Series

Series

So far our definition of a sum of numbers applies only to adding a finite set of
numbers. We can extend this to a definition of a sum of an infinite set of
numbers in much the same way as we extended our notion of the definite
integral to an improper integral over an infinite interval.
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Series

Series

So far our definition of a sum of numbers applies only to adding a finite set of
numbers. We can extend this to a definition of a sum of an infinite set of
numbers in much the same way as we extended our notion of the definite
integral to an improper integral over an infinite interval.

» Example

We call this infinite sum a series
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Series

Series

So far our definition of a sum of numbers applies only to adding a finite set of
numbers. We can extend this to a definition of a sum of an infinite set of
numbers in much the same way as we extended our notion of the definite
integral to an improper integral over an infinite interval.

» Example
L1111,
Lapn — 222
We call this infinite sum a series
> Definition Given a series > > a, = a1 + a2+ as + ..., we let s, denote

its n th partial sum
Sp=ar+a+ -+ an.
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Series

Series

So far our definition of a sum of numbers applies only to adding a finite set of
numbers. We can extend this to a definition of a sum of an infinite set of
numbers in much the same way as we extended our notion of the definite
integral to an improper integral over an infinite interval.

» Example
L1111,
Lapn — 222
We call this infinite sum a series
> Definition Given a series > > a, = a1 + a2+ as + ..., we let s, denote

its n th partial sum
Sp=ar+a+ -+ an.

> If the sequence {s,} is convergent and lim,—.o s, = S, then we say that
the series 37, a, is convergent and we let

=1
o0 n
E ap, = lim E a,= lims,=85.
n—oo n—oo
n=1 i=1

The number S is called the sum of the series. Otherwise the series is

called divergent.
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Using limp_— oo Sp to determine convergence

Using lim, . S, to determine convergence/divergence

Example Find the partial sums s1, s, s3, ..., s, of the series > °°, L.
Find the sum of this series. Does the series converge?
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Using limp_— oo Sp to determine convergence

Using lim, . S, to determine convergence/divergence

Example Find the partial sums s1, s, s3, ..., s, of the series > °°, L.
Find the sum of this series. Does the series converge?

12", n = 1..10
I
1 [
-~ o >
8 24 8
1 1
— - - —————————————————
4 2 4
1 1
-~ - — > - ——
2 2
P : s s
I ¥ 1 1
3
>
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Using limp_— oo Sp to determine convergence

Using lim, . S, to determine convergence/divergence

Example Find the partial sums s1, s, s3, ..., s, of the series > °°, L.
Find the sum of this series. Does the series converge?

1/2",n=1..10
-

>

1 1,1 1,11
» Wehavesi =3, s=3+3, S=5;+3+53
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Using limp_— oo Sp to determine convergence

Using lim, . S, to determine convergence/divergence

Example Find the partial sums s1, s, s3, ..., s, of the series > °° L
Find the sum of this series. Does the series converge?

1/2",n=1..10
-

>
1 1,1 1,11
» Wehavesi =3, s=3+3, S=5;+3+53

» From the picture, we see that s, =1 — zi
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Using limp_— oo Sp to determine convergence

Using lim, . S, to determine convergence/divergence

Example Find the partial sums s1, s, s3, ..., s, of the series > °°, L.
Find the sum of this series. Does the series converge?

/2", n=1..10
1
1 1 1 1
- - — 4= >
8 2 4 8
|-— ! »4;1,14>
4 2 4
< ! - I e
2 2
T : '
>
_1 1,1 1 1 1
> We have s1 = 5, =3+, ss=5+;+t3
» From the picture, we see that s, =1 — zln.
oo 1 . . 1
> > e = limpee s = limp— oo (1 — 57) = 1.
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Using limp_— oo Sp to determine convergence

Using lim, . S, to determine convergence/divergence

Example Find the partial sums s1, s, s3, ..., s, of the series > °°, L.
Find the sum of this series. Does the series converge?

1/2",n=1..10
-

1 1,1 1,11
Wehave si =3, &s=5+3 Ss=5+;+3%
1
0

2
>, zi,, = liMp—oo Sn = liMp— oo (1 — %) = 1.

>
>
» From the picture, we see that s, =1 — =
»
» Therefore this series converges to S = 1.
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Using limp_— oo Sp to determine convergence

Using lim, . S, to determine convergence/divergence

Example Find the partial sums s1, s, s3, ..., s, of the series > °°, L.
Find the sum of this series. Does the series converge?

Therefore this series converges to S = 1.

