
Series Using limn→∞ sn to determine convergence Geometric Series geometric series not starting at n = 1 Repeating Decimals Telescoping Series. Harmonic Series. Where sum starts. Divergence Test Properties of Series

Series

So far our definition of a sum of numbers applies only to adding a finite set of
numbers. We can extend this to a definition of a sum of an infinite set of
numbers in much the same way as we extended our notion of the definite
integral to an improper integral over an infinite interval.

I Example
∞X
n=1

1

2n
=

1

2
+

1

22
+

1

23
+ . . .

We call this infinite sum a series

I Definition Given a series
P∞

n=1 an = a1 + a2 + a3 + . . . , we let sn denote
its n th partial sum

sn = a1 + a2 + · · ·+ an.

I If the sequence {sn} is convergent and limn→∞ sn = S , then we say that
the series

P∞
n=1 an is convergent and we let

∞X
n=1

an = lim
n→∞

nX
i=1

an = lim
n→∞

sn = S .

The number S is called the sum of the series. Otherwise the series is
called divergent.
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Using limn→∞ Sn to determine convergence/divergence

Example Find the partial sums s1, s2, s3, . . . , sn of the series
P∞

n=1
1
2n .

Find the sum of this series. Does the series converge?

I

1

2

1

2

1

2
�
1

4

1

4

1

2
�
1

4
�
1

8

1

8

1

8

1

4

1

2
11

16

1
1�2n, n � 1...10

I We have s1 = 1
2
, s2 = 1

2
+ 1

4
, s3 = 1

2
+ 1

4
+ 1

8
. . .

I From the picture, we see that sn = 1− 1
2n .

I
P∞

n=1
1
2n = limn→∞ sn = limn→∞(1− 1

2n ) = 1.

I Therefore this series converges to S = 1.

I .... which you could have figured out from the picture :)

Annette Pilkington Lecture 24 : Series



Series Using limn→∞ sn to determine convergence Geometric Series geometric series not starting at n = 1 Repeating Decimals Telescoping Series. Harmonic Series. Where sum starts. Divergence Test Properties of Series

Using limn→∞ Sn to determine convergence/divergence

Example Find the partial sums s1, s2, s3, . . . , sn of the series
P∞

n=1
1
2n .

Find the sum of this series. Does the series converge?

I

1

2

1

2

1

2
�
1

4

1

4

1

2
�
1

4
�
1

8

1

8

1

8

1

4

1

2
11

16

1
1�2n, n � 1...10

I We have s1 = 1
2
, s2 = 1

2
+ 1

4
, s3 = 1

2
+ 1

4
+ 1

8
. . .

I From the picture, we see that sn = 1− 1
2n .

I
P∞

n=1
1
2n = limn→∞ sn = limn→∞(1− 1

2n ) = 1.

I Therefore this series converges to S = 1.

I .... which you could have figured out from the picture :)

Annette Pilkington Lecture 24 : Series



Series Using limn→∞ sn to determine convergence Geometric Series geometric series not starting at n = 1 Repeating Decimals Telescoping Series. Harmonic Series. Where sum starts. Divergence Test Properties of Series

Using limn→∞ Sn to determine convergence/divergence

Example Find the partial sums s1, s2, s3, . . . , sn of the series
P∞

n=1
1
2n .

Find the sum of this series. Does the series converge?

I

1

2

1

2

1

2
�
1

4

1

4

1

2
�
1

4
�
1

8

1

8

1

8

1

4

1

2
11

16

1
1�2n, n � 1...10

I We have s1 = 1
2
, s2 = 1

2
+ 1

4
, s3 = 1

2
+ 1

4
+ 1

8
. . .

I From the picture, we see that sn = 1− 1
2n .

I
P∞

n=1
1
2n = limn→∞ sn = limn→∞(1− 1

2n ) = 1.

I Therefore this series converges to S = 1.

