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So Far

We saw last day that some functions are equal to a power series on part of
their domain. For example

f (x) =
1

1− x
= 1 + x + x2 + x3 + · · · =

∞X
n=0

xn, for − 1 < x < 1,

ln(1+x) = x−x2

2
+

x3

2
−x4

4
+· · ·+(−1)n xn+1

n + 1
+· · · =

∞X
n=0

(−1)n xn+1

n + 1
for −1 < x < 1,

tan−1(x) =
∞X
n=0

(−1)n x2n+1

2n + 1
= x− x3

3
+

x5

5
− x7

7
−· · · on the interval (−1, 1).

In this section, we will develop a method to find power series

expansions/representations for a wider range of functions and devise a method

to identify the values of x for which the function equals the power series

expansion. (This is not always the entire interval of convergence of the power

series.)
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Definition

Definition We say that f (x) has a power series expansion at a if

f (x) =
∞X
n=0

cn(x − a)n for all x such that |x − a| < R

for some R > 0

Note f (x) has a power series expansion at 0 if

f (x) =
∞X
n=0

cnx
n for all x such that |x | < R

for some R > 0.

Example We see that f (x) = 1
1−x

, g(x) = ln(1 + x) and h(x) = tan−1 x all
have powers series expansions at 0.
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Questions

Sometimes a function has a power series expansion at a point a and sometimes
it does not. One of the benefits of the existence of such an expansion is that
we can approximate values of the function with a polynomial. Another is that
we can actually find the sum of some series.
Our main questions are

I Q1. If a function f (x) has a power series expansion at a, can we tell
what that power series expansion is?

I Q2. For which values of x do the values of f (x) and the sum of the
power series expansion coincide?

I We will see that in answer to question 1, we can give a precise formula for
the power series.

I We will examine the error in estimation by partial sums to answer
question 2.
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Taylor and McLaurin Series

Definition If f (x) is a function with infinitely many derivatives at a, the Taylor
Series of the function f (x) at/about a is the power series

T (x) =
∞X
n=0

f (n)(a)

n!
(x − a)n

= f (a) +
f ′(a)

1!
(x − a) +

f (2)(a)

2!
(x − a)2 +

f (3)(a)

3!
(x − a)3 + · · ·

If a = 0 this series is called the McLaurin Series of the function f :

∞X
n=0

f (n)(0)

n!
xn = f (0) +

f ′(0)

1!
x +

f (2)(0)

2!
x2 +

f (3)(0)

3!
x3 + · · ·
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Matching derivatives

The Taylor series of f at a is given by T (x) =P∞
n=0

f (n)(a)
n!

(x − a)n = f (a) + f ′(a)
1!

(x − a) + f (2)(a)
2!

(x − a)2 + f (3)(a)
3!

(x − a)3 + · · · .

I If T (x) is defined in an open interval around a, then it is differentiable at
a, since it is a power series.

I Furthermore, every derivative of T (x) at a equals the corresponding
derivative of f (x) at a.

I by changing x to a in the formula above, we see that
T (a) = f (a) + 0 + 0 + · · · = f (a).

I T ′(x) = 0 + f ′(a) + 2f (2)(a)
2!

(x − a) + 3f (3)(a)
3!

(x − a)2 + . . . , So
T ′(a) = f ′(a) + 0 + 0 + · · · = f ′(a).

I T ′′(x) = 0 + 0 + 2!f (2)(a)
2!

+ 3·2·f (3)(a)
3!

(x − a) + . . . , So

T ′′(a) = 2!f (2)(a)
2!

+ 0 + 0 + · · · = f (2)(a).

I T (3)(x) = 0 + 0 + 0 + 3!f (3)(a)
3!

+ . . . etc.... So

T (3)(a) = 3!f (3)(a)
3!

+ 0 + · · · = f (3)(a).

I etc.....
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Example (McLaurin Series.)

Example Find the McLaurin Series of the function f (x) = ex . Find the radius
of convergence of this series.

I We need to calculate the derivatives of f (x) and evaluate them at 0.

I f (x) = ex , f ′(x) = ex , f ′′(x) = ex , . . . , f (n)(x) = ex .