12", n=1..10
1
1 11 1
- - — 4= >
8 2 4 8
|-— ! »4;1,14>
4 2 4
- ! > L e
2 2
I ! 1 1
>
1 1,1 1,141
» Wehaves; =3, ss=5+3, Sss=5+3+5 -
» From the picture, we see that s, =1 — 2%
[ee) 1 . . 1
> > e = limpee s = limp— oo (1 — 57) = 1.
>
> .

. which you could have figured out from the picture :)
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Using limp_— oo Sp to determine convergence

Using lim, . S, to determine convergence/divergence

Example Recall that 1 +2+43+4.--4+n= @ Does the series

converge?
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Using limp_— oo Sp to determine convergence

Using lim, . S, to determine convergence/divergence

Example Recall that 1 +2+43+4.--4+n= @ Does the series
>
n=1

converge?

> We have the nth partial sum is s, = 1 +2 43+ -+ n = "2,
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Using limp_— oo Sp to determine convergence

Using lim, . S, to determine convergence/divergence

Example Recall that 1 +2+43+4.--4+n= @ Does the series
>
n=1

converge?

> We have the nth partial sum is s, = 1 +2 43+ -+ n = "2,

> > n=Ilimy_ sn if it exists.
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Using limp_— oo Sp to determine convergence

Using lim, . S, to determine convergence/divergence

Example Recall that 1 +2 + 3+ - 4+ n = "2 Does the series
2
n=1
converge?
» We have the nth partial sumiss, =1+24+3+4+-.--4+n= n(n2+1)_
> > n=Ilimy_ sn if it exists.
> Ilm”"OO Sp = Ilmnﬁoo n(";l) == Ilmxﬂoo X(X2+1).
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Using limp_— oo Sp to determine convergence

Using lim, . S, to determine convergence/divergence

Example Recall that 1 +2+43+4.--4+n= @ Does the series
oo
don
n=1
converge?
> We have the nth partial sum is s, = 1 +2 43+ -+ n = "2,
> > n=Ilimy_ sn if it exists.
> 1limpoo Sn = limp—co 25 = fim,_ oo X051
> = limx—oo X22+X = 0.
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Using limp_— oo Sp to determine convergence

Using lim, . S, to determine convergence/divergence

Example Recall that 1 +2+43+4.--4+n= @ Does the series
oo
don
n=1
converge?
> We have the nth partial sum is s, = 1 +2 43+ -+ n = "2,
> > n=Ilimy_ sn if it exists.
> 1limpoo Sn = limp—co 25 = fim,_ oo X051
> = limx—oo X22+X = 0.

> Therefore this series diverges. (It does not have a finite sum)
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Geometric Series

Geometric series

The geometric series
oo
Zar"*l —atar+art+---
n=1

is convergent if [r| < 1 and its sum is

> a
Zar"ilzil_r |r] < 1.
n=1

If |r| > 1, the geometric series is divergent.

Example Find the sum of the series >, (;37),"11() =—-10+ 14—0 — % 4+ ...
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Geometric Series

Geometric series

The geometric series
oo
z:ar"f1 —atar+art+---
n=1

is convergent if [r| < 1 and its sum is

> a
Zar"ilzil_r |r] < 1.
n=1

If |r| > 1, the geometric series is divergent.
. . co (=1)"10 __ 10 10
Example Find the sum of the series > 2, e =10+ -+

» We identify the values of a and r.
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Geometric Series

Geometric series

The geometric series
oo
-1 2
E ar" T =a+tar+ar +---
n=1

is convergent if [r| < 1 and its sum is

> a
Zar"ilzil_r |r] < 1.
n=1

If |r| > 1, the geometric series is divergent.
. . oo (=1)"10 _ 10 _ 10
Example Find the sum of the series anl T = —10 + 7 "t
» We identify the values of a and r.

» a = first term = —10 in this case.
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Geometric Series

Geometric series

The geometric series
oo
z:ar"f1 —atar+art+---
n=1

is convergent if [r| < 1 and its sum is

> a
Zar"ilzil_r |r] < 1.
n=1

If |r| > 1, the geometric series is divergent.

Example Find the sum of the series Z;’il (;37),"110 = —10+ 14—0 — % + ...
» We identify the values of a and r.
» a = first term = —10 in this case.
> The second term is ar, so r = term2/ term 1. Here r = 2 /(—10) = 1.
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Geometric Series

Geometric series

The geometric series
oo
-1 2
E ar" T =a+tar+ar +---
n=1

is convergent if [r| < 1 and its sum is

> a
Zar"ilzil_r |r] < 1.
n=1

If |r| > 1, the geometric series is divergent.

