Integral Test

In this section, we see that we can sometimes decide whether a series converges or diverges by comparing it to an improper integral. The analysis in this section only applies to series $\sum a_n$, with positive terms, that is $a_n > 0$.

Integral Test Suppose $f(x)$ is a positive decreasing continuous function on the interval $[1, \infty)$ with

$$
f(n)=a_n.
$$

Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\int_{1}^{\infty} f(x)dx$ converges, that is:

If
$$
\int_1^{\infty} f(x)dx
$$
 is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
\nIf $\int_1^{\infty} f(x)dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

÷.

 200

Integral Test

In this section, we see that we can sometimes decide whether a series converges or diverges by comparing it to an improper integral. The analysis in this section only applies to series $\sum a_n$, with positive terms, that is $a_n > 0$.

Integral Test Suppose $f(x)$ is a positive decreasing continuous function on the interval $[1, \infty)$ with

$$
f(n)=a_n.
$$

Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\int_{1}^{\infty} f(x)dx$ converges, that is:

If
$$
\int_{1}^{\infty} f(x)dx
$$
 is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
\nIf $\int_{1}^{\infty} f(x)dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

In Note The result is still true if the condition that $f(x)$ is decreasing on the interval $[1,\infty)$ is relaxed to "the function $f(x)$ is decreasing on an interval $[M, \infty)$ for some number $M > 1$."

イロメ イ団メ イ君メ イ君メー

G

 $2Q$

We know from a previous lecture that $\int_1^\infty \frac{1}{x^p} dx$ converges if $p > 1$ and diverges if $p \leq 1$.

 \leftarrow

A F $=$ $2Q$

不良 下

We know from a previous lecture that $\int_1^\infty \frac{1}{x^p} dx$ converges if $p > 1$ and diverges if $p \leq 1$.

 \blacktriangleright In the picture we compare the series $\sum_{n=1}^{\infty}\frac{1}{n^2}$ to the improper integral $\int_1^\infty \frac{d}{x^2} dx$.

||4 周 8 14 周 8

We know from a previous lecture that $\int_1^\infty \frac{1}{x^p} dx$ converges if $p > 1$ and diverges if $p \leq 1$.

 \blacktriangleright In the picture we compare the series $\sum_{n=1}^{\infty}\frac{1}{n^2}$ to the improper integral $\int_1^\infty \frac{d}{x^2} dx$.

つへへ

The n th partial sum is $s_n = 1 + \sum_{n=2}^{n} \frac{1}{n^2} < 1 + \int_{1}^{\infty} \frac{1}{x^2} dx = 1 + 1 = 2$.

We know from a previous lecture that $\int_1^\infty \frac{1}{x^p} dx$ converges if $p > 1$ and diverges if $p \leq 1$.

 \blacktriangleright In the picture we compare the series $\sum_{n=1}^{\infty}\frac{1}{n^2}$ to the improper integral $\int_1^\infty \frac{d}{x^2} dx$.

≮ 何 ▶ (○ ★ 三 ▶ (4 三) ▶

つへへ

The n th partial sum is $s_n = 1 + \sum_{n=2}^{n} \frac{1}{n^2} < 1 + \int_{1}^{\infty} \frac{1}{x^2} dx = 1 + 1 = 2$.

Ince the sequence $\{s_n\}$ is increasing (because each $a_n > 0$) and bounded, we can conclude that the sequence of partial sums converges and hence the series

$$
\sum_{i=1}^{\infty} \frac{1}{n^2}
$$
 converges.

We know from a previous lecture that $\int_1^\infty \frac{1}{x^p} dx$ converges if $p > 1$ and diverges if $p \leq 1$.

 \blacktriangleright In the picture we compare the series $\sum_{n=1}^{\infty}\frac{1}{n^2}$ to the improper integral $\int_1^\infty \frac{d}{x^2} dx$.

ぼう メラう

 Ω

The n th partial sum is $s_n = 1 + \sum_{n=2}^{n} \frac{1}{n^2} < 1 + \int_{1}^{\infty} \frac{1}{x^2} dx = 1 + 1 = 2$.

