & 4/15 \\
\hline
\end{array}
\]

\[M_6 = \sum_{1}^{6} f(\bar{x}_i) \Delta x = \frac{1}{2} \left[\frac{4}{5} + \frac{4}{7} + \frac{4}{9} + \frac{4}{11} + \frac{4}{13} + \frac{4}{15} \right] = 1.376934177 \]
We can also approximate a definite integral \(\int_a^b f(x) \, dx \) using an approximation by trapezoids as shown in the picture below for \(f(x) \geq 0 \)

The area of the trapezoid above the interval \([x_i, x_{i+1}]\) is \(\Delta x \left[\frac{f(x_i) + f(x_{i+1})}{2} \right] \).

Trapezoidal Rule If \(f \) is integrable on \([a, b]\), then

\[
\int_a^b f(x) \, dx \approx T_n = \frac{\Delta x}{2} \left(f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n) \right)
\]

where

\[
\Delta x = \frac{b - a}{n} \quad \text{and} \quad x_i = a + i\Delta x \quad \text{and}
\]
Trapezoidal Rule

\[\int_{a}^{b} f(x) \, dx \approx T_n = \frac{\Delta x}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n)) \]

where

\[\Delta x = \frac{b - a}{n} \quad \text{and} \quad x_i = a + i\Delta x \quad \text{and}. \]

Example Use the trapezoidal rule with \(n = 6 \) to approximate \(\int_{1}^{4} \frac{1}{x} \, dx \). (\(= \ln(4) = 1.386294361 \))
Trapezoidal Rule

\[\int_a^b f(x) dx \approx T_n = \frac{\Delta x}{2} \left(f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n) \right) \]

where

\[\Delta x = \frac{b - a}{n} \quad \text{and} \quad x_i = a + i\Delta x \quad \text{and} \]

Example Use the trapezoidal rule with \(n = 6 \) to approximate \(\int_1^4 \frac{1}{x} dx \). \((= \ln(4) = 1.386294361)\)

\[\Delta x = \frac{4 - 1}{6} = \frac{1}{2} \]
Trapezoidal Rule

\[\int_{a}^{b} f(x) \, dx \approx T_n = \frac{\Delta x}{2} \left(f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n) \right) \]

where

\[\Delta x = \frac{b - a}{n} \quad \text{and} \quad x_i = a + i\Delta x \quad \text{and} \]

Example Use the trapezoidal rule with \(n = 6 \) to approximate \(\int_{1}^{4} \frac{1}{x} \, dx \). (\(= \ln(4) = 1.386294361 \))

\[\Delta x = \frac{4 - 1}{6} = \frac{1}{2} \]

| \(x_i \) | \(x_0 = 1 \) | \(x_1 = 3/2 \) | \(x_2 = 2 \) | \(x_3 = 5/2 \) | \(x_4 = 3 \) | \(x_5 = 7/2 \) | \(x_6 = 4 \) |
Trapezoidal Rule

\[
\int_a^b f(x) \, dx \approx T_n = \frac{\Delta x}{2} \left(f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n) \right)
\]

where

\[
\Delta x = \frac{b - a}{n} \quad \text{and} \quad x_i = a + i\Delta x \quad \text{and}.
\]

Example Use the trapezoidal rule with \(n = 6 \) to approximate \(\int_1^4 \frac{1}{x} \, dx \). (\(= \ln(4) = 1.386294361 \))

\[
\Delta x = \frac{4 - 1}{6} = \frac{1}{2}
\]

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
x_i & x_0 = 1 & x_1 = 3/2 & x_2 = 2 & x_3 = 5/2 & x_4 = 3 & x_5 = 7/2 & x_6 = 4 \\
\hline
f(x_i) = \frac{1}{x_i} & & & & & & & \\
\hline
\end{array}
\]
Trapezoidal Rule

\[\int_{a}^{b} f(x) \, dx \approx T_n = \frac{\Delta x}{2}(f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n)) \]

where

\[\Delta x = \frac{b - a}{n} \quad \text{and} \quad x_i = a + i\Delta x \quad \text{and}. \]

Example Use the trapezoidal rule with \(n = 6 \) to approximate \(\int_{1}^{4} \frac{1}{x} \, dx \). \((= \ln(4) = 1.386294361) \)

\[\Delta x = \frac{4-1}{6} = \frac{1}{2} \]

\[x_i \quad x_0 = 1 \quad x_1 = 3/2 \quad x_2 = 2 \quad x_3 = 5/2 \quad x_4 = 3 \quad x_5 = 7/2 \quad x_6 = 4 \]

\[f(x_i) = \frac{1}{x_i} \quad \begin{array}{cccccccc}
 x_0 & 1 & x_1 & 3/2 & x_2 & 2 & x_3 & 5/2 & x_4 & 3 & x_5 & 7/2 & x_6 & 4 \\
 f(x_i) & 1 & 2/3 & 1/2 & 2/5 & 1/3 & 2/7 & 1/4
\end{array} \]
Trapezoidal Rule

\[
\int_a^b f(x)\,dx \approx T_n = \frac{\Delta x}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n))
\]

where

\[\Delta x = \frac{b - a}{n}\]

and \(x_i = a + i\Delta x\) and.

