We define a new function

$$
\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0.
$$

This function is called the natural logarithm. We derive a number of properties of this new function:

 \leftarrow \Box

 $\leftarrow \Xi \rightarrow$

G

We define a new function

$$
\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0.
$$

This function is called the natural logarithm. We derive a number of properties of this new function:

$$
\blacktriangleright \text{ Domain} = (0, \infty)
$$

 \leftarrow \Box

 $\leftarrow \Xi \rightarrow$

G

We define a new function

$$
\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0.
$$

This function is called the natural logarithm. We derive a number of properties of this new function:

$$
\blacktriangleright \text{ Domain} = (0, \infty)
$$

$$
\blacksquare \ln x > 0 \text{ if } x > 1, \ln x = 0 \text{ if } x = 1, \ln x < 0 \text{ if } x < 1.
$$

 \leftarrow \Box

 $\leftarrow \Xi \rightarrow$

G

We define a new function

$$
\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0.
$$

This function is called the natural logarithm. We derive a number of properties of this new function:

- \triangleright Domain = $(0, \infty)$
- In $x > 0$ if $x > 1$, $\ln x = 0$ if $x = 1$, $\ln x < 0$ if $x < 1$.

$$
\blacktriangleright \ \frac{d(\ln x)}{dx} = \frac{1}{x}
$$

 \leftarrow

モミト

э

We define a new function

$$
\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0.
$$

This function is called the natural logarithm. We derive a number of properties of this new function:

- \triangleright Domain = $(0, \infty)$
- In $x > 0$ if $x > 1$, $\ln x = 0$ if $x = 1$, $\ln x < 0$ if $x < 1$.
- $\frac{d(\ln x)}{dx} = \frac{1}{x}$
- \triangleright The graph of y = ln x is increasing, continuous and concave down on the interval $(0, \infty)$.

モミト

э

つへへ

We define a new function

$$
\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0.
$$

This function is called the natural logarithm. We derive a number of properties of this new function:

- \triangleright Domain = $(0, \infty)$
- In $x > 0$ if $x > 1$, $\ln x = 0$ if $x = 1$, $\ln x < 0$ if $x < 1$.
- $\frac{d(\ln x)}{dx} = \frac{1}{x}$
- \triangleright The graph of y = ln x is increasing, continuous and concave down on the interval $(0, \infty)$.
- \triangleright The function $f(x) = \ln x$ is a one-to-one function
- \triangleright Since $f(x) = \ln x$ is a one-to-one function, there is a unique number, e, with the property that

$$
\ln e=1.
$$

モミト

Graph of $ln(x)$.

Using the information derived above, we can sketch a graph of the natural logarithm

 \leftarrow \Box \rightarrow

おす 重き

Ξ.

目

Graph of $ln(x)$.

Using the information derived above, we can sketch a graph of the natural logarithm

 \leftarrow

 \Rightarrow

∍

 299

We also derived the following algebraic properties of our new function by comparing derivatives. We can use these algebraic rules to simplify the natural logarithm of products and quotients:

 \leftarrow

 $2Q$

э

K 로)

We also derived the following algebraic properties of our new function by comparing derivatives. We can use these algebraic rules to simplify the natural logarithm of products and quotients:

$$
\blacktriangleright \ \ln 1 = 0
$$

 \leftarrow

 $2Q$

э

K 로)

We also derived the following algebraic properties of our new function by comparing derivatives. We can use these algebraic rules to simplify the natural logarithm of products and quotients:

- \blacktriangleright ln 1 = 0
- \blacktriangleright ln(ab) = ln a + ln b

 \leftarrow

 $\leftarrow \Xi \rightarrow$

G

We also derived the following algebraic properties of our new function by comparing derivatives. We can use these algebraic rules to simplify the natural logarithm of products and quotients:

- \blacktriangleright ln 1 = 0
- \blacktriangleright ln(ab) = ln a + ln b
- ln $a^r = r \ln a$

 $\leftarrow \Xi \rightarrow$

э

 200

Example using definition of e and rule 3

Example Evaluate $\int_1^{e^2}$ $\int_1^e \frac{1}{t} dt$

 \leftarrow \Box

 $\leftarrow \Xi \rightarrow$

G

Example using definition of e and rule 3

Example Evaluate $\int_1^{e^2}$ $\int_1^e \frac{1}{t} dt$

From the definition of $ln(x)$, we have

$$
\int_1^{e^2} \frac{1}{t} dt = \ln(e^2)
$$

 \leftarrow

∢ 重→

Þ

Example using definition of e and rule 3

Example Evaluate $\int_1^{e^2}$ $\int_1^e \frac{1}{t} dt$

I

From the definition of $ln(x)$, we have

$$
\int_1^{e^2} \frac{1}{t} dt = \ln(e^2)
$$

$$
=2\ln e=2.
$$

 \leftarrow

∢ 重→

Þ

Limits at ∞ and 0.