I .... which you could have figured out from the picture :)

Annette Pilkington Lecture 24 : Series



Series Using limn→∞ sn to determine convergence Geometric Series geometric series not starting at n = 1 Repeating Decimals Telescoping Series. Harmonic Series. Where sum starts. Divergence Test Properties of Series

Using limn→∞ Sn to determine convergence/divergence

Example Find the partial sums s1, s2, s3, . . . , sn of the series
P∞

n=1
1
2n .

Find the sum of this series. Does the series converge?

I

1

2

1

2

1

2
�
1

4

1

4

1

2
�
1

4
�
1

8

1

8

1

8

1

4

1

2
11

16

1
1�2n, n � 1...10

I We have s1 = 1
2
, s2 = 1

2
+ 1

4
, s3 = 1

2
+ 1

4
+ 1

8
. . .

I From the picture, we see that sn = 1− 1
2n .

I
P∞

n=1
1
2n = limn→∞ sn = limn→∞(1− 1

2n ) = 1.

I Therefore this series converges to S = 1.

I .... which you could have figured out from the picture :)

Annette Pilkington Lecture 24 : Series



Series Using limn→∞ sn to determine convergence Geometric Series geometric series not starting at n = 1 Repeating Decimals Telescoping Series. Harmonic Series. Where sum starts. Divergence Test Properties of Series

Using limn→∞ Sn to determine convergence/divergence

Example Find the partial sums s1, s2, s3, . . . , sn of the series
P∞

n=1
1
2n .

Find the sum of this series. Does the series converge?

I

1

2

1

2

1

2
�
1

4

1

4

1

2
�
1

4
�
1

8

1

8

1

8

1

4

1

2
11

16

1
1�2n, n � 1...10

I We have s1 = 1
2
, s2 = 1

2
+ 1

4
, s3 = 1

2
+ 1

4
+ 1

8
. . .

I From the picture, we see that sn = 1− 1
2n .

I
P∞

n=1
1
2n = limn→∞ sn = limn→∞(1− 1

2n ) = 1.

I Therefore this series converges to S = 1.

I .... which you could have figured out from the picture :)

Annette Pilkington Lecture 24 : Series



Series Using limn→∞ sn to determine convergence Geometric Series geometric series not starting at n = 1 Repeating Decimals Telescoping Series. Harmonic Series. Where sum starts. Divergence Test Properties of Series

Using limn→∞ Sn to determine convergence/divergence

Example Find the partial sums s1, s2, s3, . . . , sn of the series
P∞

n=1
1
2n .

Find the sum of this series. Does the series converge?

I

1

2

1

2

1

2
�
1

4

1

4

1

2
�
1

4
�
1

8

1

8

1

8

1

4

1

2
11

16

1
1�2n, n � 1...10

I We have s1 = 1
2
, s2 = 1

2
+ 1

4
, s3 = 1

2
+ 1

4
+ 1

8
. . .

I From the picture, we see that sn = 1− 1
2n .

I
P∞

n=1
1
2n = limn→∞ sn = limn→∞(1− 1

2n ) = 1.

I Therefore this series converges to S = 1.

I .... which you could have figured out from the picture :)

Annette Pilkington Lecture 24 : Series



Series Using limn→∞ sn to determine convergence Geometric Series geometric series not starting at n = 1 Repeating Decimals Telescoping Series. Harmonic Series. Where sum starts. Divergence Test Properties of Series

Using limn→∞ Sn to determine convergence/divergence

Example Find the partial sums s1, s2, s3, . . . , sn of the series
P∞

n=1
1
2n .

Find the sum of this series. Does the series converge?

I

1

2

1

2

1

2
�
1

4

1

4

1

2
�
1

4
�
1

8

1

8

1

8

1

4

1

2
11

16

1
1�2n, n � 1...10

I We have s1 = 1
2
, s2 = 1

2
+ 1

4
, s3 = 1

2
+ 1

4
+ 1

8
. . .

I From the picture, we see that sn = 1− 1
2n .

I
P∞

n=1
1
2n = limn→∞ sn = limn→∞(1− 1

2n ) = 1.

I Therefore this series converges to S = 1.