Example Use the trapezoidal rule with \(n = 6\) to approximate \(\int_1^4 \frac{1}{x}\,dx\). \((= \ln(4) = 1.386294361)\)

\[\Delta x = \frac{4 - 1}{6} = \frac{1}{2}\]

\[x_i\]

\[
\begin{array}{cccccc}
 x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 1 & 3/2 & 2 & 5/2 & 3 & 7/2 & 4 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
 x_i & x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
 & 1 & 2/3 & 1/2 & 2/5 & 1/3 & 2/7 & 1/4 \\
\end{array}
\]

\[T_6 = \frac{\Delta x}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + 2f(x_4) + 2f(x_5) + f(x_6))\]
Trapezoidal Rule

\[
\int_a^b f(x) \, dx \approx T_n = \frac{\Delta x}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n))
\]

where

\[
\Delta x = \frac{b - a}{n} \quad \text{and} \quad x_i = a + i\Delta x \quad \text{and}.
\]

Example Use the trapezoidal rule with \(n = 6 \) to approximate \(\int_1^4 \frac{1}{x} \, dx \). (\(\ln(4) = 1.386294361 \))

\[
\begin{align*}
\Delta x &= \frac{4 - 1}{6} = \frac{1}{2} \\
x_i &\quad x_0 = 1 \quad x_1 = 3/2 \quad x_2 = 2 \quad x_3 = 5/2 \quad x_4 = 3 \quad x_5 = 7/2 \quad x_6 = 4 \\
f(x_i) &= \frac{1}{x_i} \\
x_0 = 1 &\quad \frac{1}{2} \quad 1/2 \quad 2/5 \quad 1/3 \quad 2/7 \quad 1/4 \\
\end{align*}
\]

\[
T_6 = \frac{\Delta x}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + 2f(x_4) + 2f(x_5) + f(x_6))
\]

\[
= \frac{1}{4} \left(1 + 2 \left(\frac{2}{3} \right) + 2 \left(\frac{1}{2} \right) + 2 \left(\frac{2}{5} \right) + 2 \left(\frac{1}{3} \right) + 2 \left(\frac{2}{7} \right) + \frac{1}{4} \right)
\]
Trapezoidal Rule

\[\int_{a}^{b} f(x) dx \approx T_n = \frac{\Delta x}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n)) \]

where
\[\Delta x = \frac{b - a}{n} \quad \text{and} \quad x_i = a + i\Delta x \quad \text{and}. \]

Example Use the trapezoidal rule with \(n = 6 \) to approximate \(\int_{1}^{4} \frac{1}{x} dx \). (= \(\ln(4) = 1.386294361 \))

\[\Delta x = \frac{4 - 1}{6} = \frac{1}{2} \]

\[x_i \begin{array}{c} x_0 = 1 \\ x_1 = 3/2 \\ x_2 = 2 \\ x_3 = 5/2 \\ x_4 = 3 \\ x_5 = 7/2 \\ x_6 = 4 \end{array} \]

\[f(x_i) = \frac{1}{x_i} \begin{array}{c|c|c|c|c|c|c} x_i & x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ \hline \end{array} \]
\[\begin{array}{c|c|c|c|c|c|c} x_i & x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ \hline \end{array} \]
\[\begin{array}{c|c|c|c|c|c|c} x_i & x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ \hline \end{array} \]

\[T_6 = \frac{\Delta x}{2} (f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + 2f(x_4) + 2f(x_5) + f(x_6)) \]
\[= \frac{1}{4} (1 + 2\left(\frac{2}{3}\right) + 2\left(\frac{1}{2}\right) + 2\left(\frac{2}{5}\right) + 2\left(\frac{1}{3}\right) + 2\left(\frac{2}{7}\right) + \frac{1}{4}) \]
\[= 1.405357143. \]
The **error** when using an approximation is the difference between the true value of the integral and the approximation.
The error when using an approximation is the difference between the true value of the integral and the approximation.