We can use the rules of logarithms given above to derive the following information about limits.

$$
\lim_{x \to \infty} \ln x = \infty, \quad \lim_{x \to 0} \ln x = -\infty.
$$

(see notes for a proof) **Example** Find the limit $\lim_{x\to\infty} \ln(\frac{1}{x^2+1})$.

 \leftarrow

K 로)

э

Limits at ∞ and 0.

We can use the rules of logarithms given above to derive the following information about limits.

$$
\lim_{x \to \infty} \ln x = \infty, \quad \lim_{x \to 0} \ln x = -\infty.
$$

(see notes for a proof) **Example** Find the limit $\lim_{x\to\infty} \ln(\frac{1}{x^2+1})$.

$$
\blacktriangleright \text{ As } x \to \infty, \text{ we have } \frac{1}{x^2+1} \to 0
$$

 \leftarrow

モミト

э

Limits at ∞ and 0.

We can use the rules of logarithms given above to derive the following information about limits.

$$
\lim_{x \to \infty} \ln x = \infty, \quad \lim_{x \to 0} \ln x = -\infty.
$$

(see notes for a proof) **Example** Find the limit $\lim_{x\to\infty} \ln(\frac{1}{x^2+1})$.

- As $x \to \infty$, we have $\frac{1}{x^2+1} \to 0$
- **►** Therfore as $x \to \infty$, $\ln(\frac{1}{x^2+1}) \to -\infty$ $[=\lim_{u\to 0} \ln(u)]$

 \leftarrow

モミト

$\ln |x|$

We can extend the applications of the natural logarithm function by composing it with the absolute value function. We have :

$$
\ln |x| = \begin{cases} \ln x & x > 0 \\ \ln(-x) & x < 0 \end{cases}
$$

This is an even function with graph

We have $ln|x|$ is also an antiderivative of $1/x$ with a larger domain than $ln(x)$.

$$
\boxed{\frac{d}{dx}(\ln |x|) = \frac{1}{x}} \text{ and } \boxed{\int \frac{1}{x} dx = \ln |x| + C}
$$
\nAnother Rinkington

\nNatural Logarithm and Natural Exponential Exponential.

 $2Q$

э

$$
\boxed{\frac{d}{dx}(\ln|x|) = \frac{1}{x}} \text{ and } \boxed{\frac{d}{dx}(\ln|g(x)|) = \frac{g'(x)}{g(x)}}
$$

Example Differentiate $\ln |\sin x|$.

Example Differentiate $\ln |\sqrt[3]{x-1}|$.

 \leftarrow \Box \rightarrow

- 세로 베

G

$$
\boxed{\frac{d}{dx}(\ln |x|) = \frac{1}{x}} \text{ and } \boxed{\frac{d}{dx}(\ln |g(x)|) = \frac{g'(x)}{g(x)}}
$$

Example Differentiate $\ln |\sin x|$.

 \triangleright Using the chain rule, we have

$$
\frac{d}{dx}\ln|\sin x| = \frac{1}{\sin x}\frac{d}{dx}\sin x
$$

Example Differentiate $\ln |\sqrt[3]{x-1}|$.

 \leftarrow

 $\leftarrow \Xi \rightarrow$

G

 \blacktriangleright

$$
\boxed{\frac{d}{dx}(\ln |x|) = \frac{1}{x}} \text{ and } \boxed{\frac{d}{dx}(\ln |g(x)|) = \frac{g'(x)}{g(x)}}
$$

Example Differentiate $\ln |\sin x|$.

 \triangleright Using the chain rule, we have

$$
\frac{d}{dx} \ln|\sin x| = \frac{1}{\sin x} \frac{d}{dx} \sin x
$$

$$
= \frac{\cos x}{\sin x}
$$

Example Differentiate $\ln |\sqrt[3]{x-1}|$.

 \leftarrow

∢ 重→

Þ

 \blacktriangleright

$$
\boxed{\frac{d}{dx}(\ln |x|) = \frac{1}{x}} \text{ and } \boxed{\frac{d}{dx}(\ln |g(x)|) = \frac{g'(x)}{g(x)}}
$$

Example Differentiate $\ln |\sin x|$.

 \triangleright Using the chain rule, we have

$$
\frac{d}{dx} \ln|\sin x| = \frac{1}{\sin x} \frac{d}{dx} \sin x
$$

$$
= \frac{\cos x}{\sin x}
$$

Example Differentiate $\ln |\sqrt[3]{x-1}|$.

