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Strategy for testing series

In this section, we face the problem of deciding which method to use to test a
series for convergence or divergence. You should start with a firm knowledge of
each test and the ability to recall quickly the details of each test.

I Divergence Test
If limn→∞ an does not exist or if limn→∞ an 6= 0, then

P∞
i=1 an is divergent.

I Geometric series The geometric series
P∞

n=1 arn−1 = a + ar + ar 2 + · · ·
is convergent if |r | < 1 and its sum is

∞X
n=1

arn−1 =
a

1− r
|r | < 1.

If |r | ≥ 1, the geometric series is divergent.

I Harmonic Series The following series, known as the harmonic series,
diverges:

P∞
k=1

1
n

.

I Telescoping Series These are series of the form
P

f (n)− f (n + 1) or
similar series with a lot of cancellation. It is easy to calculate the partial
sums and take the limit.
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More Tests for convergence (positive terms)

Integral Test Suppose f (x) is a positive decreasing continuous function on
the interval [1,∞) and f (n) = an. Then the series

P∞
n=1 an is convergent if and

only if
R∞

1
f (x)dx converges, that is:

If

Z ∞
1

f (x)dx is convergent, then
∞X
n=1

an is convergent.

If

Z ∞
1

f (x)dx is divergent, then
∞X
n=1

an is divergent.

I p-series
P∞

n=1
1
np converges for p > 1, diverges for p ≤ 1.

I Comparison Test Suppose that
P

an and
P

bn are series with positive
terms.

(i) If
P

bn is convergent and an ≤ bn for all n, then
P

an is also
convergent.

(ii) If
P

bn is divergent and an ≥ bn for all n, then
P

an is divergent.
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Limit Comparison Test

Limit Comparison Test Suppose that
P

an and
P

bn are series with positive
terms. If

lim
n→∞

an

bn
= c

where c is a finite number and c > 0, then either both series converge or both
diverge.
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Alternating series

Alternating Series test If the alternating series

∞X
i=1

(−1)n−1bn = b1 − b2 + b3 − b4 + . . . bn > 0

satisfies
(i) bn+1 ≤ bn for all n

(ii) lim
n→∞

bn = 0

then the series converges.
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Absolute Convergence and Conditional Convergence

Definition A series
P

an is called absolutely convergent if the series of
absolute values

P
|an| is convergent.

If the terms of the series an are positive, absolute convergence is the same as
convergence.

Definition A series
P

an is called conditionally convergent if the series is
convergent but not absolutely convergent.

Theorem If a series is absolutely convergent, then it is convergent, that is ifP
|an| is convergent, then

P
an is convergent.
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Ratio and nth Root Test

Ratio test Let
P∞

n=1 an be a series (the terms may be positive or negative).

I If limn→∞

˛̨̨
an+1

an

˛̨̨
= L < 1, then the series

P∞
n=1 an converges absolutely

(and hence is convergent).

I If limn→∞

˛̨̨
an+1

an

˛̨̨
= L > 1 or limn→∞

˛̨̨
an+1

an

˛̨̨
=∞, then the series

P∞
n=1 an

is divergent.

I If limn→∞

˛̨̨
an+1

an

˛̨̨
= 1, then the Ratio test is inconclusive and we cannot

determine if the series converges or diverges using this test.

I Root Test Let
P∞

n=1 an be a series (the terms may be positive or
negative).

I If limn→∞
n
p
|an| = L < 1, then the series

P∞
n=1 an converges

absolutely (and hence is convergent).
I If limn→∞

n
p
|an| = L > 1 or limn→∞

n
p
|an| =∞, then the seriesP∞

n=1 an is divergent.
I If limn→∞

n
p
|an| = 1, then the Root test is inconclusive and we

cannot determine if the series converges or diverges using this test.
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Trying To decide which Test to use

It is best to have worked several examples from each of the previous sections to
get a feel for where each of the tests we have learned works best. If

P
an is a

series that we wish to test for convergence/divergence we have the following
tests:

I Divergence test, If limn→∞ an 6= 0, the series diverges.

I We may recognize it as a geometric series
P

arn, a p-series
P

1
np or a

telescoping series
P

f (n)− f (n + 1).

I It may be the sum or difference of two well known convergent series and
we can break the series into the sum or difference of these two convergent
series.

I We may be able to use the integral test, we need a decreasing continuous
function f (x) on the interval [1,∞) with f (n) = an for which it is easy to
evaluate the integral. This can only be applied to series with positive
terms (but we could use it to prove absolute convergence which would
give convergence). (It is best to consider the comparison test, ratio test
and root test prior to trying the integral test).

Annette Pilkington Strategy for testing series



Strategy for testing series Alternating series Absolute and Conditional Convergence Ratio and Root Test Trying To decide which Test to use Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10

Trying To decide which Test to use

It is best to have worked several examples from each of the previous sections to
get a feel for where each of the tests we have learned works best. If

P
an is a

series that we wish to test for convergence/divergence we have the following
tests:

I Divergence test, If limn→∞ an 6= 0, the series diverges.