Ince the sequence $\{s_n\}$ is increasing (because each $a_n > 0$) and bounded, we can conclude that the sequence of partial sums converges and hence the series

$$
\sum_{i=1}^{\infty} \frac{1}{n^2}
$$
 converges.

▶ NOTE We are not saying that $\sum_{i=1}^{\infty} \frac{1}{n^2} = \int_{1}^{\infty} \frac{1}{x^2} dx$ here.

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if $p > 1$ and diverges if $p \leq 1$.

 \leftarrow

≮ 何 ▶ (○ ★ 三 ▶ (4 三) ▶

 $2Q$

э

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if $p > 1$ and diverges if $p \leq 1$.

 \blacktriangleright In the picture, we compare the series $\sum_{n=1}^\infty \frac{1}{\sqrt{n}}$ to the improper integral $\int_1^\infty \frac{1}{\sqrt{x}} dx$.

$$
\sum_{k=1}^{\infty} \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots
$$

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if $p > 1$ and diverges if $p \leq 1$.

 \blacktriangleright In the picture, we compare the series $\sum_{n=1}^\infty \frac{1}{\sqrt{n}}$ to the improper integral $\int_1^\infty \frac{1}{\sqrt{x}} dx$. $area = \frac{1}{\sqrt{2}}$ $area = \frac{1}{\sqrt{2}}$ $area = \frac{1}{\sqrt{2}}$ $area = \frac{1}{\sqrt{4}}$ \sum $\frac{1}{\sqrt{n}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots$ $_{k=1}$

 \triangleright This time we draw the rectangles so that we get

$$
s_n > s_{n-1} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n-1}} > \int_1^n \frac{1}{\sqrt{x}} dx
$$

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if $p > 1$ and diverges if $p \leq 1$.

 \blacktriangleright In the picture, we compare the series $\sum_{n=1}^\infty \frac{1}{\sqrt{n}}$ to the improper integral $\int_1^\infty \frac{1}{\sqrt{x}} dx$. $area = \frac{1}{\sqrt{2}}$ $area = \frac{1}{\sqrt{2}}$ $area = \frac{1}{\sqrt{2}}$ $area = \frac{1}{\sqrt{4}}$ \sum $\frac{1}{\sqrt{n}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots$ $_{k=1}$

 \triangleright This time we draw the rectangles so that we get

$$
s_n > s_{n-1} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n-1}} > \int_1^n \frac{1}{\sqrt{x}} dx
$$

Figure 1. Thus we see that $\lim_{n\to\infty} s_n > \lim_{n\to\infty} \int_1^n \frac{1}{\sqrt{x}} dx$.

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if $p > 1$ and diverges if $p \leq 1$.

 \triangleright This time we draw the rectangles so that we get

$$
s_n > s_{n-1} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n-1}} > \int_1^n \frac{1}{\sqrt{x}} dx
$$

Figure 1. Thus we see that $\lim_{n\to\infty} s_n > \lim_{n\to\infty} \int_1^n \frac{1}{\sqrt{x}} dx$.

▶ However, we know that $\int_1^n \frac{1}{\sqrt{x}} dx$ grows without bound and hence since $\int_1^\infty \frac{1}{\sqrt{x}} dx$ diverges, we can conclude that $\sum_{k=1}^\infty \frac{1}{\sqrt{n}}$ also diverges.

Integral Test Suppose $f(x)$ is a positive decreasing continuous function on the interval $[1,\infty)$ with $f(n)=a_n$. Then the series $\sum_{n=1}^\infty a_n$ is convergent if and only if $\int_1^\infty f(x)dx$ converges Example Use the integral test to determine if the following series converges:

$$
\sum_{n=1}^{\infty} \frac{2}{3n+5}
$$

 200

Integral Test Suppose $f(x)$ is a positive decreasing continuous function on the interval $[1,\infty)$ with $f(n)=a_n$. Then the series $\sum_{n=1}^\infty a_n$ is convergent if and only if $\int_1^\infty f(x)dx$ converges Example Use the integral test to determine if the following series converges:

$$
\sum_{n=1}^{\infty} \frac{2}{3n+5}
$$

Consider the function
$$
f(x) = \frac{2}{3x+5}
$$
.