► We can simplify this to finding
$$
\frac{d}{dx} \left(\frac{1}{3} \ln |x - 1| \right)
$$
, since $\ln |\sqrt[3]{x - 1}| = \ln |x - 1|^{1/3}$

 \leftarrow

∢ 重→

Þ

I

$$
\boxed{\frac{d}{dx}(\ln |x|) = \frac{1}{x}} \text{ and } \boxed{\frac{d}{dx}(\ln |g(x)|) = \frac{g'(x)}{g(x)}}
$$

Example Differentiate $\ln |\sin x|$.

 \triangleright Using the chain rule, we have

$$
\frac{d}{dx} \ln|\sin x| = \frac{1}{\sin x} \frac{d}{dx} \sin x
$$

$$
= \frac{\cos x}{\sin x}
$$

Example Differentiate $\ln |\sqrt[3]{x-1}|$.

• We can simplify this to finding
$$
\frac{d}{dx} \left(\frac{1}{3} \ln |x - 1| \right)
$$
, since
\n $\ln |\sqrt[3]{x - 1}| = \ln |x - 1|^{1/3}$
\n $\frac{d}{dx} \frac{1}{3} \ln |x - 1| = \frac{1}{3} \frac{1}{(x - 1)} \frac{d}{dx} (x - 1) = \frac{1}{3(x - 1)}$

 \Box

 $2Q$

∋ » ∍

$$
\int \frac{1}{x} dx = \ln |x| + C
$$
 and
$$
\int \frac{g'(x)}{g(x)} dx = \ln |g(x)| + C
$$

Example Find the integral

$$
\int \frac{x}{3-x^2} dx.
$$

4日)

一 星下

Ξ ×. 目

$$
\int \frac{1}{x} dx = \ln |x| + C
$$
 and
$$
\int \frac{g'(x)}{g(x)} dx = \ln |g(x)| + C
$$

Example Find the integral

$$
\int \frac{x}{3-x^2} dx.
$$

$$
\blacktriangleright
$$
 Using substitution, we let $u = 3 - x^2$.

$$
du = -2x \, dx, \qquad x \, dx = \frac{du}{-2},
$$

4日)

一 三 ト

 \mathbf{p} Ξ

目

I

$$
\int \frac{1}{x} dx = \ln |x| + C
$$
 and
$$
\int \frac{g'(x)}{g(x)} dx = \ln |g(x)| + C
$$

Example Find the integral

$$
\int \frac{x}{3-x^2} dx.
$$

$$
\blacktriangleright
$$
 Using substitution, we let $u = 3 - x^2$.

$$
du = -2x \, dx, \qquad x \, dx = \frac{du}{-2},
$$

$$
\int \frac{x}{3-x^2} dx = \int \frac{1}{-2(u)} du
$$

4日)

一 星下

Ξ ×. 目

I

I

$$
\int \frac{1}{x} dx = \ln |x| + C
$$
 and
$$
\int \frac{g'(x)}{g(x)} dx = \ln |g(x)| + C
$$

Example Find the integral

$$
\int \frac{x}{3-x^2} dx.
$$

$$
\blacktriangleright
$$
 Using substitution, we let $u = 3 - x^2$.

$$
du = -2x \, dx, \qquad x \, dx = \frac{du}{-2},
$$

$$
\int \frac{x}{3-x^2} dx = \int \frac{1}{-2(u)} du
$$

$$
= \frac{-1}{2} \ln |u| + C = \frac{-1}{2} \ln |3 - x^2| + C
$$

 \leftarrow \Box \rightarrow 3 동 >

٠ × 目

 299

To differentiate $y = f(x)$, it is often easier to use logarithmic differentiation :

- 1. Take the natural logarithm of both sides to get $\ln y = \ln(f(x))$.
- 2. Differentiate with respect to x to get $\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} \ln(f(x))$
- 3. We get $\frac{dy}{dx} = y \frac{d}{dx} \ln(f(x)) = f(x) \frac{d}{dx} \ln(f(x)).$

 \rightarrow \equiv \rightarrow

 $2Q$

G.

Example Find the derivative of $y = \sqrt[4]{\frac{x^2+1}{x^2-1}}$.

 \leftarrow \Box

一 星下

G

Example Find the derivative of $y = \sqrt[4]{\frac{x^2+1}{x^2-1}}$.

 \triangleright We take the natural logarithm of both sides to get

$$
\ln y = \ln \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}}
$$

 $2Q$

∍.

∍

Example Find the derivative of $y = \sqrt[4]{\frac{x^2+1}{x^2-1}}$.

 \triangleright We take the natural logarithm of both sides to get

$$
\ln y = \ln \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}}
$$

 \triangleright Using the rules of logarithms to expand the R.H.S. we get

$$
\ln y = \frac{1}{4} \ln \frac{x^2 + 1}{x^2 - 1} = \frac{1}{4} \Big[\ln(x^2 + 1) - \ln(x^2 - 1) \Big] = \frac{1}{4} \ln(x^2 + 1) - \frac{1}{4} \ln(x^2 - 1)
$$

œ

つへへ

Example Find the derivative of $y = \sqrt[4]{\frac{x^2+1}{x^2-1}}$.