I We may recognize it as a geometric series
P

arn, a p-series
P

1
np or a

telescoping series
P

f (n)− f (n + 1).

I It may be the sum or difference of two well known convergent series and
we can break the series into the sum or difference of these two convergent
series.

I We may be able to use the integral test, we need a decreasing continuous
function f (x) on the interval [1,∞) with f (n) = an for which it is easy to
evaluate the integral. This can only be applied to series with positive
terms (but we could use it to prove absolute convergence which would
give convergence). (It is best to consider the comparison test, ratio test
and root test prior to trying the integral test).

Annette Pilkington Strategy for testing series



Strategy for testing series Alternating series Absolute and Conditional Convergence Ratio and Root Test Trying To decide which Test to use Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10

Trying To decide which Test to use

It is best to have worked several examples from each of the previous sections to
get a feel for where each of the tests we have learned works best. If

P
an is a

series that we wish to test for convergence/divergence we have the following
tests:

I Divergence test, If limn→∞ an 6= 0, the series diverges.

I We may recognize it as a geometric series
P

arn, a p-series
P

1
np or a

telescoping series
P

f (n)− f (n + 1).

I It may be the sum or difference of two well known convergent series and
we can break the series into the sum or difference of these two convergent
series.

I We may be able to use the integral test, we need a decreasing continuous
function f (x) on the interval [1,∞) with f (n) = an for which it is easy to
evaluate the integral. This can only be applied to series with positive
terms (but we could use it to prove absolute convergence which would
give convergence). (It is best to consider the comparison test, ratio test
and root test prior to trying the integral test).

Annette Pilkington Strategy for testing series



Strategy for testing series Alternating series Absolute and Conditional Convergence Ratio and Root Test Trying To decide which Test to use Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10

Trying To decide which Test to use

It is best to have worked several examples from each of the previous sections to
get a feel for where each of the tests we have learned works best. If

P
an is a

series that we wish to test for convergence/divergence we have the following
tests:

I Divergence test, If limn→∞ an 6= 0, the series diverges.

I We may recognize it as a geometric series
P

arn, a p-series
P

1
np or a

telescoping series
P

f (n)− f (n + 1).

I It may be the sum or difference of two well known convergent series and
we can break the series into the sum or difference of these two convergent
series.

I We may be able to use the integral test, we need a decreasing continuous
function f (x) on the interval [1,∞) with f (n) = an for which it is easy to
evaluate the integral. This can only be applied to series with positive
terms (but we could use it to prove absolute convergence which would
give convergence). (It is best to consider the comparison test, ratio test
and root test prior to trying the integral test).

Annette Pilkington Strategy for testing series



Strategy for testing series Alternating series Absolute and Conditional Convergence Ratio and Root Test Trying To decide which Test to use Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10

Trying To decide which Test to use

It is best to have worked several examples from each of the previous sections to
get a feel for where each of the tests we have learned works best. If

P
an is a

series that we wish to test for convergence/divergence we have the following
tests:

I Divergence test, If limn→∞ an 6= 0, the series diverges.

I We may recognize it as a geometric series
P

arn, a p-series
P

1
np or a

telescoping series
P

f (n)− f (n + 1).

I It may be the sum or difference of two well known convergent series and
we can break the series into the sum or difference of these two convergent
series.

I We may be able to use the integral test, we need a decreasing continuous
function f (x) on the interval [1,∞) with f (n) = an for which it is easy to
evaluate the integral. This can only be applied to series with positive
terms (but we could use it to prove absolute convergence which would
give convergence). (It is best to consider the comparison test, ratio test
and root test prior to trying the integral test).

Annette Pilkington Strategy for testing series



Strategy for testing series Alternating series Absolute and Conditional Convergence Ratio and Root Test Trying To decide which Test to use Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10

Still Trying To decide which Test to use

I A series that is roughly of the form
P

1
np can be compared to a p-series

with the limit comparison test. A series that is roughly of the form
P

rn

can be compared to a geometric series with the limit comparison test.

I We may be able to use the comparison test directly or the limit
comparison test. This only applies to series with positive terms (but we
could use it to prove absolute convergence which would give convergence).
This is especially useful if the terms an are rational functions of n. We
divide the highest power of n in the denominator by the highest power of
n in the numerator to determine which p-series to compare to.

I For series with negative terms, keep in mind that absolute convergence
implies convergence.

I We may be able to use the alternating series test, if the terms are
decreasing in absolute value and the limn→∞ |an| = 0, then the series
converges. Otherwise the test is inconclusive.
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Still Trying To decide which Test to use

I If the series has factorials or powers of a constant, The Ratio test is
probably going to work. The ratio test will not work for series similar to
p-series.

I If the terms of the series are n-th powers, the root test will probably work.

I if the ratio test is inconclusive, the n th root test will not work and vice
versa. However the alternating series test may work.
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Example 1

Example State whether the following series converges or diverges and why.

∞X
n=1

(−1)n−1

√
n

.

I This series converges by the Alternating series test.

