
Midpoint Approximation Trapezoidal Rule Error Simpson’s Rule

Midpoint Approximation

Sometimes, we need to approximate an integral of the form
R b

a
f (x)dx and we

cannot find an antiderivative in order to evaluate the integral. Also we may
need to evaluate

R b

a
f (x)dx where we do not have a formula for f (x) but we

have data describing a set of values of the function.

Review

We might approximate the given integral using a Riemann sum. Already we
have looked at the left end-point approximation and the right end point
approximation to

R b

a
f (x)dx in Calculus 1. We also looked at the midpoint

approximation M:

Midpoint Rule If f is integrable on [a, b], thenZ b

a

f (x)dx ≈ Mn =
nX

i=1

f (x̄i )∆x = ∆x(f (x̄1) + f (x̄2) + · · ·+ f (x̄n)),

where

∆x =
b − a

n
and xi = a+i∆x and x̄i =

1

2
(xi−1+xi ) = midpoint of [xi−1, xi ].
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Midpoint Approximation

Example Use the midpoint rule with n = 6 to approximate
R 4

1
1
x
dx .

(= ln(4) = 1.386294361)
Fill in the tables below:

I ∆x = 4−1
6

= 1
2

I

xi x0 = 1 x1 = 3/2 x2 = 2 x3 = 5/2 x4 = 3 x5 = 7/2 x6 = 4

I

x̄i = 1
2

(xi−1 + xi ) x̄1 = 5/4 x̄2 = 7/4 x̄3 = 9/4 x̄4 = 11/4 x̄5 = 13/4 x̄6 = 15/4

f (x̄i ) = 1
x̄i

4/5 4/7 4/9 4/11 4/13 4/15

I M6 =
P6

1 f (x̄i )∆x = 1
2

ˆ
4
5

+ 4
7

+ 4
9

+ 4
11

+ 4
13

+ 4
15

˜
= 1.376934177
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Trapezoidal Rule

We can also approximate a definite integral
R b

a
f (x)dx using an approximation

by trapezoids as shown in the picture below for f (x) ≥ 0

The area of the trapezoid above the interval [xi , xi+1] is ∆x
h

(f (xi )+f (xi+1)

2

i
.

Trapezoidal Rule If f is integrable on [a, b], thenZ b

a

f (x)dx ≈ Tn =
∆x

2
(f (x0) + 2f (x1) + 2f (x2) + · · ·+ +2f (xn−1) + f (xn))

where

∆x =
b − a

n
and xi = a + i∆x and.
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Trapezoidal Rule

Z b

a
f (x)dx ≈ Tn =

∆x

2
(f (x0) + 2f (x1) + 2f (x2) + · · · + +2f (xn−1) + f (xn))

where

∆x =
b − a

n
and xi = a + i∆x and.

Example Use the trapezoidal rule with n = 6 to approximate
R 4

1
1
x
dx . (=

ln(4) = 1.386294361)

I ∆x = 4−1
6

= 1
2

I
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xi
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R 4
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x
dx . (=
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= 1
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I xi x0 = 1 x1 = 3/2 x2 = 2 x3 = 5/2 x4 = 3 x5 = 7/2 x6 = 4

I
xi x0 = 1 x1 = 3/2 x2 = 2 x3 = 5/2 x4 = 3 x5 = 7/2 x6 = 4

f (xi ) = 1
xi

1 2/3 1/2 2/5 1/3 2/7 1/4

I T6 = ∆x
2

(f (x0) + 2f (x1) + 2f (x2) + 2f (x3) + 2f (x4) + 2f (x5) + f (x6))

I = 1
4
(1 + 2

“
2
3

”
+ 2
“

1
2

”
+ 2
“

2
5

”
+ 2
“

1
3

”
+ 2
“

2
7

”
+ 1

4
)

I = 1.405357143.
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Error of Approximation

The error when using an approximation is the difference between the true value
of the integral and the approximation.

I The error for the midpoint approximation above above is

EM =

Z 4

1

1

x
dx −M6 = 1.386294361− 1.376934177 = 0.00936018

The error for the trapezoidal approximation above is

ET =

Z 4

1

1

x
dx − T6 = 1.386294361− 1.405357143 = −0.0190628

I Error Bounds If |f ′′(x)| ≤ K for a ≤ x ≤ b. Let ET and EM denote the
errors for the trapezoidal approximation and midpoint approximation
respectively, then

|ET | ≤
K(b − a)3

12n2
and |EM | ≤

K(b − a)3

24n2
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Error of Approximation
Error Bounds If |f ′′(x)| ≤ K for a ≤ x ≤ b. Let ET and EM denote the errors
for the trapezoidal approximation and midpoint approximation respectively,
then

|ET | ≤
K(b − a)3

12n2
and |EM | ≤

K(b − a)3

24n2

Example (a) Give an upper bound for the error in the trapezoidal
approximation of

R 4

1
1
x
dx when n = 10.

I f (x) = 1
x
, f ′(x) = −1

x2 , f ′′(x) = 2
x3

I We can use the above formula for the error bound with any value of K for
which |f ′′(x)| ≤ K for 1 ≤ x ≤ 4.

I Since |f ′′(x)| = f ′′(x) = 2
x3 is a decreasing function on the interval [1, 4],

we have that |f ′′(x)| ≤ f ′′(1) = 2 on the interval [1, 4]. So we can use
K = 2 in the formula for the error bound above.

