Integral Test

In this section, we see that we can sometimes decide whether a series converges or diverges by comparing it to an improper integral. The analysis in this section only applies to series $\sum a_n$, with positive terms, that is $a_n > 0$.

Integral Test Suppose f(x) is a positive decreasing continuous function on the interval $[1,\infty)$ with

$$f(n) = a_n$$
.

Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\int_1^{\infty} f(x) dx$ converges, that is:

If
$$\int_{1}^{\infty} f(x) dx$$
 is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
If $\int_{1}^{\infty} f(x) dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

Integral Test

In this section, we see that we can sometimes decide whether a series converges or diverges by comparing it to an improper integral. The analysis in this section only applies to series $\sum a_n$, with positive terms, that is $a_n > 0$.

Integral Test Suppose f(x) is a positive decreasing continuous function on the interval $[1,\infty)$ with

$$f(n) = a_n$$
.

Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\int_1^{\infty} f(x) dx$ converges, that is:

If
$$\int_{1}^{\infty} f(x)dx$$
 is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
If $\int_{1}^{\infty} f(x)dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

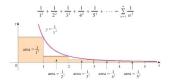
Note The result is still true if the condition that f(x) is decreasing on the interval [1,∞) is relaxed to "the function f(x) is decreasing on an interval [M,∞) for some number M ≥ 1."

We know from a previous lecture that $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converges if p > 1 and diverges if $p \le 1$.

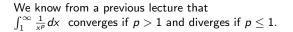
글 🕨 🖌 글 🕨

We know from a previous lecture that $\int_1^\infty \frac{1}{x^p} dx$ converges if p > 1 and diverges if $p \le 1$.

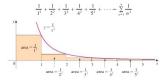
▶ In the picture we compare the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ to the improper integral $\int_{1}^{\infty} \frac{1}{x^2} dx$.



| ト イヨト イヨト

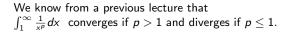


▶ In the picture we compare the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ to the improper integral $\int_{1}^{\infty} \frac{1}{x^2} dx$.

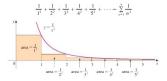


伺き くきき くきき

• The n th partial sum is $s_n = 1 + \sum_{n=2}^n \frac{1}{n^2} < 1 + \int_1^\infty \frac{1}{x^2} dx = 1 + 1 = 2.$



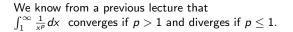
▶ In the picture we compare the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ to the improper integral $\int_{1}^{\infty} \frac{1}{x^2} dx$.



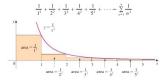
・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

- The n th partial sum is $s_n = 1 + \sum_{n=2}^n \frac{1}{n^2} < 1 + \int_1^\infty \frac{1}{x^2} dx = 1 + 1 = 2.$
- ► Since the sequence {s_n} is increasing (because each a_n > 0) and bounded, we can conclude that the sequence of partial sums converges and hence the series

$$\sum_{i=1}^{\infty} \frac{1}{n^2} \quad \text{converges.}$$



► In the picture we compare the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ to the improper integral $\int_{1}^{\infty} \frac{1}{x^2} dx$.



• The n th partial sum is $s_n = 1 + \sum_{n=2}^n \frac{1}{n^2} < 1 + \int_1^\infty \frac{1}{x^2} dx = 1 + 1 = 2.$

► Since the sequence {s_n} is increasing (because each a_n > 0) and bounded, we can conclude that the sequence of partial sums converges and hence the series

$$\sum_{i=1}^{\infty} \frac{1}{n^2}$$
 converges.

• **NOTE** We are not saying that $\sum_{i=1}^{\infty} \frac{1}{n^2} = \int_1^{\infty} \frac{1}{x^2} dx$ here.

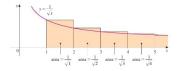
We know that $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converges if p > 1 and diverges if $p \leq 1$.

(本語) (本語) (本語) (二語)

We know that $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converges if p > 1 and diverges if $p \le 1$.

▶ In the picture, we compare the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ to the improper integral $\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$.

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots$$



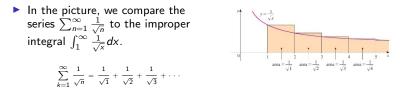
We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if p > 1 and diverges if $p \le 1$.

• In the picture, we compare the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ to the improper integral $\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$. $\sum_{k=1}^{\infty} \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots$

This time we draw the rectangles so that we get

$$s_n > s_{n-1} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n-1}} > \int_1^n \frac{1}{\sqrt{x}} dx$$

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if p > 1 and diverges if $p \le 1$.

