Comparison Test

In this section, as we did with improper integrals, we see how to compare a series (with Positive terms) to a well known series to determine if it converges or diverges.

< ∃ →

Comparison Test

In this section, as we did with improper integrals, we see how to compare a series (with Positive terms) to a well known series to determine if it converges or diverges.

We will of course make use of our knowledge of *p*-series and geometric series.

$$\sum_{n=1}^{\infty} \frac{1}{n^{\rho}} \ \, \text{converges for} \ \ p>1, \ \, \text{diverges for} \ \ p\leq 1.$$

$$\sum_{n=1}^{\infty} ar^{n-1} \;\; ext{converges if} \;\; |r| < 1, \;\; ext{diverges if} \;\;\; |r| \geq 1.$$

Comparison Test

In this section, as we did with improper integrals, we see how to compare a series (with Positive terms) to a well known series to determine if it converges or diverges.

We will of course make use of our knowledge of *p*-series and geometric series.

$$\sum_{n=1}^{\infty} rac{1}{n^p} \;\; ext{converges for} \;\; p>1, \;\; ext{diverges for} \;\; p\leq 1.$$

$$\sum_{n=1}^{\infty} ar^{n-1}$$
 converges if $|r| < 1$, diverges if $|r| \ge 1$.

► Comparison Test Suppose that ∑ a_n and ∑ b_n are series with positive terms.

(i) If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, than $\sum a_n$ is also convergent.

(ii) If $\sum b_n$ is divergent and $a_n \ge b_n$ for all n, then $\sum a_n$ is divergent.

 $\ensuremath{\mathsf{Example 1}}$ Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{2^{-1/n}}{n^3}$$

▲圖▶ ▲ 圖▶ ▲ 圖▶ …

æ

Example 1 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{2^{-1/n}}{n^3}$$

First we check that $a_n > 0 \rightarrow$ true since $\frac{2^{-1/n}}{n^3} > 0$ for $n \ge 1$.

Example 1 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{2^{-1/n}}{n^3}$$

First we check that $a_n > 0 \rightarrow$ true since $\frac{2^{-1/n}}{n^3} > 0$ for $n \ge 1$.

• We have $2^{1/n} = \sqrt[n]{2} > 1$ for $n \ge 1$. Therefore $2^{-1/n} = \frac{1}{\sqrt[n]{2}} < 1$ for $n \ge 1$.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなで

Example 1 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{2^{-1/n}}{n^3}$$

First we check that $a_n > 0 \rightarrow$ true since $\frac{2^{-1/n}}{n^3} > 0$ for $n \ge 1$.

• We have $2^{1/n} = \sqrt[n]{2} > 1$ for $n \ge 1$. Therefore $2^{-1/n} = \frac{1}{\sqrt[n]{2}} < 1$ for $n \ge 1$.

• Therefore
$$\frac{2^{-1/n}}{n^3} < \frac{1}{n^3}$$
 for $n > 1$.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなで

Example 1 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{2^{-1/n}}{n^3}$$

First we check that $a_n > 0 \rightarrow \text{true since } \frac{2^{-1/n}}{n^3} > 0$ for $n \ge 1$.

• We have $2^{1/n} = \sqrt[n]{2} > 1$ for $n \ge 1$. Therefore $2^{-1/n} = \frac{1}{\sqrt[n]{2}} < 1$ for $n \ge 1$.

• Therefore
$$\frac{2^{-1/n}}{n^3} < \frac{1}{n^3}$$
 for $n > 1$.

• Since $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is a p-series with p > 1, it converges.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のへで

Example 1 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{2^{-1/n}}{n^3}$$

First we check that $a_n > 0 \rightarrow \text{true since } \frac{2^{-1/n}}{n^3} > 0$ for $n \ge 1$.

• We have $2^{1/n} = \sqrt[n]{2} > 1$ for $n \ge 1$. Therefore $2^{-1/n} = \frac{1}{\sqrt[n]{2}} < 1$ for $n \ge 1$.