- The error for the midpoint approximation above is

\[E_M = \int_1^4 \frac{1}{x} \, dx - M_6 = 1.386294361 - 1.376934177 = 0.00936018 \]

- The error for the trapezoidal approximation above is

\[E_T = \int_1^4 \frac{1}{x} \, dx - T_6 = 1.386294361 - 1.405357143 = -0.0190628 \]
Error of Approximation

The **error** when using an approximation is the difference between the true value of the integral and the approximation.

- **The error for the midpoint approximation above** is

 \[E_M = \int_1^4 \frac{1}{x} \, dx - M_6 = 1.386294361 - 1.376934177 = 0.00936018 \]

- **The error for the trapezoidal approximation above** is

 \[E_T = \int_1^4 \frac{1}{x} \, dx - T_6 = 1.386294361 - 1.405357143 = -0.0190628 \]

- **Error Bounds** If \(|f''(x)| \leq K\) for \(a \leq x \leq b\). Let \(E_T\) and \(E_M\) denote the errors for the trapezoidal approximation and midpoint approximation respectively, then

 \[
 |E_T| \leq \frac{K(b - a)^3}{12n^2} \quad \text{and} \quad |E_M| \leq \frac{K(b - a)^3}{24n^2}
 \]
Error of Approximation

Error Bounds
If $|f''(x)| \leq K$ for $a \leq x \leq b$. Let E_T and E_M denote the errors for the trapezoidal approximation and midpoint approximation respectively, then

$$|E_T| \leq \frac{K(b-a)^3}{12n^2} \quad \text{and} \quad |E_M| \leq \frac{K(b-a)^3}{24n^2}$$

Example (a)
Give an upper bound for the error in the trapezoidal approximation of $\int_1^4 \frac{1}{x} \, dx$ when $n = 10$.

Note that the bound for the error given by the formula is conservative since it turns out to give $|E_T| \leq 0.045$ when $n = 10$, compared to a true error of $|E_T| = 0.00696667$.
Error of Approximation

Error Bounds If $|f''(x)| \leq K$ for $a \leq x \leq b$. Let E_T and E_M denote the errors for the trapezoidal approximation and midpoint approximation respectively, then

$$|E_T| \leq \frac{K(b-a)^3}{12n^2} \quad \text{and} \quad |E_M| \leq \frac{K(b-a)^3}{24n^2}$$

Example (a) Give an upper bound for the error in the trapezoidal approximation of $\int_1^4 \frac{1}{x} \, dx$ when $n = 10$.

- $f(x) = \frac{1}{x}$, $f'(x) = -\frac{1}{x^2}$, $f''(x) = \frac{2}{x^3}$
Error of Approximation

Error Bounds If $|f''(x)| \leq K$ for $a \leq x \leq b$. Let E_T and E_M denote the errors for the trapezoidal approximation and midpoint approximation respectively, then

$$|E_T| \leq \frac{K(b-a)^3}{12n^2} \quad \text{and} \quad |E_M| \leq \frac{K(b-a)^3}{24n^2}$$

Example (a) Give an upper bound for the error in the trapezoidal approximation of $\int_{1}^{4} \frac{1}{x} \, dx$ when $n = 10$.

- $f(x) = \frac{1}{x}$, $f'(x) = -\frac{1}{x^2}$, $f''(x) = \frac{2}{x^3}$
- We can use the above formula for the error bound with any value of K for which $|f''(x)| \leq K$ for $1 \leq x \leq 4$.

Note that the bound for the error given by the formula is conservative since it turns out to give $|E_T| \leq 0.045$ when $n = 10$, compared to a true error of $|E_T| = 0.00696667$.

Annette Pilkington Approaching an integral
Error of Approximation

Error Bounds If $|f''(x)| \leq K$ for $a \leq x \leq b$. Let E_T and E_M denote the errors for the trapezoidal approximation and midpoint approximation respectively, then

$$|E_T| \leq \frac{K(b - a)^3}{12n^2} \quad \text{and} \quad |E_M| \leq \frac{K(b - a)^3}{24n^2}$$

Example (a) Give an upper bound for the error in the trapezoidal approximation of $\int_1^4 \frac{1}{x} \, dx$ when $n = 10$.

- $f(x) = \frac{1}{x}$, $f'(x) = -\frac{1}{x^2}$, $f''(x) = \frac{2}{x^3}$

- We can use the above formula for the error bound with any value of K for which $|f''(x)| \leq K$ for $1 \leq x \leq 4$.