 Ω

Integral Test Suppose $f(x)$ is a positive decreasing continuous function on the interval $[1,\infty)$ with $f(n)=a_n$. Then the series $\sum_{n=1}^\infty a_n$ is convergent if and only if $\int_1^\infty f(x)dx$ converges Example Use the integral test to determine if the following series converges:

$$
\sum_{n=1}^{\infty} \frac{2}{3n+5}
$$

- ▶ Consider the function $f(x) = \frac{2}{3x+5}$.
- ▶ This function is positive and continuous on the interval $[1,\infty)$. We see that it is decreasing by examining the derivative. $f'(x)=\frac{-6}{(3x+5)^2} < 0.$

Integral Test Suppose $f(x)$ is a positive decreasing continuous function on the interval $[1,\infty)$ with $f(n)=a_n$. Then the series $\sum_{n=1}^\infty a_n$ is convergent if and only if $\int_1^\infty f(x)dx$ converges Example Use the integral test to determine if the following series converges:

$$
\sum_{n=1}^{\infty} \frac{2}{3n+5}
$$

- ▶ Consider the function $f(x) = \frac{2}{3x+5}$.
- **►** This function is positive and continuous on the interval $[1, \infty)$. We see that it is decreasing by examining the derivative. $f'(x)=\frac{-6}{(3x+5)^2} < 0.$
- Since $f(n) = \frac{2}{3n+5}$, to determine convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{2}{3n+5}$ it suffices to check what happens to $\int_{1}^{\infty} f(x) dx$.

イロン イ伊 メ イヨン イヨン

Integral Test Suppose $f(x)$ is a positive decreasing continuous function on the interval $[1,\infty)$ with $f(n)=a_n$. Then the series $\sum_{n=1}^\infty a_n$ is convergent if and only if $\int_1^\infty f(x)dx$ converges Example Use the integral test to determine if the following series converges:

$$
\sum_{n=1}^{\infty} \frac{2}{3n+5}
$$

Consider the function
$$
f(x) = \frac{2}{3x+5}
$$
.

- **►** This function is positive and continuous on the interval $[1, \infty)$. We see that it is decreasing by examining the derivative. $f'(x)=\frac{-6}{(3x+5)^2} < 0.$
- Since $f(n) = \frac{2}{3n+5}$, to determine convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{2}{3n+5}$ it suffices to check what happens to $\int_{1}^{\infty} f(x) dx$.

$$
\int_{1}^{\infty} \frac{2}{3x+5} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{2}{3x+5} dx = \int_{7}^{3t+5} \frac{2}{3u} du (u = 3x + 5) =
$$

\n
$$
\lim_{t \to \infty} \frac{2}{3} \ln |u| \Big|_{7}^{3t+5} = \lim_{t \to \infty} \frac{2}{3} [\ln |3t + 5| - \ln |7|] = \infty.
$$
 (integral diverges).

→ イ押 ト イヨ ト イヨ ト

Integral Test Suppose $f(x)$ is a positive decreasing continuous function on the interval $[1,\infty)$ with $f(n)=a_n$. Then the series $\sum_{n=1}^\infty a_n$ is convergent if and only if $\int_1^\infty f(x)dx$ converges Example Use the integral test to determine if the following series converges:

$$
\sum_{n=1}^{\infty} \frac{2}{3n+5}
$$

Consider the function
$$
f(x) = \frac{2}{3x+5}
$$
.

- **►** This function is positive and continuous on the interval $[1, \infty)$. We see that it is decreasing by examining the derivative. $f'(x)=\frac{-6}{(3x+5)^2} < 0.$
- Since $f(n) = \frac{2}{3n+5}$, to determine convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{2}{3n+5}$ it suffices to check what happens to $\int_{1}^{\infty} f(x) dx$.
- ► $\int_{1}^{\infty} \frac{2}{3x+5} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{2}{3x+5} dx = \int_{7}^{3t+5} \frac{2}{3u} du (u = 3x + 5) =$ $\lim_{t\to\infty} \frac{2}{3} \ln |u|$ $3t + 5$ $\frac{1}{7}$ = lim_{t→∞} $\frac{2}{3}$ [ln |3t + 5| − ln |7|] = ∞. (integral diverges).