Example Find the sum of the series >, (;37),"110 =—-10+ 14—0 — % 4+ ...

» We identify the values of a and r.

> a = first term = —10 in this case.

> The second term is ar, so r = term2/ term 1. Here r = 22 /(—10) = 3%
>

Just to be sure that we are dealing with a geometric series, we check that
1

. _ —1)n=
the n th term is ar”. ar"~! = (—10)¢ 4/7)71
term.

, this is indeed the given n th
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Geometric Series

Geometric series

The geometric series
oo
z:ar"f1 =atar+ar’+--.

is convergent if [r| < 1 and its sum is

> a
Zar"ilzil_r |r] < 1.
n=1

If |r| > 1, the geometric series is divergent.

Example Find the sum of the series Zn 1 437)1 = —10+ E — % +.

» We identify the values of a and r.

» a = first term = —10 in this case.

> The second term is ar, so r = term2/ term 1. Here r = 2 /(—10) = 1.
>

Just to be sure that we are dealing With a geometric series, we check that

the n th termis ar”. ar"™" = (— 10) 4n —, this is indeed the given n th
term.
. oo (=1)"10 _ _—10 _ —10 _
> Therefore, since |r| < 1, Zn:l -1 = lir = W = ﬁ = —8.
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Geometric Series

Geometric series, another example

o0

Zar"_1:a+ar+ar2+--~

n=1

is convergent if |r| < 1 and its sum is

If |r] > 1, the geometric series is divergent.

Example Find the sum of the series > °° 2 =24 24 2 4|
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Geometric Series

Geometric series, another example

o0

Zar"_1:a+ar+ar2+--~

n=1

is convergent if |r| < 1 and its sum is

If |r] > 1, the geometric series is divergent.

Example Find the sum of the series > °° 2 =24 24 2 4|

» We identify the values of a and r.
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Geometric Series

Geometric series, another example

o0

Zar"_1:a+ar+ar2+--~

n=1

is convergent if |r| < 1 and its sum is

If |r] > 1, the geometric series is divergent.

Example Find the sum of the series > °° 2 =24 24 2 4|
» We identify the values of a and r.

> a = first term = 2/3 in this case.
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Geometric Series

Geometric series, another example

o0

Zar"_1:a+ar+ar2+--~

n=1

is convergent if |r| < 1 and its sum is

If |r] > 1, the geometric series is divergent.

Example Find the sum of the series > °° 2 =24 24 2 4|
» We identify the values of a and r.

> a = first term = 2/3 in this case.

Wl

> The second term is ar, so r = term2/ term 1. Here r = 2/2 =

Annette Pilkington Lecture 24 : Series



Geometric Series

Geometric series, another example

o0

Zar"_1:a+ar+ar2+--~

n=1

is convergent if |r| < 1 and its sum is

If |r] > 1, the geometric series is divergent.

Example Find the sum of the series > °° 2 =24 24 2 4|
» We identify the values of a and r.
> a = first term = 2/3 in this case.
> The second term is ar, so r = term2/ term 1. Here r = 2/2 = 1.

> Just to be sure that we are dealing with a geometric series, we check that
the n th term is ar”. ar"™! = (2/3)51 = £ ,as required.
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Geometric Series

Geometric series, another example

o0

Zar"_1:a+ar+ar2+--~

n=1

is convergent if |r| < 1 and its sum is

If |r] > 1, the geometric series is divergent.

Example Find the sum of the series > °° 2 =24 24 2 4|
» We identify the values of a and r.
> a = first term = 2/3 in this case.
> The second term is ar, so r = term2/ term 1. Here r = 2/2 = 1.
>

Just to be sure that we are dealing with a geometric series, we check that
the n th term is ar”. ar"! = (2/3)3,,1_1 = Z,as required.

> Therefore, since |r| <1, 3%, 2 = 2 = 12/(31) = g/Tg =1.
-5
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g

geometric series not starting at n =1

Example Find the sum of the series
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g

geometric series not starting at n =1

Example Find the sum of the series

» Note that this sequence starts at n = 4, so the formula for the sum does
not apply as it stands.

Annette Pilkington Lecture 24 : Series



g

geometric series not starting at n =1

Example Find the sum of the series

» Note that this sequence starts at n = 4, so the formula for the sum does
not apply as it stands.

» We can use two approaches, use the formula and subtract the missing
terms or expand the series and rewrite it.
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g

geometric series not starting at n =1

Example Find the sum of the series

» Note that this sequence starts at n = 4, so the formula for the sum does
not apply as it stands.