- Since $|f''(x)| = f''(x) = \frac{2}{x^3}$ is a decreasing function on the interval $[1, 4]$, we have that $|f''(x)| \leq f''(1) = 2$ on the interval $[1, 4]$. So we can use $K = 2$ in the formula for the error bound above.
Error of Approximation

Error Bounds If \(|f''(x)| \leq K\) for \(a \leq x \leq b\). Let \(E_T\) and \(E_M\) denote the errors for the trapezoidal approximation and midpoint approximation respectively, then

\[
|E_T| \leq \frac{K(b-a)^3}{12n^2} \quad \text{and} \quad |E_M| \leq \frac{K(b-a)^3}{24n^2}
\]

Example (a) Give an upper bound for the error in the trapezoidal approximation of \(\int_1^4 \frac{1}{x} \, dx\) when \(n = 10\).

- \(f(x) = \frac{1}{x}\), \(f'(x) = -\frac{1}{x^2}\), \(f''(x) = \frac{2}{x^3}\)
- We can use the above formula for the error bound with any value of \(K\) for which \(|f''(x)| \leq K\) for \(1 \leq x \leq 4\).
- Since \(|f''(x)| = f''(x) = \frac{2}{x^3}\) is a decreasing function on the interval \([1, 4]\), we have that \(|f''(x)| \leq f''(1) = 2\) on the interval \([1, 4]\). So we can use \(K = 2\) in the formula for the error bound above.
- Therefore when \(n = 10\),

\[
|T_{10} - \int_1^4 \frac{1}{x} \, dx| = |E_T| \leq \frac{K(b-a)^3}{12n^2} = \frac{2(4-1)^3}{12(10)^2} = 0.045
\]

Note that the bound for the error given by the formula is conservative since it turns out to give \(|E_T| \leq 0.045\) when \(n = 10\), compared to a true error of \(|E_T| = 0.00696667\).
Error of Approximation

Error Bounds If $|f''(x)| \leq K$ for $a \leq x \leq b$. Let E_T and E_M denote the errors for the trapezoidal approximation and midpoint approximation respectively, then

$$|E_T| \leq \frac{K(b-a)^3}{12n^2} \quad \text{and} \quad |E_M| \leq \frac{K(b-a)^3}{24n^2}$$

Example (a) Give an upper bound for the error in the trapezoidal approximation of $\int_1^4 \frac{1}{x} \, dx$ when $n = 10$.

- $f(x) = \frac{1}{x}$, $f'(x) = -\frac{1}{x^2}$, $f''(x) = \frac{2}{x^3}$
- We can use the above formula for the error bound with any value of K for which $|f''(x)| \leq K$ for $1 \leq x \leq 4$.
- Since $|f''(x)| = f''(x) = \frac{2}{x^3}$ is a decreasing function on the interval $[1, 4]$, we have that $|f''(x)| \leq f''(1) = 2$ on the interval $[1, 4]$. So we can use $K = 2$ in the formula for the error bound above.
- Therefore when $n = 10$,

$$|T_{10} - \int_1^4 \frac{1}{x} \, dx| = |E_T| \leq \frac{K(b-a)^3}{12n^2} = \frac{2(4-1)^3}{12(10)^2} = 0.045$$

- Note that the bound for the error given by the formula is conservative since it turns out to give $|E_T| \leq 0.045$ when $n = 10$, compared to a true error of $|E_T| = 0.00696667$.
Error of Approximation

\[|E_T| \leq \frac{K(b - a)^3}{12n^2} \text{ and } |E_M| \leq \frac{K(b - a)^3}{24n^2} \]

Example (b) Give an upper bound for the error in the midpoint approximation of \(\int_1^4 \frac{1}{x} \, dx \) when \(n = 10 \).

(c) Using the error bounds given above determine how large should \(n \) be to ensure that the trapezoidal approximation is accurate to within 0.000001 = 10^{-6}?
Error of Approximation

\[|E_T| \leq \frac{K(b - a)^3}{12n^2} \quad \text{and} \quad |E_M| \leq \frac{K(b - a)^3}{24n^2} \]

Example (b) Give an upper bound for the error in the midpoint approximation of \(\int_1^4 \frac{1}{x} \, dx \) when \(n = 10 \).

- As above, we can use \(K = 2 \) to get

\[|E_M| \leq \frac{2(b - a)^3}{24n^2} = \frac{2(3)^3}{24(10)^2} = 0.0225. \]

(c) Using the error bounds given above determine how large should \(n \) be to ensure that the trapezoidal approximation is accurate to within 0.000001 = \(10^{-6} \)?
Error of Approximation

\[|E_T| \leq \frac{K(b - a)^3}{12n^2} \quad \text{and} \quad |E_M| \leq \frac{K(b - a)^3}{24n^2} \]

Example (b) Give an upper bound for the error in the midpoint approximation of \(\int_1^4 \frac{1}{x} \, dx \) when \(n = 10 \).