• Therefore
$$\frac{2^{-1/n}}{n^3} < \frac{1}{n^3}$$
 for $n > 1$.

- Since $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is a p-series with p > 1, it converges.
- Comparing the above series with $\sum_{n=1}^{\infty} \frac{1}{n^3}$, we can conclude that $\sum_{n=1}^{\infty} \frac{2^{-1/n}}{n^3}$ also converges and $\sum_{n=1}^{\infty} \frac{2^{-1/n}}{n^3} \leq \sum_{n=1}^{\infty} \frac{1}{n^3}$

Example 2 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{2^{1/n}}{n}$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □

э

Example 2 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{2^{1/n}}{n}$$

First we check that $a_n > 0 \rightarrow$ true since $\frac{2^{1/n}}{n} > 0$ for $n \ge 1$.

< 回 > < 回 > < 回 > …

3

Example 2 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{2^{1/n}}{n}$$

First we check that $a_n > 0 \rightarrow$ true since $\frac{2^{1/n}}{n} > 0$ for $n \ge 1$.

• We have
$$2^{1/n} = \sqrt[n]{2} > 1$$
 for $n \ge 1$.

< 回 > < 回 > < 回 > …

3

Example 2 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{2^{1/n}}{n}$$

First we check that $a_n > 0 \rightarrow$ true since $\frac{2^{1/n}}{n} > 0$ for $n \ge 1$.

• We have
$$2^{1/n} = \sqrt[n]{2} > 1$$
 for $n \ge 1$.

• Therefore
$$\frac{2^{1/n}}{n} > \frac{1}{n}$$
 for $n > 1$.

|▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ | 臣 | のへで

Example 2 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{2^{1/n}}{n}$$

First we check that $a_n > 0 \rightarrow$ true since $\frac{2^{1/n}}{n} > 0$ for $n \ge 1$.

• We have
$$2^{1/n} = \sqrt[n]{2} > 1$$
 for $n \ge 1$.

• Therefore
$$\frac{2^{1/n}}{n} > \frac{1}{n}$$
 for $n > 1$.

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ is a p-series with p = 1 (a.k.a. the harmonic series), it diverges.

- * 母 * * き * * き * - き - めへの

Example 2 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{2^{1/n}}{n}$$

First we check that $a_n > 0 \rightarrow$ true since $\frac{2^{1/n}}{n} > 0$ for $n \ge 1$.

• We have
$$2^{1/n} = \sqrt[n]{2} > 1$$
 for $n \ge 1$.

• Therefore
$$\frac{2^{1/n}}{n} > \frac{1}{n}$$
 for $n > 1$.

- Since ∑_{n=1}[∞] 1/n is a p-series with p = 1 (a.k.a. the harmonic series), it diverges.
- ▶ Therefore, by comparison, we can conclude that $\sum_{n=1}^{\infty} \frac{2^{1/n}}{n}$ also diverges.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Example 3 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

Example 3 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

First we check that $a_n > 0$ -> true since $\frac{1}{n^2+1} > 0$ for $n \ge 1$.

★聞を ★ 置を ★ 置を 一 置

Example 3 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

First we check that $a_n > 0 \rightarrow$ true since $\frac{1}{n^2+1} > 0$ for $n \ge 1$.

• We have
$$n^2 + 1 > n^2$$
 for $n \ge 1$.

★聞を ★ 置を ★ 置を 一 置

Example 3 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

First we check that $a_n > 0 \rightarrow$ true since $\frac{1}{n^2+1} > 0$ for $n \ge 1$.

• We have
$$n^2 + 1 > n^2$$
 for $n \ge 1$.

• Therefore
$$\frac{1}{n^2+1} < \frac{1}{n^2}$$
 for $n > 1$.