» We can use two approaches, use the formula and subtract the missing
terms or expand the series and rewrite it.

» Approach 1:
o 2171 oo 2771 1,2 227 _ 1/3 32464227 _ 19 _ 8
il =l Gtatsl =P =1-2=%
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g

geometric series not starting at n =1

Example Find the sum of the series

» Note that this sequence starts at n = 4, so the formula for the sum does
not apply as it stands.

» We can use two approaches, use the formula and subtract the missing
terms or expand the series and rewrite it.

» Approach 1:
o 2171 oo 2771 1,2 227 _ 1/3 32464227 _ 19 _ 8
G =l Gtatsl=s Pl =1-52=5%

27"
» Approach 2: rewrite the formula so that the sum starts at 1.
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g

geometric series not starting at n =1

Example Find the sum of the series

» Note that this sequence starts at n = 4, so the formula for the sum does
not apply as it stands.

» We can use two approaches, use the formula and subtract the missing
terms or expand the series and rewrite it.

» Approach 1:

o 2171 oo 2771 1,2 227 _ 1/3 32464227 _ 19 _ 8

il =l Gtatsl =P =1-2=%

» Approach 2: rewrite the formula so that the sum starts at 1.

oo 211 3 2 5 . 2 oo 1
> m = E bt =atartart 4 =300, ar
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g

geometric series not starting at n =1

Example Find the sum of the series

» Note that this sequence starts at n = 4, so the formula for the sum does
not apply as it stands.

» We can use two approaches, use the formula and subtract the missing
terms or expand the series and rewrite it.

» Approach 1:

o 2171 oo 2771 1,2 227 _ 1/3 32464227 _ 19 _ 8

il =l Gtatsl =P =1-2=%

» Approach 2: rewrite the formula so that the sum starts at 1.

on—1 23 24 25 2 -1
> =FtFtEtooo=atartat =30, "

n=4 30

_ _ 28 _ ot %3 o
> a= term 1 = 5, ar= term 2 = 5. Therefore r = /5 = 5.
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g

geometric series not starting at n =1

Example Find the sum of the series

» Note that this sequence starts at n = 4, so the formula for the sum does
not apply as it stands.

» We can use two approaches, use the formula and subtract the missing
terms or expand the series and rewrite it.

» Approach 1:
co 271 (oo 27! 1, 2 ,2%7_ 1/3 32464227 _ 19 _ 8
il =l Gtatsl =P =1-2=%
» Approach 2: rewrite the formula so that the sum starts at 1.

oo 211 3 2 5 . 2 oo 1
> m = E bt =atartart 4 =300, ar

2

_ _ 28 _ ot -
> a= term 1 = 5, ar= term 2 = 5. Therefore r = /5 = 5.

2 2 b -1
> we check that 2 + % + 2. +--- = 3% ar"" (true).
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g

geometric series not starting at n =1

Example Find the sum of the series

» Note that this sequence starts at n = 4, so the formula for the sum does
not apply as it stands.

» We can use two approaches, use the formula and subtract the missing
terms or expand the series and rewrite it.

» Approach 1:
o 2171 oo 2771 1,2 227 _ 1/3 32464227 _ 19 _ 8
il =l Gtatsl =P =1-2=%

» Approach 2: rewrite the formula so that the sum starts at 1.

> Z;’LZ;—?:g—i—&—g—g—l—g—:+-~~:a+ar+ar2—|—-~~:Z:‘;lar"’1

> a= term 1 zg—i, ar = term 2 :g—:. Thereforer:%—g/g—z:%.

> we check that g—j+§—z+§—2+~»:z;ﬁl ar"! (true).

> Since|r|:%<1,weseethatg—i+§—g+§—:+-~~:§—i/(1—§):§—§:%.
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Repeating Decimals

Example Write the number 0.66666666 - - - = 0.6 as a fraction.
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Repeating Decimals

Example Write the number 0.66666666 - - - = 0.6 as a fraction.
> 0.666666666- - = & + 155 + 155 + - - -
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Repeating Decimals

Example Write the number 0.66666666 - - - = 0.6 as a fraction.
_ 6 6 6
> 0.666666666 - = 15 + 705 + 1005 T - - -
> =%+ 5+ 15+ ... (a geometric series).
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Repeating Decimals

Example Write the number 0.66666666 - - - = 0.6 as a fraction.
_ 6 6 6
> 0.666666666 - = 15 + 705 + 1005 T - - -
> =%+ 5+ 15+ ... (a geometric series).
> a:%and r:%/%:%.
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Repeating Decimals