- As above, we can use \(K = 2 \) to get
 \[|E_M| \leq \frac{K(b - a)^3}{24n^2} = \frac{2(3)^3}{24(10)^2} = 0.0225. \]

(c) Using the error bounds given above determine how large should \(n \) be to ensure that the trapezoidal approximation is accurate to within 0.000001 \(= 10^{-6} \) ?

- We want \(|E_T| \leq 10^{-6} \).
Midpoint Approximation Trapezoidal Rule Error Simpson’s Rule

Error of Approximation

\[|E_T| \leq \frac{K(b - a)^3}{12n^2} \quad \text{and} \quad |E_M| \leq \frac{K(b - a)^3}{24n^2} \]

Example (b) Give an upper bound for the error in the midpoint approximation of \(\int_1^4 \frac{1}{x} \, dx \) when \(n = 10 \).

▷ As above, we can use \(K = 2 \) to get

\[|E_M| \leq \frac{2(3)^3}{24(10)^2} = \frac{2(3)^3}{24(10)^2} = 0.0225. \]

(c) Using the error bounds given above determine how large should \(n \) be to ensure that the trapezoidal approximation is accurate to within 0.000001 = 10^{-6} ?

▷ We want \(|E_T| \leq 10^{-6} \).

▷ We have \(|E_T| \leq \frac{K(b-a)^3}{12n^2} \), where \(K = 2 \) since \(|f''(x)| \leq 2 \) for \(1 \leq x \leq 4 \).
Error of Approximation

\[|E_T| \leq \frac{K(b - a)^3}{12n^2} \quad \text{and} \quad |E_M| \leq \frac{K(b - a)^3}{24n^2} \]

Example (b) Give an upper bound for the error in the midpoint approximation of \(\int_1^4 \frac{1}{x} \, dx \) when \(n = 10 \).

- As above, we can use \(K = 2 \) to get
 \[|E_M| \leq \frac{K(b - a)^3}{24n^2} = \frac{2(3)^3}{24(10)^2} = 0.0225. \]

(c) Using the error bounds given above determine how large should \(n \) be to ensure that the trapezoidal approximation is accurate to within \(0.000001 = 10^{-6} \)?

- We want \(|E_T| \leq 10^{-6} \).
- We have \(|E_T| \leq \frac{K(b - a)^3}{12n^2} \), where \(K = 2 \) since \(|f''(x)| \leq 2 \) for \(1 \leq x \leq 4 \).
- Hence we will certainly have \(|E_T| \leq 10^{-6} \) if we choose a value of \(n \) for which \(\frac{2(4-1)^3}{12n^2} \leq 10^{-6} \).
Error of Approximation

\[|E_T| \leq \frac{K(b - a)^3}{12n^2} \quad \text{and} \quad |E_M| \leq \frac{K(b - a)^3}{24n^2} \]

Example (b) Give an upper bound for the error in the midpoint approximation of \(\int_1^4 \frac{1}{x} \, dx \) when \(n = 10 \).

- As above, we can use \(K = 2 \) to get

\[|E_M| \leq \frac{K(b - a)^3}{24n^2} = \frac{2(3)^3}{24(10)^2} = 0.0225. \]

(c) Using the error bounds given above determine how large should \(n \) be to ensure that the trapezoidal approximation is accurate to within \(0.000001 = 10^{-6} \)?

- We want \(|E_T| \leq 10^{-6} \).
- We have \(|E_T| \leq \frac{K(b - a)^3}{12n^2} \), where \(K = 2 \) since \(|f''(x)| \leq 2 \) for \(1 \leq x \leq 4 \).
- Hence we will certainly have \(|E_T| \leq 10^{-6} \) if we choose a value of \(n \) for which \(\frac{2(4-1)^3}{12n^2} \leq 10^{-6} \).
- That is \(\frac{(10^6)2(27)}{12} \leq n^2 \).
Error of Approximation

\[|E_T| \leq \frac{K(b-a)^3}{12n^2} \quad \text{and} \quad |E_M| \leq \frac{K(b-a)^3}{24n^2} \]

Example (b) Give an upper bound for the error in the midpoint approximation of \(\int_1^4 \frac{1}{x} \, dx \) when \(n = 10 \).

- As above, we can use \(K = 2 \) to get
 \[|E_M| \leq \frac{K(b-a)^3}{24n^2} = \frac{2(3)^3}{24(10)^2} = 0.0225. \]

(c) Using the error bounds given above determine how large should \(n \) be to ensure that the trapezoidal approximation is accurate to within \(0.000001 = 10^{-6} \)?