★聞を ★ 置を ★ 置を 一 置

Example 3 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

First we check that $a_n > 0 \rightarrow$ true since $\frac{1}{n^2+1} > 0$ for $n \ge 1$.

• We have
$$n^2 + 1 > n^2$$
 for $n \ge 1$.

• Therefore
$$\frac{1}{n^2+1} < \frac{1}{n^2}$$
 for $n > 1$.

• Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a p-series with p = 2, it converges.

御下 不同下 不同下 一回

Example 3 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

First we check that $a_n > 0 \rightarrow$ true since $\frac{1}{n^2+1} > 0$ for $n \ge 1$.

• We have
$$n^2 + 1 > n^2$$
 for $n \ge 1$.

• Therefore
$$\frac{1}{n^2+1} < \frac{1}{n^2}$$
 for $n > 1$.

- Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a p-series with p = 2, it converges.
- ▶ Therefore, by comparison, we can conclude that $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ also converges and $\sum_{n=1}^{\infty} \frac{1}{n^2+1} \leq \sum_{n=1}^{\infty} \frac{1}{n^2}$.

(本間) (本語) (本語) (二語)

Example 4 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{n^{-2}}{2^n}$$

×間を × 目を × 目を

3

Example 4 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{n^{-2}}{2^n}$$

First we check that $a_n > 0 \rightarrow$ true since $\frac{n^{-2}}{2^n} = \frac{1}{n^{2}2^n} > 0$ for $n \ge 1$.

Example 4 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{n^{-2}}{2^n}$$

First we check that $a_n > 0$ -> true since $\frac{n^{-2}}{2^n} = \frac{1}{n^2 2^n} > 0$ for $n \ge 1$.

• We have
$$\frac{1}{n^2 2^n} < \frac{1}{n^2}$$
 for $n \ge 1$.

Example 4 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{n^{-2}}{2^n}$$

First we check that $a_n > 0$ -> true since $\frac{n^{-2}}{2^n} = \frac{1}{n^2 2^n} > 0$ for $n \ge 1$.

• We have
$$\frac{1}{n^2 2^n} < \frac{1}{n^2}$$
 for $n \ge 1$.

Example 4 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{n^{-2}}{2^n}$$

First we check that $a_n > 0 \rightarrow$ true since $\frac{n^{-2}}{2^n} = \frac{1}{n^{2}2^n} > 0$ for $n \ge 1$.

• We have
$$\frac{1}{n^2 2^n} < \frac{1}{n^2}$$
 for $n \ge 1$.

• Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a p-series with p = 2, it converges.

▲帰▶ ▲田▶ ▲田▶ 三田

Example 4 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{n^{-2}}{2^n}$$

First we check that $a_n > 0 \rightarrow$ true since $\frac{n^{-2}}{2^n} = \frac{1}{n^{22n}} > 0$ for $n \ge 1$.

• We have
$$\frac{1}{n^2 2^n} < \frac{1}{n^2}$$
 for $n \ge 1$.

• Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a p-series with p = 2, it converges.

▶ Therefore, by comparison, we can conclude that $\sum_{n=1}^{\infty} \frac{1}{n^2 2^n}$ also converges and $\sum_{n=1}^{\infty} \frac{1}{n^2 2^n} \leq \sum_{n=1}^{\infty} \frac{1}{n^2}$.

(本間) (本語) (本語) (語)

Example 5 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$

< E > < E >

< 🗇 🕨

э

Example 5 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$

► First we check that a_n > 0 -> true since ln n/n > 1/n > 0 for n ≥ e. Note that this allows us to use the test since a finite number of terms have no bearing on convergence or divergence.

▲ 国 ▶ | ▲ 国 ▶

Example 5 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$

- ► First we check that a_n > 0 -> true since ln n/n > 1/n > 0 for n ≥ e. Note that this allows us to use the test since a finite number of terms have no bearing on convergence or divergence.
- We have $\frac{\ln n}{n} > \frac{1}{n}$ for n > 3.