I Therefore when n = 10,

|T10 −
Z 4

1

1

x
dx | = |ET | ≤

K(b − a)3

12n2
=

2(4− 1)3

12(10)2
= 0.045

I Note that the bound for the error given by the formula is conservative
since it turns out to give |ET | ≤ 0.045 when n = 10, compared to a true
error of |ET | = 0.00696667.
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I Note that the bound for the error given by the formula is conservative
since it turns out to give |ET | ≤ 0.045 when n = 10, compared to a true
error of |ET | = 0.00696667.
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Error of Approximation

|ET | ≤
K(b − a)3

12n2
and |EM | ≤

K(b − a)3

24n2

Example(b) Give an upper bound for the error in the midpoint
approximation of

R 4

1
1
x
dx when n = 10.

I As above, we can use K = 2 to get

|EM | ≤
K(b − a)3

24n2
=

2(3)3

24(10)2
= 0.0225.

(c) Using the error bounds given above determine how large should n be to
ensure that the trapezoidal approximation is accurate to within 0.000001
= 10−6 ?

I We want |ET | ≤ 10−6.

I We have |ET | ≤
K(b−a)3

12n2 , where K = 2 since |f ′′(x)| ≤ 2 for 1 ≤ x ≤ 4.

I Hence we will certainly have |ET | ≤ 10−6 if we choose a value of n for

which 2(4−1)3

12n2 ≤ 10−6.

I That is (106)2(27)
12

≤ n2

I or n ≥
q

(106)2(27)
12

= 2121.32, n = 2122 will work.
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Simpson’s Rule

We can also approximate a definite integral using parabolas to approximate the
curve as in the picture below. [note n is even].

Three points determine a unique parabola. We draw a parabolic segment using
the three points on the curve above x0, x1, x2. We draw a second parabolic
segment using the three points on the curve above x2, x3, x4 etc... The area of
the parabolic region beneath the parabola above the interval [xi−1, xi+1] is
∆x
3

[f (xi−1) + 4f (xi ) + f (xi+1)]. We estimate the integral by summing the areas
of the regions below these parabolic segments to get Simpson’s Rule for even
n:

Z b

a
f (x)dx ≈ Sn =

∆x

3
(f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + 2f (x4) + · · · + 2f (xn−2) + 4f (xn−1) + f (xn))

where

∆x =
b − a

n
and xi = a + i∆x and.

In fact we have S2n = 1
3
Tn + 2

3
Mn.
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Simpson’s Rule

Z b

a
f (x)dx ≈ Sn =

∆x

3
(f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + 2f (x4) + · · · + 2f (xn−2) + 4f (xn−1) + f (xn))

Example Use Simpson’s rule with n = 6 to approximate
R 4

1
1
x
dx . (=

ln(4) = 1.386294361)
Fill in the tables below:

I ∆x = 4−1
6

= 1
2

I
xi x0 = 1 x1 = 3/2 x2 = 2 x3 = 5/2 x4 = 3 x5 = 7/2 x6 = 4

f (xi ) = 1
xi

1 2/3 1/2 2/5 1/3 2/7 1/4

I S6 = ∆x
3

(f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + 2f (x4) + 4f (x5) + f (x6)) =

I 1
6

h
1 + 8

3
+ 1 + 8

5
+ 2

3
+ 8

7
+ 1

4

i
= 1.387698413

I The error in this estimate is

ES =

Z 4

1

1

x
dx − S6 =

1.386294361− 1.387698413 = −0.00140405
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Error Bound Simpson’s Rule

Error Bound for Simpson’s Rule Suppose that |f (4)(x)| ≤ K for a ≤ x ≤ b.
If ES is the error involved in using Simpson’s Rule, then

|ES | ≤
K(b − a)5

180n4

Example How large should n be in order to guarantee that the Simpson rule
estimate for

R 4

1
1
x
dx is accurate to within 0.000001 = 10−6?

I f (x) = 1
x
, f ′(x) = −1

x2 , f ′′(x) = 2
x3 , f (3)(x) = (−3)2

x4 ,

f (4)(x) = 4·3·3
x5 ≤ 24 (for 1 ≤ k ≤ 4 ) = K

I We have |ES | ≤ 24(3)5

180n4

I We want |ES | ≤ 10−6, hence if we find a value of n for which
24(3)5

180n4 ≤ 10−6 it is guaranteed that |ES | ≤ 10−6.

I From 24(3)5

180n4 ≤ 10−6 we get that 106 24(3)5

180
≤ n4 or n ≥ 4

q
106 24(3)5

180
= 75.

n = 76 will work.

I This is a conservative upper bound of the error, the actual error for
n = 76 is −8× 10−8
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Error Bound Simpson’s Rule

Error Bound for Simpson’s Rule Suppose that |f (4)(x)| ≤ K for a ≤ x ≤ b.
If ES is the error involved in using Simpson’s Rule, then

|ES | ≤
K(b − a)5

180n4

Example How large should n be in order to guarantee that the Simpson rule
estimate for

R 4

1
1
x
dx is accurate to within 0.000001 = 10−6?

I f (x) = 1
x
, f ′(x) = −1

x2 , f ′′(x) = 2
x3 , f (3)(x) = (−3)2

x4 ,

f (4)(x) = 4·3·3
x5 ≤ 24 (for 1 ≤ k ≤ 4 ) = K

I We have |ES | ≤ 24(3)5

180n4
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24(3)5

180n4 ≤ 10−6 it is guaranteed that |ES | ≤ 10−6.

I From 24(3)5

180n4 ≤ 10−6 we get that 106 24(3)5

180
≤ n4 or n ≥ 4

q
106 24(3)5

180
= 75.

n = 76 will work.

I This is a conservative upper bound of the error, the actual error for
n = 76 is −8× 10−8

Annette Pilkington Approximating an integral


	Midpoint Approximation
	Trapezoidal Rule
	Error
	Simpson's Rule