- We want \(|E_T| \leq 10^{-6} \).
- We have \(|E_T| \leq \frac{K(b-a)^3}{12n^2} \), where \(K = 2 \) since \(|f''(x)| \leq 2 \) for \(1 \leq x \leq 4 \).
- Hence we will certainly have \(|E_T| \leq 10^{-6} \) if we choose a value of \(n \) for which \(\frac{2(4-1)^3}{12n^2} \leq 10^{-6} \).
- That is \(\frac{(10^6)2(27)}{12} \leq n^2 \)
- or \(n \geq \sqrt{\frac{(10^6)2(27)}{12}} = 2121.32 \), \(n = 2122 \) will work.
Simpson’s Rule

We can also approximate a definite integral using parabolas to approximate the curve as in the picture below. [note n is even].

Three points determine a unique parabola. We draw a parabolic segment using the three points on the curve above x_0, x_1, x_2. We draw a second parabolic segment using the three points on the curve above x_2, x_3, x_4 etc... The area of the parabolic region beneath the parabola above the interval $[x_{i-1}, x_{i+1}]$ is $\frac{\Delta x}{3}[f(x_{i-1}) + 4f(x_i) + f(x_{i+1})]$. We estimate the integral by summing the areas of the regions below these parabolic segments to get **Simpson’s Rule** for even n:

$$
\int_a^b f(x)dx \approx S_n = \frac{\Delta x}{3}(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n))
$$

where

$$
\Delta x = \frac{b - a}{n} \quad \text{and} \quad x_i = a + i\Delta x \quad \text{and}.
$$

In fact we have $S_{2n} = \frac{1}{3}T_n + \frac{2}{3}M_n$.

Annette Pilkington

Approximating an integral
Simpson’s Rule

\[\int_{a}^{b} f(x) \, dx \approx S_n = \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)) \]

Example Use Simpson’s rule with \(n = 6 \) to approximate \(\int_{1}^{4} \frac{1}{x} \, dx \). (= ln(4) = 1.386294361)
Fill in the tables below:
Simpson’s Rule

\[
\int_a^b f(x)dx \approx S_n = \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n))
\]

Example Use Simpson’s rule with \(n = 6 \) to approximate \(\int_1^4 \frac{1}{x} dx \). \(\Rightarrow \ln(4) = 1.386294361 \)

Fill in the tables below:

- \(\Delta x = \frac{4 - 1}{6} = \frac{1}{2} \)
Simpson’s Rule

\[
\int_a^b f(x)dx \approx S_n = \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n))
\]

Example Use Simpson’s rule with \(n = 6 \) to approximate \(\int_1^4 \frac{1}{x} dx \). (\(\approx \ln(4) = 1.386294361 \))

Fill in the tables below:

\[\Delta x = \frac{4-1}{6} = \frac{1}{2} \]

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(x_0 = 1)</th>
<th>(x_1 = \frac{3}{2})</th>
<th>(x_2 = 2)</th>
<th>(x_3 = \frac{5}{2})</th>
<th>(x_4 = 3)</th>
<th>(x_5 = \frac{7}{2})</th>
<th>(x_6 = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x_i) = \frac{1}{x_i})</td>
<td>1</td>
<td>(\frac{2}{3})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{2}{5})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{2}{7})</td>
<td>(\frac{1}{4})</td>
</tr>
</tbody>
</table>
Simpson’s Rule

\[\int_{a}^{b} f(x)dx \approx S_n = \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)) \]

Example Use Simpson’s rule with \(n = 6 \) to approximate \(\int_{1}^{4} \frac{1}{x}dx \). (\(\ln(4) = 1.386294361 \))

Fill in the tables below:

\[\Delta x = \frac{4-1}{6} = \frac{1}{2} \]

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(x_0 = 1)</th>
<th>(x_1 = 3/2)</th>
<th>(x_2 = 2)</th>
<th>(x_3 = 5/2)</th>
<th>(x_4 = 3)</th>
<th>(x_5 = 7/2)</th>
<th>(x_6 = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x_i) = \frac{1}{x_i})</td>
<td>1</td>
<td>(2/3)</td>
<td>(1/2)</td>
<td>(2/5)</td>
<td>(1/3)</td>
<td>(2/7)</td>
<td>(1/4)</td>
</tr>
</tbody>
</table>

\[S_6 = \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + 4f(x_5) + f(x_6)) = \]

\[= 1.386294361 - 1.387698413 = -0.00140405 \]
Simpson’s Rule

\[\int_{a}^{b} f(x) \, dx \approx S_n = \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)) \]

Example Use Simpson’s rule with \(n = 6 \) to approximate \(\int_{1}^{4} \frac{1}{x} \, dx \). (\(\approx \ln(4) = 1.386294361 \))

Fill in the tables below:

\(\Delta x = \frac{4-1}{6} = \frac{1}{2} \)