I .... which you could have figured out from the picture :)

Annette Pilkington Lecture 24 : Series



Series Using limn→∞ sn to determine convergence Geometric Series geometric series not starting at n = 1 Repeating Decimals Telescoping Series. Harmonic Series. Where sum starts. Divergence Test Properties of Series

Using limn→∞ Sn to determine convergence/divergence

Example Recall that 1 + 2 + 3 + · · ·+ n = n(n+1)
2

. Does the series

∞X
n=1

n

converge?

I We have the nth partial sum is sn = 1 + 2 + 3 + · · ·+ n = n(n+1)
2

.

I
P∞

n=1 n = limn→∞ sn if it exists.

I limn→∞ sn = limn→∞
n(n+1)

2
= limx→∞

x(x+1)
2

.

I = limx→∞
x2+x

2
=∞.

I Therefore this series diverges. (It does not have a finite sum)
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Geometric series

The geometric series
∞X
n=1

arn−1 = a + ar + ar 2 + · · ·

is convergent if |r | < 1 and its sum is

∞X
n=1

arn−1 =
a

1− r
|r | < 1.

If |r | ≥ 1, the geometric series is divergent.

Example Find the sum of the series
P∞

n=1
(−1)n10

4n−1 = −10 + 10
4
− 10

16
+ . . .

I We identify the values of a and r .

I a = first term = −10 in this case.

I The second term is ar , so r = term2/ term 1. Here r = 10
4
/(−10) = −1

4
.

I Just to be sure that we are dealing with a geometric series, we check that

the n th term is arn. arn−1 = (−10) (−1)n−1

4n−1 , this is indeed the given n th
term.

I Therefore, since |r | < 1,
P∞

n=1
(−1)n10

4n−1 = a
1−r

= −10

1− (−1)
4

= −10
5/4

= −8.
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Geometric series, another example

∞X
n=1

arn−1 = a + ar + ar 2 + · · ·

is convergent if |r | < 1 and its sum is

∞X
n=1

arn−1 =
a

1− r
|r | < 1.

If |r | ≥ 1, the geometric series is divergent.

Example Find the sum of the series
P∞

n=1
2
3n = 2

3
+ 2

9
+ 2

27
+ . . .

I We identify the values of a and r .

I a = first term = 2/3 in this case.

I The second term is ar , so r = term2/ term 1. Here r = 2
9
/ 2

3
= 1

3
.

I Just to be sure that we are dealing with a geometric series, we check that
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I Therefore, since |r | < 1,
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1− (1)
3

= 2/3
2/3
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geometric series not starting at n = 1

Example Find the sum of the series

∞X
n=4

2n−1

3n

I Note that this sequence starts at n = 4, so the formula for the sum does
not apply as it stands.

I We can use two approaches, use the formula and subtract the missing
terms or expand the series and rewrite it.

I Approach 1:P∞
n=4

2n−1

3n =
P∞

n=1
2n−1

3n −
ˆ

1
3

+ 2
32 + 22

33

˜
= 1/3

1−2/3
−
ˆ

32+6+22

33

˜
= 1− 19

27
= 8

27
.

I Approach 2: rewrite the formula so that the sum starts at 1.

I
P∞

n=4
2n−1

3n = 23

34 + 24

35 + 25

36 + · · · = a + ar + ar 2 + · · · =
P∞

n=1 arn−1

I a = term 1 = 23

34 , ar = term 2 = 24

35 . Therefore r = 24

35 /
23

34 = 2
3
.

I we check that 23

34 + 24

35 + 25

36 + · · · =
P∞

n=1 arn−1 (true).

I Since |r | = 2
3
< 1, we see that 23

34 + 24

35 + 25

36 + · · · = 23

34 /(1− 2
3
) = 23

33 = 8
27
.
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Series Using limn→∞ sn to determine convergence Geometric Series geometric series not starting at n = 1 Repeating Decimals Telescoping Series. Harmonic Series. Where sum starts. Divergence Test Properties of Series

Repeating Decimals

Example Write the number 0.66666666 · · · = 0.6̄ as a fraction.