Example Write the number 0.66666666 - - - = 0.6 as a fraction.
_ 6 6 6
> 0.666666666- - = S + 155 + 155 + - .-
> =%+ 5+ 15+ ... (a geometric series).
> a= 2 and r:%/%:%.
> we check &4 15 4+ 15+ =a+ar+ar’ +... (itis)
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Repeating Decimals

Example Write the number 0.66666666 - - - = 0.6 as a fraction.
> 0.666666666- - = & + 155 + 155 + - - -
> =%+ 5+ 15+ ... (a geometric series).
> a=Fandr=15/% =
> we check &4 15 4+ 15+ =a+ar+ar’ +... (itis)
> Therefore 0.666666666 - - = & + 15 + 163 + - = 1415 = 6/9 =2/3
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Repeating Decimals

Example Write the number 0.66666666 - - - = 0.6 as a fraction.
> 0.666666666- - = & + 155 + 155 + - - -
> =%+ 5+ 15+ ... (a geometric series).
> a= 2 and r:%/%:%.
> we check &4 15 4+ 15+ =a+ar+ar’ +... (itis)
> Therefore 0.666666666 - - = & + 15 + 163 + - = 1415 = 6/9 =2/3
> as suspected :)
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Repeating Decimals

Example Write the number 1.521212121 - - - = 1.521 as a fraction.
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Repeating Decimals

Example Write the number 1.521212121 - - - = 1.521 as a fraction.
> 1521212121 =15+ 25 + 2 + 2 + ...
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Repeating Decimals

Example Write the number 1.521212121 - - - = 1.521 as a fraction.
> 1521212121 =15+ 25 + 2 + 2 + ...

21 21 21 . . .
> i3 =+ 05 + 107 + ... Is a geometric series.
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Repeating Decimals

Example Write the number 1.521212121 - - - = 1.521 as a fraction.
> 1521212121 =15+ 25 + 2 + 2 + ...
> % + % + % + ... is a geometric series.

_ 2 _ _
> a—ﬁandr 105/103_102
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Repeating Decimals

Example Write the number 1.521212121 - - - = 1.521 as a fraction.
> 1521212121~ =15+ 25 + 2 4+ 2o 4
> % + % + % +...isa geometric series.
>a= % and r = 105/103 = 102
> we double check 25 + 2y + 2 + .- =a4ar+ar’ +... (itis)
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Repeating Decimals

Example Write the number 1.521212121 - - - = 1.521 as a fraction.

> 1521212121~ =15+ 25 + 2 4+ 2o 4
> % + % + % +...isa geometric series.
>a= % and r = 105/103 = 102
> we double check 25 + 2y + 2 + .- =a4ar+ar’ +... (itis)
> Therefore
1521212121 = 15+ 25 + 2 4+ 2 = 154 2/ — 3/2421/990
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Repeating Decimals

Example Write the number 1.521212121 - - - = 1.521 as a fraction.
> 1521212121~ =15+ 25 + 2 4+ 2o 4
> % + % + % +...isa geometric series.
>a= % and r = 105/103 = 102
> we double check 25 + 2y + 2 + .- =a4ar+ar’ +... (itis)
» Therefore
1521212121+ = 15+ 2 + 2+ 2L ... = 1.5+ 12_11//13)32 = 3/2+421/990

> =3/2+7/330 = 1004/660 = 251/165
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Telescoping Series.

These are series of the form similar to Y f(n) — f(n+ 1). Because of the large
amount of cancellation, they are relatively easy to sum.
Example Show that the series

oo

Zmz

sy

=
+

N

=

converges.

Annette Pilkington Lecture 24 : Series



Telescoping Series.

These are series of the form similar to Y f(n) — f(n+ 1). Because of the large
amount of cancellation, they are relatively easy to sum.
Example Show that the series

oo

Zmz

sy

=
+

N

=

converges.

1 1
> S=3-53
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Telescoping Series.

These are series of the form similar to Y f(n) — f(n+ 1). Because of the large
amount of cancellation, they are relatively easy to sum.
Example Show that the series

oo

1
Zk2+7/<+12 Z Tkt 4)
converges.
» 5 =1_1
1=2 75
1 1 1 1 1 1
> S2=3-5t575 = 776
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Telescoping Series.

These are series of the form similar to Y f(n) — f(n+ 1). Because of the large
amount of cancellation, they are relatively easy to sum.
Example Show that the series

oo

1
Zm Z T (k+4)
converges.
SCREEE
T
P s=iodeiodeiod = iod
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Telescoping Series.