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(x_0 = 1)</th>
<th>(x_1 = 3/2)</th>
<th>(x_2 = 2)</th>
<th>(x_3 = 5/2)</th>
<th>(x_4 = 3)</th>
<th>(x_5 = 7/2)</th>
<th>(x_6 = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x_i) = \frac{1}{x_i})</td>
<td>1</td>
<td>2/3</td>
<td>1/2</td>
<td>2/5</td>
<td>1/3</td>
<td>2/7</td>
<td>1/4</td>
</tr>
</tbody>
</table>

\(S_6 = \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + 4f(x_5) + f(x_6)) = \)

\(\frac{1}{6} \left[1 + \frac{8}{3} + 1 + \frac{8}{5} + \frac{2}{3} + \frac{8}{7} + \frac{1}{4} \right] = 1.387698413 \)
Simpson’s Rule

\[\int_a^b f(x)dx \approx S_n = \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)) \]

Example Use Simpson’s rule with \(n = 6 \) to approximate \(\int_1^4 \frac{1}{x} dx \). (= \(\ln(4) = 1.386294361 \))

Fill in the tables below:

- \(\Delta x = \frac{4-1}{6} = \frac{1}{2} \)

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(x_0 = 1)</th>
<th>(x_1 = 3/2)</th>
<th>(x_2 = 2)</th>
<th>(x_3 = 5/2)</th>
<th>(x_4 = 3)</th>
<th>(x_5 = 7/2)</th>
<th>(x_6 = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x_i) = \frac{1}{x_i})</td>
<td>1</td>
<td>2/3</td>
<td>1/2</td>
<td>2/5</td>
<td>1/3</td>
<td>2/7</td>
<td>1/4</td>
</tr>
</tbody>
</table>

- \(S_6 = \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + 4f(x_5) + f(x_6)) = \)

- \(\frac{1}{6} \left[1 + \frac{8}{3} + 1 + \frac{8}{5} + \frac{2}{3} + \frac{8}{7} + \frac{1}{4} \right] = 1.387698413 \)

- The error in this estimate is \(E_S = \int_1^4 \frac{1}{x} dx - S_6 = \)

\[1.386294361 - 1.387698413 = -0.00140405 \]
Error Bound Simpson’s Rule

Error Bound for Simpson’s Rule Suppose that $|f^{(4)}(x)| \leq K$ for $a \leq x \leq b$. If E_S is the error involved in using Simpson’s Rule, then

$$|E_S| \leq \frac{K(b-a)^5}{180n^4}$$

Example How large should n be in order to guarantee that the Simpson rule estimate for $\int_1^4 \frac{1}{x} dx$ is accurate to within $0.000001 = 10^{-6}$?
Error Bound Simpson’s Rule

Suppose that $|f^{(4)}(x)| \leq K$ for $a \leq x \leq b$. If E_S is the error involved in using Simpson’s Rule, then

$$|E_S| \leq \frac{K(b - a)^5}{180n^4}$$

Example How large should n be in order to guarantee that the Simpson rule estimate for $\int_1^4 \frac{1}{x} \, dx$ is accurate to within $0.000001 = 10^{-6}$?

- $f(x) = \frac{1}{x}$, $f'(x) = -\frac{1}{x^2}$, $f''(x) = \frac{2}{x^3}$, $f^{(3)}(x) = \frac{(-3)^2}{x^4}$,
 $f^{(4)}(x) = \frac{4 \cdot 3 \cdot 3}{x^5} \leq 24$ (for $1 \leq k \leq 4$) = K.

We have $|E_S| \leq \frac{24(3)^5}{180n^4}$

We want $|E_S| \leq 10^{-6}$, hence if we find a value of n for which $\frac{24(3)^5}{180n^4} \leq 10^{-6}$ it is guaranteed that $|E_S| \leq 10^{-6}$.

From $\frac{24(3)^5}{180n^4} \leq 10^{-6}$ we get that $10^6 \frac{24(3)^5}{180} \leq n^4$ or $n \geq 4 \sqrt[4]{10^6 \frac{24(3)^5}{180}} = 75$.

$n = 76$ will work.

This is a conservative upper bound of the error, the actual error for $n = 76$ is -8×10^{-8}.

Error Bound Simpson’s Rule

Error Bound for Simpson’s Rule Suppose that $|f^{(4)}(x)| \leq K$ for $a \leq x \leq b$. If E_S is the error involved in using Simpson’s Rule, then

$$|E_S| \leq \frac{K(b-a)^5}{180n^4}$$

Example How large should n be in order to guarantee that the Simpson rule estimate for $\int_1^4 \frac{1}{x} \, dx$ is accurate to within $0.000001 = 10^{-6}$?