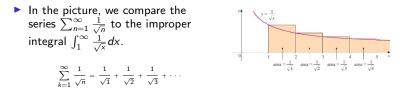


This time we draw the rectangles so that we get

$$s_n > s_{n-1} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n-1}} > \int_1^n \frac{1}{\sqrt{x}} dx$$

• Thus we see that $\lim_{n\to\infty} s_n > \lim_{n\to\infty} \int_1^n \frac{1}{\sqrt{x}} dx$.

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if p > 1 and diverges if $p \le 1$.



This time we draw the rectangles so that we get

$$s_n > s_{n-1} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n-1}} > \int_1^n \frac{1}{\sqrt{x}} dx$$

• Thus we see that $\lim_{n\to\infty} s_n > \lim_{n\to\infty} \int_1^n \frac{1}{\sqrt{x}} dx$.

• However, we know that $\int_{1}^{n} \frac{1}{\sqrt{x}} dx$ grows without bound and hence since $\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$ diverges, we can conclude that $\sum_{k=1}^{\infty} \frac{1}{\sqrt{n}}$ also diverges.

* @ ト * ヨ ト * ヨ ト

Integral Test Suppose f(x) is a positive decreasing continuous function on the interval $[1, \infty)$ with $f(n) = a_n$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\int_1^{\infty} f(x) dx$ converges **Example** Use the integral test to determine if the following series converges:

$$\sum_{n=1}^{\infty} \frac{2}{3n+5}$$

- A 🖻 🕨

Integral Test Suppose f(x) is a positive decreasing continuous function on the interval $[1, \infty)$ with $f(n) = a_n$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\int_1^{\infty} f(x) dx$ converges **Example** Use the integral test to determine if the following series converges:

$$\sum_{n=1}^{\infty} \frac{2}{3n+5}$$

• Consider the function
$$f(x) = \frac{2}{3x+5}$$
.

- A 🖻 🕨

Integral Test Suppose f(x) is a positive decreasing continuous function on the interval $[1, \infty)$ with $f(n) = a_n$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\int_1^{\infty} f(x) dx$ converges **Example** Use the integral test to determine if the following series converges:

$$\sum_{n=1}^{\infty} \frac{2}{3n+5}$$

- Consider the function $f(x) = \frac{2}{3x+5}$.
- ► This function is positive and continuous on the interval [1,∞). We see that it is decreasing by examining the derivative. f'(x) = ⁻⁶/_{(3x+5)²} < 0.</p>

・ 同下 ・ 国下 ・ 国下 …

Integral Test Suppose f(x) is a positive decreasing continuous function on the interval $[1, \infty)$ with $f(n) = a_n$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\int_1^{\infty} f(x) dx$ converges **Example** Use the integral test to determine if the following series converges:

$$\sum_{n=1}^{\infty} \frac{2}{3n+5}$$

- Consider the function $f(x) = \frac{2}{3x+5}$.
- ► This function is positive and continuous on the interval [1,∞). We see that it is decreasing by examining the derivative. f'(x) = ⁻⁶/_{(3x+5)²} < 0.</p>
- Since $f(n) = \frac{2}{3n+5}$, to determine convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{2}{3n+5}$ it suffices to check what happens to $\int_{1}^{\infty} f(x) dx$.

<ロ> (四) (四) (三) (三) (三)

Integral Test Suppose f(x) is a positive decreasing continuous function on the interval $[1, \infty)$ with $f(n) = a_n$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\int_1^{\infty} f(x) dx$ converges **Example** Use the integral test to determine if the following series converges:

$$\sum_{n=1}^{\infty} \frac{2}{3n+5}$$

• Consider the function
$$f(x) = \frac{2}{3x+5}$$
.

- ► This function is positive and continuous on the interval [1,∞). We see that it is decreasing by examining the derivative. f'(x) = ⁻⁶/_{(3x+5)²} < 0.</p>
- Since f(n) = ²/_{3n+5}, to determine convergence or divergence of the series ∑_{n=1}[∞] ²/_{3n+5} it suffices to check what happens to ∫₁[∞] f(x)dx.
 ∫₁[∞] ²/_{3x+5} dx = lim_{t→∞} ∫₁^t ²/_{3x+5} dx = ∫₇^{3t+5} ²/_{3u} du(u = 3x + 5) = lim_{t→∞} ²/₃ ln |u| |₇^{3t+5} = lim_{t→∞} ²/₃ [ln |3t + 5| - ln |7|] = ∞. (integral diverges).