These are series of the form similar to Y f(n) — f(n+ 1). Because of the large
amount of cancellation, they are relatively easy to sum.
Example Show that the series

oo

1
Zm B e R e
converges.
SR
Tt
S P
> Si=i—sts st Y o mw — i
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Telescoping Series.

These are series of the form similar to Y f(n) — f(n+ 1). Because of the large
amount of cancellation, they are relatively easy to sum.
Example Show that the series

oo

1
Zk2+7/<+12 Z Tkt 4)
converges.

Fsi=i-l

_ 1 1 1 1 _ 1 1
> S2=3-5t575 = 376

_ 1 1 1 1 1 1 _ 1 1
> S=iostsogte o = i

1 1 1 1 1 1 _ 1 1
> S=r s ts st T Ey TG T i

oo 1 1 1 1 _ 1
> Zk:1m — mom = limn—co Sp = limy— oo [Z - (n+4)} =7
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Telescoping Series.

These are series of the form similar to Y f(n) — f(n+ 1). Because of the large
amount of cancellation, they are relatively easy to sum.
Example Show that the series

oo

1
Zk2+7/<+12 Z Tkt 4)
converges.

Fsi=i-l

_ 1 1 1 1 _ 1 1
> S2=3-5t575 = 376

_ 1 1 1 1 1 1 _ 1 1
> S=iostsogte o = i

1 1 1 1 1 1 _ 1 1
> S=r s ts st T Ey TG T i

oo 1 1 _n —_ 1 1 _ 1
> Zk:1m — mom = limn—co Sp = limy— oo [Z - (n+4)} =7

v

Also check the extra example in your notes.
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Harmonic Series.

The following series, known as the harmonic series, diverges:

]

1
E — diverges
n

k=1
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Harmonic Series.

The following series, known as the harmonic series, diverges:

]

1
E — diverges
n

k=1

> We can see this if we look at a subsequence of partial sums: {sxn}.
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Harmonic Series.

The following series, known as the harmonic series, diverges:

]

1
E — diverges
n

k=1

> We can see this if we look at a subsequence of partial sums: {sxn}.

> 51 =1, 52:1-5-%:%,
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Harmonic Series.

The following series, known as the harmonic series, diverges:

]

1
E — diverges
n

k=1

> We can see this if we look at a subsequence of partial sums: {sxn}.
»s=1 s=1+1=23

»s=1+3+ [1+d] > 14+ [E+] =2
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Harmonic Series.

The following series, known as the harmonic series, diverges:

]

1
E — diverges
n

k=1

> We can see this if we look at a subsequence of partial sums: {sxn}.

> s =1 s=1+3=23

Ny

> si=1+i+[1+1

}> +
> 58:1+%+[%+ﬂ+[%+%+%+%} >S4+[%+%+%+%] >243 =3
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Harmonic Series.

The following series, known as the harmonic series, diverges:

]

1
E — diverges
n

k=1

> We can see this if we look at a subsequence of partial sums: {sxn}.

> 51 =1, 52:1-5-%:3,

Ny

> s4:1+§+[§+%] >
> o=l [+ [eie i) > at [frieiei] > 2i =2

> Similarly we get

n+2
Son >
2
and limy_—oo Sp > limy_ 0o "TH = 00. Hence the harmonic series diverges.

(You will see an easier proof in the next section. )
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Where sum starts.

Note that
convergence or divergence is unaffected by adding or deleting a finite number of terms
at the beginning of the series.

Example
1
E — is divergent
n
n=10
and

1
E ok is convergent.
k=50
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Divergence Test

Theorem If a series Y ;7 a, is convergent, then lim,_.o a, = 0.

Warning The converse is not true , we may have a series where lim,_oc a, =0
and the series in divergent. For example, the harmonic series.

Proof Suppose the series .o, a, is convergent with sum S. Since

ap = Sp, — Sp—1 and

lim s,= lim s,_1=S5
n—oo n—oo

we have lim,_ o a, = lim,_oosp — lim,_ o 5,-1=S—-5=0.

This gives us a Test for Divergence:

If lim,_~ a, does not exist or if lim,_ ., a, # 0, then Efil a, is divergent.