御下 木田下 木田下 三田

Example 5 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$

- ► First we check that a_n > 0 -> true since ln n/n > 1/n > 0 for n ≥ e. Note that this allows us to use the test since a finite number of terms have no bearing on convergence or divergence.
- We have $\frac{\ln n}{n} > \frac{1}{n}$ for n > 3.
- Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, we can conclude that $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ also diverges.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなで

Example 6 Use the comparison test to determine if the following series converges or diverges:

₹ Ξ > < Ξ >

э

Example 6 Use the comparison test to determine if the following series converges or diverges:

 $\sum_{n=1}^{\infty} \frac{1}{n!}$

First we check that $a_n > 0 \rightarrow$ true since $\frac{1}{n!} > 0$ for $n \ge 1$.

▲ 글 ▶ | ▲ 글 ▶

Example 6 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

- First we check that $a_n > 0 \rightarrow$ true since $\frac{1}{n!} > 0$ for $n \ge 1$.
- We have $n! = n(n-1)(n-2)\cdots 2 \cdot 1 > 2 \cdot 2 \cdot 2 \cdot 2 \cdots 2 \cdot 1 = 2^{n-1}$. Therefore $\frac{1}{n!} < \frac{1}{2^{n-1}}$.

3

Example 6 Use the comparison test to determine if the following series converges or diverges:

$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

- First we check that $a_n > 0 \rightarrow$ true since $\frac{1}{n!} > 0$ for $n \ge 1$.
- We have $n! = n(n-1)(n-2)\cdots 2 \cdot 1 > 2 \cdot 2 \cdot 2 \cdot 2 \cdots 2 \cdot 1 = 2^{n-1}$. Therefore $\frac{1}{n!} < \frac{1}{2^{n-1}}$.
- Since $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges, we can conclude that $\sum_{n=1}^{\infty} \frac{1}{n!}$ also converges.

・ 「「・ ・ 」 ・ ・ 」 コ

Limit Comparison Test

Limit Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If

$$\lim_{n\to\infty}\frac{a_n}{b_n}=a$$

where c is a finite number and c> 0, then either both series converge or both diverge. (Note $c\neq$ 0 or $\infty.$)

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

(Note that our previous comparison test is difficult to apply in this and most of the examples below.)

★ Ξ ► < Ξ ►</p>

Limit Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If

$$\lim_{n\to\infty}\frac{a_n}{b_n}=a$$

where c is a finite number and c > 0, then either both series converge or both diverge. (Note $c \neq 0$ or ∞ .)

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

(Note that our previous comparison test is difficult to apply in this and most of the examples below.)

► First we check that a_n > 0 -> true since a_n = 1/n²⁻¹ > 0 for n ≥ 2. (after we study absolute convergence, we see how to get around this restriction.)

Limit Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If

$$\lim_{n\to\infty}\frac{a_n}{b_n}=a$$

where c is a finite number and c > 0, then either both series converge or both diverge. (Note $c \neq 0$ or ∞ .)

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

(Note that our previous comparison test is difficult to apply in this and most of the examples below.)

- ► First we check that a_n > 0 -> true since a_n = 1/n²⁻¹ > 0 for n ≥ 2. (after we study absolute convergence, we see how to get around this restriction.)
- ▶ We will compare this series to $\sum_{n=2}^{\infty} \frac{1}{n^2}$ which converges, since it is a p-series with p = 2. $b_n = \frac{1}{n^2}$.

- 本間 と 本臣 と 本臣 と 一臣

Limit Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If

$$\lim_{n\to\infty}\frac{a_n}{b_n}=a$$

where c is a finite number and c>0, then either both series converge or both diverge. (Note $c\neq 0$ or $\infty.$)

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

(Note that our previous comparison test is difficult to apply in this and most of the examples below.)