- $f(x) = \frac{1}{x}, \quad f'(x) = -\frac{1}{x^2}, \quad f''(x) = \frac{2}{x^3}, \quad f^{(3)}(x) = \frac{(-3)^2}{x^4}, \quad f^{(4)}(x) = \frac{4 \cdot 3 \cdot 3}{x^5} \leq 24 \quad (\text{for } 1 \leq k \leq 4) = K$

- We have $|E_S| \leq \frac{24(3)^5}{180n^4}$
Error Bound Simpson’s Rule

Error Bound for Simpson’s Rule Suppose that \(|f^{(4)}(x)| \leq K\) for \(a \leq x \leq b\). If \(E_S\) is the error involved in using Simpson’s Rule, then

\[
|E_S| \leq \frac{K(b - a)^5}{180n^4}
\]

Example How large should \(n\) be in order to guarantee that the Simpson rule estimate for \(\int_1^4 \frac{1}{x} \, dx\) is accurate to within \(0.000001 = 10^{-6}\)?

- \(f(x) = \frac{1}{x}, \quad f'(x) = -\frac{1}{x^2}, \quad f''(x) = \frac{2}{x^3}, \quad f^{(3)}(x) = \frac{(-3)^2}{x^4}, \quad f^{(4)}(x) = \frac{4 \cdot 3 \cdot 3}{x^5} \leq 24 \) (for \(1 \leq k \leq 4\)) = \(K\)

- We have \(|E_S| \leq \frac{24(3)^5}{180n^4}\)

- We want \(|E_S| \leq 10^{-6}\), hence if we find a value of \(n\) for which \(\frac{24(3)^5}{180n^4} \leq 10^{-6}\) it is guaranteed that \(|E_S| \leq 10^{-6}\).
Error Bound Simpson’s Rule

Error Bound for Simpson’s Rule Suppose that $|f^{(4)}(x)| \leq K$ for $a \leq x \leq b$. If E_S is the error involved in using Simpson’s Rule, then

$$|E_S| \leq \frac{K(b - a)^5}{180n^4}$$

Example How large should n be in order to guarantee that the Simpson rule estimate for $\int_1^4 \frac{1}{x} dx$ is accurate to within $0.000001 = 10^{-6}$?

- $f(x) = \frac{1}{x}, \quad f'(x) = \frac{-1}{x^2}, \quad f''(x) = \frac{2}{x^3}, \quad f^{(3)}(x) = \frac{(-3)^2}{x^4}, \quad f^{(4)}(x) = \frac{4 \cdot 3 \cdot 3}{x^5} \leq 24$ (for $1 \leq k \leq 4$) = K

- We have $|E_S| \leq \frac{24(3)^5}{180n^4}$

- We want $|E_S| \leq 10^{-6}$, hence if we find a value of n for which $\frac{24(3)^5}{180n^4} \leq 10^{-6}$ it is guaranteed that $|E_S| \leq 10^{-6}$.

- From $\frac{24(3)^5}{180n^4} \leq 10^{-6}$ we get that $10^6 \frac{24(3)^5}{180} \leq n^4$ or $n \geq \sqrt[4]{10^6 \frac{24(3)^5}{180}} = 75$. $n = 76$ will work.
Error Bound Simpson’s Rule

Error Bound for Simpson’s Rule Suppose that $|f^{(4)}(x)| \leq K$ for $a \leq x \leq b$. If E_S is the error involved in using Simpson’s Rule, then

$$|E_S| \leq \frac{K(b-a)^5}{180n^4}$$

Example How large should n be in order to guarantee that the Simpson rule estimate for $\int_1^4 \frac{1}{x} \, dx$ is accurate to within $0.000001 = 10^{-6}$?

- $f(x) = \frac{1}{x}$, $f'(x) = -\frac{1}{x^2}$, $f''(x) = \frac{2}{x^3}$, $f^{(3)}(x) = \frac{(-3)2}{x^4}$, $f^{(4)}(x) = \frac{4 \cdot 3 \cdot 3}{x^5} \leq 24$ (for $1 \leq k \leq 4$) = K

- We have $|E_S| \leq \frac{24(3)^5}{180n^4}$

- We want $|E_S| \leq 10^{-6}$, hence if we find a value of n for which $\frac{24(3)^5}{180n^4} \leq 10^{-6}$ it is guaranteed that $|E_S| \leq 10^{-6}$.

- From $\frac{24(3)^5}{180n^4} \leq 10^{-6}$ we get that $10^6 \frac{24(3)^5}{180} \leq n^4$ or $n \geq 4 \sqrt{10^6 \frac{24(3)^5}{180}} = 75$. $n = 76$ will work.

- This is a conservative upper bound of the error, the actual error for $n = 76$ is -8×10^{-8}