▶ Therefore, the series $\sum_{n=1}^{\infty} \frac{2}{3n+5}$ diverges.

 4 ロ) 4 何) 4 ミ) 4 3 \rightarrow

 Ω

Example Use the integral test to determine if the following series converges:

$$
\sum_{n=1}^{\infty} ne^{-n^2}
$$

 \leftarrow

Þ

∢何 ▶ (ヨ ▶ (ヨ ▶

 299

Example Use the integral test to determine if the following series converges:

$$
\sum_{n=1}^{\infty} ne^{-n^2}
$$

► Consider the function $f(x) = xe^{-x^2}$.

 \leftarrow

4 A D D D D D D

一 4 (王) ト

 $2Q$

э

Example Use the integral test to determine if the following series converges:

$$
\sum_{n=1}^{\infty} ne^{-n^2}
$$

► Consider the function $f(x) = xe^{-x^2}$.

▶ This function is positive and continuous on the interval $[1, \infty)$. We see that it is decreasing by examining the derivative. $f'(x) = e^{-x^2} - 2e^{-x^2}x^2 = e^{-x^2}(1 - 2x^2) < 0$ if $x \ge 1$.

 200

Example Use the integral test to determine if the following series converges:

$$
\sum_{n=1}^{\infty} ne^{-n^2}
$$

- ► Consider the function $f(x) = xe^{-x^2}$.
- **►** This function is positive and continuous on the interval $[1, \infty)$. We see that it is decreasing by examining the derivative. $f'(x) = e^{-x^2} - 2e^{-x^2}x^2 = e^{-x^2}(1 - 2x^2) < 0$ if $x \ge 1$.
- ► Since $f(n) = ne^{-n^2}$, to determine convergence or divergence of the series $\sum_{n=1}^{\infty}$ ne $^{-n^2}$ it suffices to check what happens to $\int_{1}^{\infty} f(x)dx$.

 Ω

Example Use the integral test to determine if the following series converges:

$$
\sum_{n=1}^{\infty} ne^{-n^2}
$$

► Consider the function $f(x) = xe^{-x^2}$.

► This function is positive and continuous on the interval $[1, \infty)$. We see that it is decreasing by examining the derivative. $f'(x) = e^{-x^2} - 2e^{-x^2}x^2 = e^{-x^2}(1 - 2x^2) < 0$ if $x \ge 1$.

► Since $f(n) = ne^{-n^2}$, to determine convergence or divergence of the series $\sum_{n=1}^{\infty}$ ne $^{-n^2}$ it suffices to check what happens to $\int_{1}^{\infty} f(x)dx$.

$$
\int_{1}^{\infty} xe^{-x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} xe^{-x^{2}} dx = \frac{1}{-2} \lim_{t \to \infty} \int_{-1}^{-t^{2}} e^{u} du
$$
, (where
\n $u = -x^{2}$) = $\lim_{t \to \infty} \frac{-1}{2} e^{u} \Big|_{-1}^{-t^{2}} = \lim_{t \to \infty} \frac{-1}{2} [e^{-t^{2}} - e^{-1}] = \frac{1}{2e}$. (integral
\nconverges).

 Ω

Example Use the integral test to determine if the following series converges:

$$
\sum_{n=1}^{\infty} ne^{-n^2}
$$

► Consider the function $f(x) = xe^{-x^2}$.

- **►** This function is positive and continuous on the interval $[1, \infty)$. We see that it is decreasing by examining the derivative. $f'(x) = e^{-x^2} - 2e^{-x^2}x^2 = e^{-x^2}(1 - 2x^2) < 0$ if $x \ge 1$.
- ► Since $f(n) = ne^{-n^2}$, to determine convergence or divergence of the series $\sum_{n=1}^{\infty}$ ne $^{-n^2}$ it suffices to check what happens to $\int_{1}^{\infty} f(x)dx$.
- ► $\int_1^\infty xe^{-x^2} dx = \lim_{t \to \infty} \int_1^t xe^{-x^2} dx = \frac{1}{-2} \lim_{t \to \infty} \int_{-1}^{-t^2} dt$ $\int_{-1}^{-t^2} e^u du$, (where $u = -x^2$) = $\lim_{t \to \infty} \frac{-1}{2} e^u$ $-t^2$ $\frac{-t}{-1}$ = lim_{t→∞} $\frac{-1}{2}[e^{-t^2} - e^{-1}] = \frac{1}{2e}$. (integral converges).
- ▶ Therefore, the series $\sum_{n=1}^{\infty} ne^{-n^2}$ converges.