<ロ> (四) (四) (三) (三) (三)

Integral Test Suppose f(x) is a positive decreasing continuous function on the interval $[1, \infty)$ with $f(n) = a_n$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if $\int_1^{\infty} f(x) dx$ converges **Example** Use the integral test to determine if the following series converges:

$$\sum_{n=1}^{\infty} \frac{2}{3n+5}$$

• Consider the function
$$f(x) = \frac{2}{3x+5}$$
.

- ► This function is positive and continuous on the interval [1,∞). We see that it is decreasing by examining the derivative. f'(x) = ⁻⁶/_{(3x+5)²} < 0.</p>
- Since f(n) = ²/_{3n+5}, to determine convergence or divergence of the series ∑_{n=1}[∞] ²/_{3n+5} it suffices to check what happens to ∫₁[∞] f(x)dx.
 ∫₁[∞] ²/_{3x+5} dx = lim_{t→∞} ∫₁^t ²/_{3x+5} dx = ∫₇^{3t+5} ²/_{3u} du(u = 3x + 5) = lim_{t→∞} ²/₃ ln |u| |₇^{3t+5} = lim_{t→∞} ²/₃ [ln |3t + 5| - ln |7|] = ∞. (integral diverges).

• Therefore, the series $\sum_{n=1}^{\infty} \frac{2}{3n+5}$ diverges.

・ロト ・ 得 ト ・ 言 ト ・ 言 ト

Example Use the integral test to determine if the following series converges:

$$\sum_{n=1}^{\infty} n e^{-n^2}$$

< 注入 < 注入

< 🗇 🕨

э

Example Use the integral test to determine if the following series converges:

$$\sum_{n=1}^{\infty} n e^{-n^2}$$

• Consider the function $f(x) = xe^{-x^2}$.

< 回 > < 回 > < 回 > …

Example Use the integral test to determine if the following series converges:

$$\sum_{n=1}^{\infty} n e^{-n^2}$$

• Consider the function $f(x) = xe^{-x^2}$.

This function is positive and continuous on the interval [1,∞). We see that it is decreasing by examining the derivative. $f'(x) = e^{-x^2} - 2e^{-x^2}x^2 = e^{-x^2}(1 - 2x^2) < 0 \text{ if } x \ge 1.$

▲◎ ▶ ▲ ○ ▶ ▲ ○ ▶ ─ ○

Example Use the integral test to determine if the following series converges:

$$\sum_{n=1}^{\infty} n e^{-n^2}$$

• Consider the function $f(x) = xe^{-x^2}$.

This function is positive and continuous on the interval [1,∞). We see that it is decreasing by examining the derivative. $f'(x) = e^{-x^2} - 2e^{-x^2}x^2 = e^{-x^2}(1 - 2x^2) < 0 \text{ if } x \ge 1.$

▶ Since $f(n) = ne^{-n^2}$, to determine convergence or divergence of the series $\sum_{n=1}^{\infty} ne^{-n^2}$ it suffices to check what happens to $\int_1^{\infty} f(x) dx$.

(本間) (本語) (本語) (二語)

Example Use the integral test to determine if the following series converges:

$$\sum_{n=1}^{\infty} n e^{-n^2}$$

• Consider the function $f(x) = xe^{-x^2}$.

This function is positive and continuous on the interval [1,∞). We see that it is decreasing by examining the derivative. $f'(x) = e^{-x^2} - 2e^{-x^2}x^2 = e^{-x^2}(1 - 2x^2) < 0 \text{ if } x \ge 1.$

► Since $f(n) = ne^{-n^2}$, to determine convergence or divergence of the series $\sum_{n=1}^{\infty} ne^{-n^2}$ it suffices to check what happens to $\int_{1}^{\infty} f(x)dx$.

$$\int_{1}^{\infty} x e^{-x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} x e^{-x^{2}} dx = \frac{1}{-2} \lim_{t \to \infty} \int_{-1}^{-t^{2}} e^{u} du$$
, (where
 $u = -x^{2}$) = $\lim_{t \to \infty} \frac{-1}{2} e^{u} \Big|_{-1}^{-t^{2}} = \lim_{t \to \infty} \frac{-1}{2} [e^{-t^{2}} - e^{-1}] = \frac{1}{2e}$. (integral converges).