- ► First we check that a_n > 0 -> true since a_n = 1/n²⁻¹ > 0 for n ≥ 2. (after we study absolute convergence, we see how to get around this restriction.)
- ▶ We will compare this series to $\sum_{n=2}^{\infty} \frac{1}{n^2}$ which converges, since it is a p-series with p = 2. $b_n = \frac{1}{n^2}$.

•
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1/(n^2 - 1)}{1/n^2} = \lim_{n \to \infty} \frac{n^2}{n^2 - 1} = \lim_{n \to \infty} \frac{1}{1 - (1/n^2)} = 1$$

- 本間 と 本臣 と 本臣 と 一臣

Limit Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If

$$\lim_{n\to\infty}\frac{a_n}{b_n}=a$$

where c is a finite number and c>0, then either both series converge or both diverge. (Note $c\neq 0$ or $\infty.$)

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

(Note that our previous comparison test is difficult to apply in this and most of the examples below.)

- ► First we check that a_n > 0 -> true since a_n = 1/n²⁻¹ > 0 for n ≥ 2. (after we study absolute convergence, we see how to get around this restriction.)
- ▶ We will compare this series to $\sum_{n=2}^{\infty} \frac{1}{n^2}$ which converges, since it is a p-series with p = 2. $b_n = \frac{1}{n^2}$.

►
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{1/(n^2-1)}{1/n^2} = \lim_{n\to\infty} \frac{n^2}{n^2-1} = \lim_{n\to\infty} \frac{1}{1-(1/n^2)} = 1$$

• Since c = 1 > 0, we can conclude that both series converge.

Limit Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with **positive terms**. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ where c is a **finite number** and c > 0, then either both series converge or both diverge. (Note $c \neq 0$ or ∞ .) **Example** Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{n^2 + 2n + 1}{n^4 + n^2 + 2n + 1}$$

< 回 > < 回 > < 回 > …

Limit Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with **positive terms**. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ where c is a **finite number** and c > 0, then either both series converge or both diverge. (Note $c \neq 0$ or ∞ .) **Example** Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{n^2 + 2n + 1}{n^4 + n^2 + 2n + 1}$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{n^2 + 2n+1}{n^4 + n^2 + 2n+1} > 0$ for $n \ge 1$.

(本間) (本語) (本語) (語)

Limit Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with **positive terms**. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ where c is a **finite number** and c > 0, then either both series converge or both diverge. (Note $c \neq 0$ or ∞ .) **Example** Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{n^2 + 2n + 1}{n^4 + n^2 + 2n + 1}$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{n^2+2n+1}{n^4+n^2+2n+1} > 0$ for $n \ge 1$.

► For a rational function, the rule of thumb is to compare the series to the series ∑ n^p/n^q}, where p is the degree of the numerator and q is the degree of the denominator.

Limit Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with **positive terms**. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ where c is a **finite number** and c > 0, then either both series converge or both diverge. (Note $c \neq 0$ or ∞ .) **Example** Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{n^2 + 2n + 1}{n^4 + n^2 + 2n + 1}$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{n^2+2n+1}{n^4+n^2+2n+1} > 0$ for $n \ge 1$.

- ► For a rational function, the rule of thumb is to compare the series to the series ∑ n^p/n^q}, where p is the degree of the numerator and q is the degree of the denominator.
- We will compare this series to $\sum_{n=1}^{\infty} \frac{n^2}{n^4} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ which converges, since it is a p-series with p = 2. $b_n = \frac{1}{n^2}$.

Limit Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with **positive terms**. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ where c is a **finite number** and c > 0, then either both series converge or both diverge. (Note $c \neq 0$ or ∞ .) **Example** Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{n^2 + 2n + 1}{n^4 + n^2 + 2n + 1}$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{n^2 + 2n + 1}{n^4 + n^2 + 2n + 1} > 0$ for $n \ge 1$.