 4 ロ) 4 何) 4 ミ) 4 3 \rightarrow

つひへ

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if $p > 1$ and diverges if $p \leq 1$.

$$
\sum_{n=1}^{\infty} \frac{1}{n^p}
$$
 converges for $p > 1$, diverges for $p \le 1$.

Example Determine if the following series converge or diverge:

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=10}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=100}^{\infty} \frac{1}{\sqrt[5]{n}},
$$

 -10.5

G

≮ 何 ▶ (○ ★ 三 ▶ (4 三) ▶

 $2Q$

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if $p > 1$ and diverges if $p \leq 1$.

$$
\sum_{n=1}^{\infty} \frac{1}{n^p}
$$
 converges for $p > 1$, diverges for $p \le 1$.

Example Determine if the following series converge or diverge:

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=10}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=100}^{\infty} \frac{1}{\sqrt[5]{n}},
$$

$$
\triangleright \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \text{ diverges since } p = 1/3 < 1.
$$

 -10.5

G

≮ 何 ▶ (○ ★ 三 ▶ (4 三) ▶

 $2Q$

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if $p > 1$ and diverges if $p \leq 1$.

$$
\sum_{n=1}^{\infty} \frac{1}{n^p}
$$
 converges for $p > 1$, diverges for $p \le 1$.

Example Determine if the following series converge or diverge:

$$
\sum_{n=1}^\infty \frac{1}{\sqrt[3]{n}}, \qquad \sum_{n=1}^\infty \frac{1}{n^{15}}, \qquad \sum_{n=10}^\infty \frac{1}{n^{15}}, \qquad \sum_{n=100}^\infty \frac{1}{\sqrt[5]{n}},
$$

\n- $$
\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}
$$
 diverges since $p = 1/3 < 1$.
\n- $\sum_{n=1}^{\infty} \frac{1}{n^{15}}$ converges since $p = 15 > 1$.
\n

 -10.5

≮ 何 ≯ (≮ ヨ ≯ (∢ ヨ ≯

 $2Q$

重

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if $p > 1$ and diverges if $p \leq 1$.

$$
\sum_{n=1}^{\infty} \frac{1}{n^p}
$$
 converges for $p > 1$, diverges for $p \le 1$.

Example Determine if the following series converge or diverge:

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=10}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=100}^{\infty} \frac{1}{\sqrt[5]{n}},
$$

$$
\triangleright \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \text{ diverges since } p = 1/3 < 1.
$$

$$
\triangleright \sum_{n=1}^{\infty} \frac{1}{n^{15}}
$$
 converges since $p = 15 > 1$.

 \blacktriangleright $\sum_{n=10}^{\infty} \frac{1}{n^{15}}$ also diverges since a finite number of terms have no effect whether a series converges or diverges.

4. 0. 3.

→ 何 ▶ → 日 ▶ → 日 ▶

 $2Q$

э

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if $p > 1$ and diverges if $p \leq 1$.

$$
\sum_{n=1}^{\infty} \frac{1}{n^p}
$$
 converges for $p > 1$, diverges for $p \le 1$.

Example Determine if the following series converge or diverge:

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=10}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=100}^{\infty} \frac{1}{\sqrt[5]{n}},
$$

$$
\triangleright \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \text{ diverges since } p = 1/3 < 1.
$$

$$
\blacktriangleright \sum_{n=1}^{\infty} \frac{1}{n^{15}}
$$
 converges since $p = 15 > 1$.

- \blacktriangleright $\sum_{n=10}^{\infty} \frac{1}{n^{15}}$ also diverges since a finite number of terms have no effect whether a series converges or diverges.
- ▶ $\sum_{n=100}^{\infty} \frac{1}{\sqrt[5]{n}}$ conv/diverges if and only if $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}$ conv/div. This diverges since $p = 1/5 < 1$.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

G

 Ω