I limn→∞
1√
n

= 0 and
1√
n+1

< 1√
n

for all n ≥ 1.
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Example 2

Example State whether the following series converges or diverges and why.

∞X
n=1

en

10n
.

I This series converges since it is a geometric series with
r = e

10
< 1.
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Example 3

Example State whether the following series converges or diverges and why.

∞X
n=1

n + 2

n3 + 2n + 1
.

I We use the limit comparison test

I to compare this series to the p-series
P∞

n=1
1
n2 , which converges.

I

lim
n→∞

n + 2

n3 + 2n + 1

. 1

n2
= lim

n→∞

n3 + 2n2

n3 + 2n + 1

= lim
n→∞

1 + 2/n

1 + 2/n2 + 1/n3
= 1 > 0.

I Therefore the series
P∞

n=1
n+2

n3+2n+1
also converges.
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(
n
√
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n
p
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(
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√
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n!
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(n + 1)!
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= lim

n→∞

2

n
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Example State whether the following series converges or diverges and why.

∞X
n=1

n4 + 2

2n + 1
.

I We use the divergence test.

I

lim
n→∞

n4 + 2

2n + 1
= lim

n→∞

n3 + 2/n

2 + 1/n
=∞ 6= 0.

I Therefore the series
P∞

n=1
n4+2
2n+1

diverges by the divergence test.
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Strategy for testing series Alternating series Absolute and Conditional Convergence Ratio and Root Test Trying To decide which Test to use Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10

Example 8

Example State whether the following series converges or diverges and why.
∞X
n=1

ln n

n2
=
X

an

I Here we use the integral test.

I Let f (x) = ln x
x2 . We have f (n) = an ≥ 0.

I To verify that f (x) is decreasing for all x > M for some M, we check the

derivative f ′(x) = x2/x−(ln x)2x

x4 = x(1−2 ln x)

x4 < 0 for x ≥ 2.

I Now we calculate
R∞

1
ln x
x2 dx = limt→∞

R t

1
ln x
x2 dx .

I Using integration by parts, with u = ln x , dv = 1
x2 dx , we get

du = 1/x dx and v = −1
x

. Our integral becomes:

limt→∞

 
− ln x

x

˛̨̨t
1
−
R t

1
−1
x2 dx

!
= limt→∞

 
− ln t

t
+ −1

x

˛̨̨t
1

!
=

limt→∞

 
− ln t

t
+ (1− 1

t
)

!
= limt→∞

− ln t
t

+ 1

I Using L’Hospital’s rule, we have that this limit equals 1 and is finite.

I Hence the above series converges.
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I Now we calculate
R∞

1
ln x
x2 dx = limt→∞

R t

1
ln x
x2 dx .

I Using integration by parts, with u = ln x , dv = 1
x2 dx , we get

du = 1/x dx and v = −1
x

. Our integral becomes:

limt→∞

 
− ln x

x

˛̨̨t
1
−
R t

1
−1
x2 dx

!
= limt→∞

 
− ln t

t
+ −1

x

˛̨̨t
1

!
=

limt→∞

 
− ln t

t
+ (1− 1

t
)

!
= limt→∞

− ln t
t

+ 1

I Using L’Hospital’s rule, we have that this limit equals 1 and is finite.

I Hence the above series converges.
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Strategy for testing series Alternating series Absolute and Conditional Convergence Ratio and Root Test Trying To decide which Test to use Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10

Example 9

Example State whether the following series converges or diverges and why.

∞X
n=1

n + en

n2 + 10n

I Here we use the limit comparison test.

I We compare the series with the geometric series
P∞

n=1
en

10n =
P∞

n=1

“
e
10

”n

which converges because r = e/10 < 1.

I

lim
n→∞

n+en

n2+10n

en

10n

= lim
n→∞

(n/en) + 1

(n2/10n) + 1
= 1 (byL′Hopital ′srule).

I Since 0 < 1 <∞, we have that Both Series Converge.
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Strategy for testing series Alternating series Absolute and Conditional Convergence Ratio and Root Test Trying To decide which Test to use Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10

Example 10

Example State whether the following series converges or diverges and why.

∞X
n=1

“ n

n + 2

”n2

I We use the Root Test.

I limn→∞
n
p
|an| = limn→∞

 
n

n+2

!n

= limx→∞

 
x

x+2

!x

= e limx→∞ x ln( x
x+2

)

I We calculate the limit in the power limx→∞ x ln( x
x+2

) = limx→∞
ln( x

x+2
)

1/x

I By L’Hospital, this equals

lim
x→∞

((x + 2)/x)[(x + 2)− (x)]/(x + 2)2

−1/x2
= lim

x→∞

(1/x)− (1/(x + 2))

−1/x2

= lim
x→∞

(−x +
x2

x + 2
) = lim

x→∞

−x(x + 2) + x2

x + 2
= lim

x→∞

−2x

x + 2
= −2.

I Therefore
lim

n→∞
n
p
|an| = e−2 < 1

and the series converges by the root test.
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