- ► For a rational function, the rule of thumb is to compare the series to the series ∑ n^p/n^q, where p is the degree of the numerator and q is the degree of the denominator.
- We will compare this series to $\sum_{n=1}^{\infty} \frac{n^2}{n^4} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ which converges, since it is a p-series with p = 2. $b_n = \frac{1}{n^2}$.

►
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} (\frac{n^2+2n+1}{n^4+n^2+2n+1})/(1/n^2) = \lim_{n\to\infty} \frac{n^4+2n^3+n^2}{n^4+n^2+2n+1} = \lim_{n\to\infty} \frac{1+2/n+1/n^2}{1+1/n^2+2/n^3+1/n^4} = 1.$$

Limit Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with **positive terms**. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ where c is a **finite number** and c > 0, then either both series converge or both diverge. (Note $c \neq 0$ or ∞ .) **Example** Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{n^2 + 2n + 1}{n^4 + n^2 + 2n + 1}$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{n^2 + 2n + 1}{n^4 + n^2 + 2n + 1} > 0$ for $n \ge 1$.

- For a rational function, the rule of thumb is to compare the series to the series ∑ n^p/n^q}, where p is the degree of the numerator and q is the degree of the denominator.
- We will compare this series to $\sum_{n=1}^{\infty} \frac{n^2}{n^4} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ which converges, since it is a p-series with p = 2. $b_n = \frac{1}{n^2}$.

►
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \left(\frac{n^2+2n+1}{n^4+n^2+2n+1}\right)/(1/n^2) = \lim_{n\to\infty} \frac{n^4+2n^3+n^2}{n^4+n^2+2n+1} = \lim_{n\to\infty} \frac{1+2/n+1/n^2}{1+1/n^2+2/n^3+1/n^4} = 1.$$

► Since c = 1 > 0, we can conclude that both series converge.

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{2n+1}{\sqrt{n^3+1}}$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{2n+1}{\sqrt{n^3+1}}$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{2n+1}{\sqrt{n^3+1}} > 0$ for $n \ge 1$.

- * 母 * * き * * き * - き - めへの

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{2n+1}{\sqrt{n^3+1}}$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{2n+1}{\sqrt{n^3+1}} > 0$ for $n \ge 1$.

▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^3}} = \sum_{n=1}^{\infty} \frac{n}{n^{3/2}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which diverges, since it is a p-series with p = 1/2. $b_n = \frac{1}{\sqrt{n}}$.

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{2n+1}{\sqrt{n^3+1}}$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{2n+1}{\sqrt{n^3+1}} > 0$ for $n \ge 1$.

▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^3}} = \sum_{n=1}^{\infty} \frac{n}{n^{3/2}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which diverges, since it is a p-series with p = 1/2. $b_n = \frac{1}{\sqrt{n}}$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \left(\frac{2n+1}{\sqrt{n^3+1}}\right) / \left(1/\sqrt{n}\right) = \lim_{n \to \infty} \frac{+2n^{3/2} + \sqrt{n}}{\sqrt{n^3+1}} = \lim_{n \to \infty} \frac{(2n^{3/2} + \sqrt{n})/n^{3/2}}{\sqrt{n^3+1}/n^{3/2}} = \lim_{n \to \infty} \frac{(2+1/n)}{\sqrt{(n^3+1)/n^3}} = \lim_{n \to \infty} \frac{(2+1/n)}{\sqrt{(1+1/n^3)}} = 2.$$

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{2n+1}{\sqrt{n^3+1}}$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{2n+1}{\sqrt{n^3+1}} > 0$ for $n \ge 1$.

▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^3}} = \sum_{n=1}^{\infty} \frac{n}{n^{3/2}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which diverges, since it is a p-series with p = 1/2. $b_n = \frac{1}{\sqrt{n}}$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \left(\frac{2n+1}{\sqrt{n^3+1}}\right) / \left(1/\sqrt{n}\right) = \lim_{n \to \infty} \frac{+2n^{3/2} + \sqrt{n}}{\sqrt{n^3+1}} = \lim_{n \to \infty} \frac{(2n^{3/2} + \sqrt{n})/n^{3/2}}{\sqrt{n^3+1}/n^{3/2}} = \lim_{n \to \infty} \frac{(2+1/n)}{\sqrt{(n^3+1)/n^3}} = \lim_{n \to \infty} \frac{(2+1/n)}{\sqrt{(1+1/n^3)}} = 2.$$

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{2n+1}{\sqrt{n^3+1}}$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{2n+1}{\sqrt{n^3+1}} > 0$ for $n \ge 1$.

▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^3}} = \sum_{n=1}^{\infty} \frac{n}{n^{3/2}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which diverges, since it is a p-series with p = 1/2. $b_n = \frac{1}{\sqrt{n}}$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \left(\frac{2n+1}{\sqrt{n^3+1}}\right) / \left(1/\sqrt{n}\right) = \lim_{n \to \infty} \frac{+2n^{3/2} + \sqrt{n}}{\sqrt{n^3+1}} = \lim_{n \to \infty} \frac{(2n^{3/2} + \sqrt{n})/n^{3/2}}{\sqrt{n^3+1}/n^{3/2}} = \lim_{n \to \infty} \frac{(2+1/n)}{\sqrt{(n^3+1)/n^3}} = \lim_{n \to \infty} \frac{(2+1/n)}{\sqrt{(1+1/n^3)}} = 2.$$

Since c = 2 > 0, we can conclude that both series diverge.

▲御♪ ▲ 国♪ ▲ 国♪ …

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{e}{2^n - 1}$$

★週▶ ★ 国▶ ★ 国▶ →

æ

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{e}{2^n - 1}$$

• First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{e}{2^n - 1} > 0$ for $n \ge 1$.

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ のへで

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{e}{2^n - 1}$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{e}{2^n - 1} > 0$ for $n \ge 1$.

▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{1}{2^n}$ which converges, since it is a geometric series with r = 1/2 < 1. $b_n = \frac{1}{2^n}$.

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{e}{2^n - 1}$$

- First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{e}{2^n 1} > 0$ for $n \ge 1$.
- ▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{1}{2^n}$ which converges, since it is a geometric series with r = 1/2 < 1. $b_n = \frac{1}{2^n}$.

過き くほき くほう

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{e}{2^n - 1}$$

- First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{e}{2^n 1} > 0$ for $n \ge 1$.
- ▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{1}{2^n}$ which converges, since it is a geometric series with r = 1/2 < 1. $b_n = \frac{1}{2^n}$.

• Since c = e > 0, we can conclude that both series converge.

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{2^{1/n}}{n^2}$$

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ …

∃ • クへ (~

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{2^{1/n}}{n^2}$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{2^{1/n}}{n^2} > 0$ for $n \ge 1$.

★聞を ★ 置を ★ 置を 一 置

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{2^{1/n}}{n^2}$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{2^{1/n}}{n^2} > 0$ for $n \ge 1$.

▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{1}{n^2}$ which converges, since it is a p-series with p = 2 > 1. $b_n = \frac{1}{n^2}$.

伺き くほき くほう

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{2^{1/n}}{n^2}$$

- First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{2^{1/n}}{n^2} > 0$ for $n \ge 1$.
- ▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{1}{n^2}$ which converges, since it is a p-series with p = 2 > 1. $b_n = \frac{1}{n^2}$.

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \left(\frac{2^{1/n}}{n^2}\right) / \left(1/n^2\right) = \lim_{n\to\infty} 2^{1/n} = \lim_{n\to\infty} e^{\frac{\ln 2}{n}} = 1.$$

伺き くほき くほう

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \frac{2^{1/n}}{n^2}$$

- First we check that $a_n > 0 \rightarrow$ true since $a_n = \frac{2^{1/n}}{n^2} > 0$ for $n \ge 1$.
- ▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{1}{n^2}$ which converges, since it is a p-series with p = 2 > 1. $b_n = \frac{1}{n^2}$.
- $\blacktriangleright \lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \left(\frac{2^{1/n}}{n^2}\right) / (1/n^2) = \lim_{n\to\infty} 2^{1/n} = \lim_{n\to\infty} e^{\frac{\ln 2}{n}} = 1.$
- Since c = 1 > 0, we can conclude that both series converge.