 \triangleright We take the natural logarithm of both sides to get

$$
\ln y = \ln \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}}
$$

 \triangleright Using the rules of logarithms to expand the R.H.S. we get

$$
\ln y = \frac{1}{4} \ln \frac{x^2 + 1}{x^2 - 1} = \frac{1}{4} \Big[\ln(x^2 + 1) - \ln(x^2 - 1) \Big] = \frac{1}{4} \ln(x^2 + 1) - \frac{1}{4} \ln(x^2 - 1)
$$

 \triangleright Differentiating both sides with respect to x, we get

$$
\frac{1}{y}\frac{dy}{dx} = \frac{1}{4} \cdot \frac{2x}{(x^2+1)} - \frac{1}{4} \cdot \frac{2x}{(x^2-1)} = \frac{x}{2(x^2+1)} - \frac{x}{2(x^2-1)}
$$

 $2Q$

Э×

Example Find the derivative of $y = \sqrt[4]{\frac{x^2+1}{x^2-1}}$.

 \triangleright We take the natural logarithm of both sides to get

$$
\ln y = \ln \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}}
$$

 \triangleright Using the rules of logarithms to expand the R.H.S. we get

$$
\ln y = \frac{1}{4} \ln \frac{x^2 + 1}{x^2 - 1} = \frac{1}{4} \Big[\ln(x^2 + 1) - \ln(x^2 - 1) \Big] = \frac{1}{4} \ln(x^2 + 1) - \frac{1}{4} \ln(x^2 - 1)
$$

 \triangleright Differentiating both sides with respect to x, we get

$$
\frac{1}{y}\frac{dy}{dx} = \frac{1}{4} \cdot \frac{2x}{(x^2+1)} - \frac{1}{4} \cdot \frac{2x}{(x^2-1)} = \frac{x}{2(x^2+1)} - \frac{x}{2(x^2-1)}
$$

 \blacktriangleright Multiplying both sides by y, we get

$$
\frac{dy}{dx} = y \left[\frac{x}{2(x^2+1)} - \frac{x}{2(x^2-1)} \right]
$$

 $2Q$

Э×

Example Find the derivative of $y = \sqrt[4]{\frac{x^2+1}{x^2-1}}$.

 \triangleright We take the natural logarithm of both sides to get

$$
\ln y = \ln \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}}
$$

 \triangleright Using the rules of logarithms to expand the R.H.S. we get

$$
\ln y = \frac{1}{4} \ln \frac{x^2 + 1}{x^2 - 1} = \frac{1}{4} \Big[\ln(x^2 + 1) - \ln(x^2 - 1) \Big] = \frac{1}{4} \ln(x^2 + 1) - \frac{1}{4} \ln(x^2 - 1)
$$

 \triangleright Differentiating both sides with respect to x, we get

$$
\frac{1}{y}\frac{dy}{dx} = \frac{1}{4} \cdot \frac{2x}{(x^2+1)} - \frac{1}{4} \cdot \frac{2x}{(x^2-1)} = \frac{x}{2(x^2+1)} - \frac{x}{2(x^2-1)}
$$

 \blacktriangleright Multiplying both sides by y, we get

$$
\frac{dy}{dx} = y \left[\frac{x}{2(x^2+1)} - \frac{x}{2(x^2-1)} \right]
$$

 \triangleright Converting y to a function of x, we get

$$
\frac{dy}{dx} = \sqrt[4]{\frac{x^2+1}{x^2-1}} \left[\frac{x}{2(x^2+1)} - \frac{x}{2(x^2-1)} \right]
$$

つひへ

Summary of formulas

$$
\ln(x)
$$

$$
\ln(ab) = \ln a + \ln b, \quad \ln(\frac{a}{b}) = \ln a - \ln b
$$

$$
\ln a^{x} = x \ln a
$$

$$
\lim_{x \to \infty} \ln x = \infty, \quad \lim_{x \to 0} \ln x = -\infty
$$

$$
\frac{d}{dx} \ln |x| = \frac{1}{x}, \quad \frac{d}{dx} \ln |g(x)| = \frac{g'(x)}{g(x)}
$$

$$
\int \frac{1}{x} dx = \ln |x| + C
$$

$$
\int \frac{g'(x)}{g(x)} dx = \ln |g(x)| + C.
$$

4日下

4 间 \mathbf{p} K 등 > (K 등 >

目

 299

Summary of methods

Logarithmic Differentiation (Finding formulas for inverse functions) Finding slopes of inverse functions (using formula from lecture 1). Calculating Limits Calculating Derivatives Calculating Integrals (including definite integrals)

∢∄⇒

э