I 0.666666666 · · · = 6
10

+ 6
100

+ 6
1000

+ . . .

I = 6
10

+ 6
102 + 6

103 + . . . (a geometric series).

I a = 6
10

and r = 6
102 /

6
10

= 1
10

.

I we check 6
10

+ 6
102 + 6

103 + · · · = a + ar + ar 2 + . . . (it is)

I Therefore 0.666666666 · · · = 6
10

+ 6
102 + 6

103 + · · · = 6/10
1−1/10

= 6/9 = 2/3

I as suspected :)
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Series Using limn→∞ sn to determine convergence Geometric Series geometric series not starting at n = 1 Repeating Decimals Telescoping Series. Harmonic Series. Where sum starts. Divergence Test Properties of Series

Repeating Decimals

Example Write the number 1.521212121 · · · = 1.52̄1 as a fraction.

I 1.521212121 · · · = 1.5 + 21
103 + 21

105 + 21
107 + . . .

I 21
103 + 21

105 + 21
107 + . . . is a geometric series.

I a = 21
103 and r = 21

105 /
21
103 = 1

102 .

I we double check 21
103 + 21

105 + 21
107 + · · · = a + ar + ar 2 + . . . (it is)

I Therefore
1.521212121 · · · = 1.5+ 21

103 + 21
105 + 21

107 +· · · = 1.5+ 21/103

1−1/102 = 3/2+21/990

I = 3/2 + 7/330 = 1004/660 = 251/165
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Series Using limn→∞ sn to determine convergence Geometric Series geometric series not starting at n = 1 Repeating Decimals Telescoping Series. Harmonic Series. Where sum starts. Divergence Test Properties of Series

Telescoping Series.

These are series of the form similar to
P

f (n)− f (n + 1). Because of the large
amount of cancellation, they are relatively easy to sum.

Example Show that the series

∞X
k=1

1

k2 + 7k + 12
=
∞X

k=1

1

(k + 3)
− 1

(k + 4)

converges.

I S1 = 1
4
− 1

5

I S2 = 1
4
− 1

5
+ 1

5
− 1

6
= 1

4
− 1

6
.

I S3 = 1
4
− 1

5
+ 1

5
− 1

6
+ 1

6
− 1

7
= 1

4
− 1

7
.

I Sn = 1
4
− 1

5
+ 1

5
− 1

6
+ · · · + 1

(n+3)
− 1

(n+4)
= 1

4
− 1

(n+4)
.

I
P∞

k=1
1

(k+3)
− 1

(k+4)
= limn→∞ Sn = limn→∞

h
1
4
− 1

(n+4)

i
= 1

4
.

I Also check the extra example in your notes.
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Series Using limn→∞ sn to determine convergence Geometric Series geometric series not starting at n = 1 Repeating Decimals Telescoping Series. Harmonic Series. Where sum starts. Divergence Test Properties of Series

Harmonic Series.

The following series, known as the harmonic series, diverges:

∞X
k=1

1

n
diverges

I We can see this if we look at a subsequence of partial sums: {s2n}.
I s1 = 1, s2 = 1 + 1

2
= 3

2
,

I s4 = 1 + 1
2

+
h

1
3

+ 1
4

i
> 1 + 1

2
+
h

1
4

+ 1
4

i
= 2,

I s8 = 1 + 1
2

+
h

1
3

+ 1
4

i
+
h

1
5

+ 1
6

+ 1
7

+ 1
8

i
> s4 +

h
1
8

+ 1
8

+ 1
8

+ 1
8

i
> 2 + 1

2
= 5

2
.

I Similarly we get

s2n >
n + 2

2

and limn→∞ sn > limn→∞
n+2
2

=∞. Hence the harmonic series diverges.
(You will see an easier proof in the next section. )
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Series Using limn→∞ sn to determine convergence Geometric Series geometric series not starting at n = 1 Repeating Decimals Telescoping Series. Harmonic Series. Where sum starts. Divergence Test Properties of Series

Where sum starts.

Note that
convergence or divergence is unaffected by adding or deleting a finite number of terms
at the beginning of the series.