(本間) (本語) (本語) (二語)

Example Use the integral test to determine if the following series converges:

$$\sum_{n=1}^{\infty} n e^{-n^2}$$

• Consider the function $f(x) = xe^{-x^2}$.

This function is positive and continuous on the interval [1,∞). We see that it is decreasing by examining the derivative. $f'(x) = e^{-x^2} - 2e^{-x^2}x^2 = e^{-x^2}(1 - 2x^2) < 0 \text{ if } x \ge 1.$

► Since $f(n) = ne^{-n^2}$, to determine convergence or divergence of the series $\sum_{n=1}^{\infty} ne^{-n^2}$ it suffices to check what happens to $\int_{1}^{\infty} f(x) dx$.

►
$$\int_{1}^{\infty} x e^{-x^2} dx = \lim_{t \to \infty} \int_{1}^{t} x e^{-x^2} dx = \frac{1}{-2} \lim_{t \to \infty} \int_{-1}^{-t^2} e^u du$$
, (where
 $u = -x^2$) = $\lim_{t \to \infty} \frac{-1}{2} e^u \Big|_{-1}^{-t^2} = \lim_{t \to \infty} \frac{-1}{2} [e^{-t^2} - e^{-1}] = \frac{1}{2e}$. (integral converges).

• Therefore, the series $\sum_{n=1}^{\infty} ne^{-n^2}$ converges.

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if p > 1 and diverges if $p \le 1$.

$$\sum_{n=1}^{\infty}rac{1}{n^p}$$
 converges for $p>1,$ diverges for $p\leq 1.$

Example Determine if the following series converge or diverge:

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=10}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=100}^{\infty} \frac{1}{\sqrt[5]{n}},$$

▲御♪ ▲ 国♪ ▲ 国♪ …

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if p > 1 and diverges if $p \le 1$.

$$\left| \sum_{n=1}^{\infty} \frac{1}{n^p}
ight|$$
 converges for $p>1$, diverges for $p\leq 1$.

Example Determine if the following series converge or diverge:

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=10}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=100}^{\infty} \frac{1}{\sqrt[5]{n}},$$

•
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$
 diverges since $p = 1/3 < 1$.

▲御♪ ▲ 国♪ ▲ 国♪ …

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if p > 1 and diverges if $p \le 1$.

$$\sum_{n=1}^{\infty}rac{1}{n^p}$$
 converges for $p>1,$ diverges for $p\leq 1.$

Example Determine if the following series converge or diverge:

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=10}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=100}^{\infty} \frac{1}{\sqrt[5]{n}},$$

▲御♪ ▲ 国♪ ▲ 国♪ …

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if p > 1 and diverges if $p \le 1$.

$$\sum_{n=1}^{\infty}rac{1}{n^p}$$
 converges for $p>1,$ diverges for $p\leq 1.$

Example Determine if the following series converge or diverge:

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=10}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=100}^{\infty} \frac{1}{\sqrt[5]{n}},$$

•
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$
 diverges since $p = 1/3 < 1$.

•
$$\sum_{n=1}^{\infty} \frac{1}{n^{15}}$$
 converges since $p = 15 > 1$.

▶ $\sum_{n=10}^{\infty} \frac{1}{n^{15}}$ also diverges since a finite number of terms have no effect whether a series converges or diverges.

米掃 とくほとくほとう ほ

We know that $\int_1^\infty \frac{1}{x^p} dx$ converges if p > 1 and diverges if $p \le 1$.

$$\sum_{n=1}^{\infty} rac{1}{n^{
ho}} \;\; {
m converges} \; {
m for} \;\;
ho>1, \;\; {
m diverges} \; {
m for} \;\;
ho\leq 1.$$

Example Determine if the following series converge or diverge:

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}, \qquad \sum_{n=1}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=10}^{\infty} \frac{1}{n^{15}}, \qquad \sum_{n=100}^{\infty} \frac{1}{\sqrt[5]{n}},$$

•
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$
 diverges since $p = 1/3 < 1$.

•
$$\sum_{n=1}^{\infty} \frac{1}{n^{15}}$$
 converges since $p = 15 > 1$.

- ▶ $\sum_{n=10}^{\infty} \frac{1}{n^{15}}$ also diverges since a finite number of terms have no effect whether a series converges or diverges.
- ► $\sum_{n=100}^{\infty} \frac{1}{\sqrt[5]{n}}$ conv/diverges if and only if $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}$ conv/div. This diverges since p = 1/5 < 1.

白 医水理 医水黄 医水黄 医二黄