< 回 > < 回 > < 回 > …

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^3 3^{-n}$$

|→ @ ▶ → 注 ▶ → 注 → のへで

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^3 3^{-n}$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \left(1 + \frac{1}{n}\right)^3 3^{-n} > 0$ for $n \ge 1$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^3 3^{-n}$$

First we check that
$$a_n > 0 \rightarrow$$
 true since $a_n = \left(1 + \frac{1}{n}\right)^3 3^{-n} > 0$ for $n > 1$.

▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{1}{3^n}$ which converges, since it is a geometric series with r = 1/3 < 1. $b_n = \frac{1}{3^n}$.

★週 ▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^3 3^{-n}$$

First we check that
$$a_n > 0 \rightarrow$$
 true since $a_n = \left(1 + \frac{1}{n}\right)^3 3^{-n} > 0$ for $n > 1$.

▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{1}{3^n}$ which converges, since it is a geometric series with r = 1/3 < 1. $b_n = \frac{1}{3^n}$.

★週 ▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^3 3^{-n}$$

First we check that
$$a_n > 0 \rightarrow$$
 true since $a_n = \left(1 + \frac{1}{n}\right)^3 3^{-n} > 0$ for $n \ge 1$.

▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{1}{3^n}$ which converges, since it is a geometric series with r = 1/3 < 1. $b_n = \frac{1}{3^n}$.

• Since c = 1 > 0, we can conclude that both series converge.

(本部) (本語) (本語) (二語

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \sin\left(\frac{\pi}{n}\right)$$

★週▶ ★ 国▶ ★ 国▶ →

æ

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \sin\left(\frac{\pi}{n}\right)$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \sin\left(\frac{\pi}{n}\right) > 0$ for n > 1.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

э

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \sin\left(\frac{\pi}{n}\right)$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = sin\left(\frac{\pi}{n}\right) > 0$ for n > 1.

▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{\pi}{n} = \pi \sum_{n=1}^{\infty} \frac{1}{n}$ which diverges, since it is a constant times a p-series with p = 1. $b_n = \frac{\pi}{n}$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \sin\left(\frac{\pi}{n}\right)$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \sin\left(\frac{\pi}{n}\right) > 0$ for n > 1.

▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{\pi}{n} = \pi \sum_{n=1}^{\infty} \frac{1}{n}$ which diverges, since it is a constant times a p-series with p = 1. $b_n = \frac{\pi}{n}$.

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \left(\sin\left(\frac{\pi}{n}\right) \right) / \left(\frac{\pi}{n}\right) = \lim_{x\to0} \frac{\sin x}{x} = 1.$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Example Test the following series for convergence using the Limit Comparison test:

$$\sum_{n=1}^{\infty} \sin\left(\frac{\pi}{n}\right)$$

First we check that $a_n > 0 \rightarrow$ true since $a_n = \sin\left(\frac{\pi}{n}\right) > 0$ for n > 1.

▶ We will compare this series to $\sum_{n=1}^{\infty} \frac{\pi}{n} = \pi \sum_{n=1}^{\infty} \frac{1}{n}$ which diverges, since it is a constant times a p-series with p = 1. $b_n = \frac{\pi}{n}$.

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \left(\sin\left(\frac{\pi}{n}\right) \right) / \left(\frac{\pi}{n}\right) = \lim_{x\to0} \frac{\sin x}{x} = 1.$$

• Since c = 1 > 0, we can conclude that both series diverge.

<週 → < 注 → < 注 → □ Ξ