If lim,_ o a, = 0 the test is inconclusive.
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Divergence Test

If limy— oo a, does not exist or if lim,_.o @, # 0, then Y, a, is divergent.
If limp,— oo an = 0 the test is inconclusive.
Example Test the following series for divergence with the above test:

P41 =P+l &=+l
nz:; 2n2 nz:; 2n3 nz:; 2n
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Divergence Test

If limy— oo a, does not exist or if lim,_.o @, # 0, then Y, a, is divergent.
If limp,— oo an = 0 the test is inconclusive.
Example Test the following series for divergence with the above test:

io: n2 + ' i nQ p ! io: n2 + !
2n? 2n3 2n
n=1 n=1 n—1
2 X 2
> Totest > 2, "2;51 for convergence, we check lim,_, "2;51.
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Divergence Test

If limy— oo a, does not exist or if lim,_.o @, # 0, then Y, a, is divergent.
If limp,— oo an = 0 the test is inconclusive.
Example Test the following series for divergence with the above test:

P41 =P+l &=+l
Z 2n2 Z 2n3 nz:; 2n

n=1 n=1
X 2
> Totest > 2, "2“ for convergence, we check lim,_, "2;51.
1 - 1+1/n
> limp—oo 2* = liMmp—oo / =10
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Divergence Test

If limy— oo a, does not exist or if lim,_.o @, # 0, then Y, a, is divergent.
If limp,— oo an = 0 the test is inconclusive.
Example Test the following series for divergence with the above test:

P41 =P+l &=+l
Z 2n2 Z 2n3 nz:; 2n

n=1 n=1
X 2
> Totest > 2, "2“ for convergence, we check lim,_, "2;51.
+1 ; 1+1/n —
> limp—o 55 = limpoo =3 120
P+l g
> Therefore, we can conclude that 37>, T4 diverges.
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Divergence Test

If limy— oo a, does not exist or if lim,_.o @, # 0, then Y, a, is divergent.
If limp,— oo an = 0 the test is inconclusive.
Example Test the following series for divergence with the above test:

P41 =P+l &=+l
Z 2n2 z; 2n3 nz:; 2n

n=1 n=
X 2
> Totest > 2, "2“ for convergence, we check lim,_, "2;51.
+1 _ 1+1/n —
> limp—o 55 = limpoo =3 120
P+l g
> Therefore, we can conclude that 37>, T4 diverges.
+1

v

To test > 7, "2“ for convergence, we check limy—. %5

Lecture 24 :
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Divergence Test

If limy— oo a, does not exist or if lim,_.o @, # 0, then Y, a, is divergent.
If limp,— oo an = 0 the test is inconclusive.
Example Test the following series for divergence with the above test:

P41 =P+l &=+l
Z 2n2 Z 2n3 nz:; 2n

n=1 n=1
) 2
> Totest > 2, "2“ for convergence, we check lim,_, "2;51.
+1 _n +1/n%
b iMoo 25 = limy oo BT — 1 20,
41 g

> Therefore, we can conclude that 37>, T4 diverges.

n +1 H n2+1
> To test )~ "+ for convergence, we check limy—oo %55

141

> lims_oo 2“ = limp—oo + /" =0.
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Divergence Test

If limy— oo a, does not exist or if lim,_.o @, # 0, then Y, a, is divergent.
If limp,— oo an = 0 the test is inconclusive.
Example Test the following series for divergence with the above test:

P41 =P+l &=+l
Z 2n2 z; 2n3 nz:; 2n

n=1 n=
X 2
> Totest > 2, "2“ for convergence, we check lim,_, "2;51.
+1 _n +1/n%
b iMoo 25 = limy oo BT — 1 20,
41 g
> Therefore, we can conclude that 37>, T4 diverges.
> Totest > 7, "2“ for convergence, we check lim,— 2“
141
> lims_oo 2“ = limp—oo + /" =0.

2
In this case we can make no conclusion about Y77, 5L

v
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Divergence Test

If limy— oo a, does not exist or if lim,_.o @, # 0, then Y, a, is divergent.
If limp,— oo an = 0 the test is inconclusive.
Example Test the following series for divergence with the above test:

P41 =P+l &=+l
Z 2n2 Z 2n3 nz:; 2n

n=1 n=1
. 2
> Totest > 2, "2“ for convergence, we check lim,_, "2;51.
+1 _n +1/n%
b iMoo 25 = limy oo BT — 1 20,
41 g
> Therefore, we can conclude that 37>, T4 diverges.
> Totest > 7, "2“ for convergence, we check lim,— 2“
141
> lims_oo 2“ = limp—oo + /" =0.
2
> In this case we can make no conclusion about }_°°, T51.
2
> To test 7, %
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Divergence Test

If limy— oo a, does not exist or if lim,_.o @, # 0, then Y, a, is divergent.
If limp,— oo an = 0 the test is inconclusive.
Example Test the following series for divergence with the above test:

P41 =P+l &=+l
Z 2n2 Z 2n3 nz:; 2n

n=1 n=1
X 2
> Totest > 2, "2“ for convergence, we check lim,_, "2;51.
+1 _n +1/n%
b iMoo 25 = limy oo BT — 1 20,
41 g
> Therefore, we can conclude that 37>, T4 diverges.
> Totest > 7, "2“ for convergence, we check lim,— 2“
1 1+1 n
> limy_ oo 2+ = limp—oo / =0.
2
> In this case we can make no conclusion about }_°°, T51.
2
> To test 7, %
2
. n“+1 _ : n+1 n __
> limp—co 5= = limp— oo n+l/n oo # 0.
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Divergence Test

If limy— oo a, does not exist or if lim,_.o @, # 0, then Y, a, is divergent.
If limp,— oo an = 0 the test is inconclusive.
Example Test the following series for divergence with the above test:

P41 =P+l &=+l
Z 2n2 Z 2n3 nz:; 2n

n=1 n=1
> Totest > >0, "2“ for convergence, we check lim,_ oo "22;51.
b iMoo 25 = limy oo BT — 1 20,
> Therefore, we can conclude that >~°>°, "2;51 diverges.
> To test > °°, "2“ for convergence, we check lim,_.oc 2“
> limp—oo 2“ = limp—oo 1+1/" =0.
> In this case we can make no conclusion about Y 72, ;7*31
> Totest > >0 = s "2;;1
b limpce T = limy_oo 27 = 00 £ 0.
» Therefore, we can conclude that Z:‘;l n241 diverges.
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Properties of Series

The following properties of series follow from the corresponding laws of limits:

Suppose Y a, and > b, are convergent series, then the series
> (an+ bn), >.(an — bs) and >_ ca, also converge. We have

Z canp = CZ an, Z(an+bn) = Z 3n+z bn> Z(an_bn) = Z an_z bn-
Example Sum the following series:
—3+2"

n=0
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Properties of Series

The following properties of series follow from the corresponding laws of limits:

Suppose Y a, and > b, are convergent series, then the series
> (an+ bn), >.(an — bs) and >_ ca, also converge. We have

Z canp = CZ an, Z(an+bn) = Z 3n+z bn> Z(an_bn) = Z an_z bn-
Example Sum the following series:
—3+2"

n=0

oo 3427 _ S 3 oo 2"
> Do 3T = Do T T 2nsg g
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Properties of Series

The following properties of series follow from the corresponding laws of limits:

Suppose Y a, and > b, are convergent series, then the series
> (an+ bn), >.(an — bs) and >_ ca, also converge. We have

Z cap = cZa,,, Z(an+bn) = Zan—i—z bn, Z(an—bn) = Zan—z bn.

Example Sum the following series:

342"
Zw-

n=0

n
> ZOO 3;31 = Zn—o T T Zn—o Wn+1

3 _ 3 _ 3/m _ 3 : _ 1
>anow_—+?+~-_m_ﬁsmcer—;<l.

™

Annette Pilkington Lecture 24 : Series



Properties of Series

The following properties of series follow from the corresponding laws of limits:

Suppose Y a, and > b, are convergent series, then the series
> (an+ bn), >.(an — bs) and >_ ca, also converge. We have

Z cap = cZa,,, Z(an+bn) = Zan—i—z bn, Z(an—bn) = Zan—z bn.

Example Sum the following series:

342"
Zw-

n=0

n
> ZOO 3;31 = Zn—o T T Zn—o Wn+1

35 _ 3,3 .. _ 37 _ 3 _1
> ZnZO mntl T o + 2 + T 1-1/7m T (7—1) since r = o
o 2" 1,2 ... Yr _ 1 g — 2

> Zn:O antl T o + w2 + T 1-2/7 T (w—2)" since r = - <1
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Properties of Series

The following properties of series follow from the corresponding laws of limits:

Suppose Y a, and > b, are convergent series, then the series
> (an+ bn), >.(an — bs) and >_ ca, also converge. We have

Z canp = CZ an, Z(an+bn) = Z 3n+z bn> Z(an_bn) = Z an_z bn-
Example Sum the following series:
—3+2"

n=0

oo 342" _ oo 3 oo 2"

> Do T = 2apo T T 2nsg e
co 3 _ 3,3, . _ 3r _ 3 _1

> ZnZO mntl T o + 2 + T 1-1/7m T (7—1) since r = o <L
o 20 _ 142 4 Yr _ 1 _ g =2

> Zn:O antl T o + w2 + T 1-2/7 T (w—2)" since r = - <1

oo 3427 3 1 — 4 —7
Zn:O ﬂt+l - (m-1) + (m=2) = (m—=1)(7—2)"

v
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