Example
∞X

n=10

1

n
is divergent

and
∞X

k=50

1

2k
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Divergence Test

Theorem If a series
P∞

i=1 an is convergent, then limn→∞ an = 0.

Warning The converse is not true , we may have a series where limn→∞ an = 0

and the series in divergent. For example, the harmonic series.

Proof Suppose the series
∑∞

i=1 an is convergent with sum S. Since
an = sn − sn−1 and

lim
n→∞

sn = lim
n→∞

sn−1 = S

we have limn→∞ an = limn→∞ sn − limn→∞ sn−1 = S − S = 0.

This gives us a Test for Divergence:

If limn→∞ an does not exist or if limn→∞ an 6= 0, then
∑∞

i=1 an is divergent.

If limn→∞ an = 0 the test is inconclusive.
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Divergence Test
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P∞
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Example Test the following series for divergence with the above test:
∞X
n=1

n2 + 1

2n2

∞X
n=1

n2 + 1

2n3

∞X
n=1

n2 + 1

2n

I To test
P∞

n=1
n2+1
2n2 for convergence, we check limn→∞

n2+1
2n2 .

I limn→∞
n2+1
2n2 = limn→∞

1+1/n2

2
= 1

2
6= 0.

I Therefore, we can conclude that
P∞

n=1
n2+1
2n2 diverges.

I To test
P∞

n=1
n2+1
2n3 for convergence, we check limn→∞

n2+1
2n3 .

I limn→∞
n2+1
2n3 = limn→∞

1+1/n2

2n
= 0.

I In this case we can make no conclusion about
P∞

n=1
n2+1
2n3 .

I To test
P∞

n=1
n2+1
2n

for convergence, we check limn→∞
n2+1
2n

.

I limn→∞
n2+1
2n

= limn→∞
n+1/n

2
=∞ 6= 0.

I Therefore, we can conclude that
P∞

n=1
n2+1
2n

diverges.
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Properties of Series

The following properties of series follow from the corresponding laws of limits:

Suppose
P

an and
P

bn are convergent series, then the seriesP
(an + bn),

P
(an − bn) and

P
can also converge. We haveX

can = c
X

an,
X

(an+bn) =
X

an+
X

bn,
X

(an−bn) =
X

an−
X

bn.

Example Sum the following series:

∞X
n=0

3 + 2n

πn+1
.

I
P∞

n=0
3+2n

πn+1 =
P∞

n=0
3

πn+1 +
P∞

n=0
2n

πn+1 .

I
P∞

n=0
3

πn+1 = 3
π

+ 3
π2 + · · · = 3/π

1−1/π
= 3

(π−1)
since r = 1

π
< 1.

I
P∞

n=0
2n

πn+1 = 1
π

+ 2
π2 + · · · = 1/π

1−2/π
= 1

(π−2)
, since r = 2

π
< 1.

I
P∞

n=0
3+2n

πn+1 = 3
(π−1)

+ 1
(π−2)

= 4π−7
(π−1)(π−2)

.
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∞X
n=0

3 + 2n

πn+1
.

I
P∞

n=0
3+2n

πn+1 =
P∞

n=0
3

πn+1 +
P∞

n=0
2n

πn+1 .

I
P∞

n=0
3

πn+1 = 3
π

+ 3
π2 + · · · = 3/π

1−1/π
= 3

(π−1)
since r = 1

π
< 1.

I
P∞

n=0
2n

πn+1 = 1
π

+ 2
π2 + · · · = 1/π

1−2/π
= 1

(π−2)
, since r = 2

π
< 1.

I
P∞

n=0
3+2n

πn+1 = 3
(π−1)

+ 1
(π−2)

= 4π−7
(π−1)(π−2)

.

Annette Pilkington Lecture 24 : Series


	 Series
	 Using limn  sn to determine convergence
	 Geometric Series
	geometric series not starting at n = 1
	Repeating Decimals
	 Telescoping Series.
	 Harmonic Series.
	 Where sum starts.
	 Divergence Test
	 Properties of Series