I f (0) = e0 = 1, f ′(0) = e0 = 1, f ′′(0) = e0 = 1, . . . f (n)(0) = e0 = 1.

I The McLaurin series for f (x) = ex is given byP∞
n=0

f (n)(0)
n!

xn = f (0) + f ′(0)
1!

x + f (2)(0)
2!

x2 + f (3)(0)
3!

x3 + · · ·
I When we plug in the values for f n(0) from above, we get that the McL

series for f (x) = ex is given by
P∞

n=0
xn

n!
= 1 + x

1!
+ x2

2!
+ x3

3!
+ · · ·

I Recall that last day we showed that this series converges for all values of
x . We have yet to show that it converges to ex .

I Because this series converges for all values of x , we have the following
important limit:

lim
n→∞

xn

n!
= 0 for all values of x .
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= 0 for all values of x .
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Example ( McLaurin Series)

Example Find the McLaurin Series of the function f (x) = sin x . Find the
radius of convergence of this series.
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f 4(x) = sin x . . . , f (n)(x) = complicated .

I f (0) = 0, f ′(0) = 1, f ′′(0) = 0, f (3)(0) = −1, f (4)(0) = 0 . . .

f (n)(0) =


0 if n is even
±1 if n is odd

I The McLaurin series for f (x) = sin x is given byP∞
n=0

f (n)(0)
n!

xn = f (0) + f ′(0)
1!

x + f (2)(0)
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x2 + f (3)(0)
3!

x3 + · · ·
I When we plug in the values for f (n)(0) from above, we get that the McL

series for f (x) = sin x is given by

0 + x
1!

+ 0 + (−1)x3

3!
+ 0 + x5

5!
+ 0 + (−1)x7

7!
· · ·

I which we can write with summation notation as
P∞

n=0
(−1)nx2n+1

(2n+1)!
.

I To check the radius of convergence of this series, we use the ratio test,

limn→∞
|an+1|
|an| = limn→∞

|x|2n+3/(2n+3)!

|x|2n+1/(2n+1)!
= limn→∞

|x|2
(2n+3)(2n+2)

= 0 for all

values of x .

I Therefore the radius of convergence is ∞.
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Example (Taylor series expansion of ex at 1)

Example Find the Taylor series expansion of the function f (x) = ex at a = 1.
Find the radius of convergence of this series.

I We calculate the derivatives of f (x) and evaluate them at 1.

I f (x) = ex , f ′(x) = ex , f ′′(x) = ex , . . . , f (n)(x) = ex .

I f (1) = e1 = e, f ′(1) = e1 = e, f ′′(1) = e1 = e, . . . f (n)(1) = e1 = e.

I The Taylor series for f (x) = ex at a = 1 is given byP∞
n=0

f (n)(1)
n!

(x−1)n = f (1)+ f ′(1)
1!

(x−1)+ f (2)(1)
2!

(x−2)2+ f (3)(1)
3!

(x−1)3+· · ·
I When we plug in the values for f (n)(1) from above, we get that the Taylor

series for f (x) = ex at a = 1 is given byP∞
n=0

e(x−1)n

n!
= e + e(x−1)

1!
+ e(x−1)2

2!
+ e(x−1)3

3!
+ · · ·

I To check the radius of convergence of this series, we use the ratio test,

limn→∞
|an+1|
|an| = limn→∞

|x−1|n+1/(n+1)!
|x−1|n/(n)!

= limn→∞
|x−1|
(n+1)

= 0 for all values
of x .

I Therefore the radius of convergence is ∞.

I In fact it can be shown that this series also converges to ex everywhere.
(F.Y.I. Even though the partial sums differ from the McL series of ex ,
both series turn out to be the same. )
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Answer to Q1

Theorem If f has a power series expansion at a, that is if

f (x) =
∞X
n=0

cn(x − a)n for all x such that |x − a| < R

for some R > 0, then that power series is the Taylor series of f at a. We must
have

cn =
f (n)(a)

n!
and f (x) =

∞X
n=0

f (n)(a)

n!
(x − a)n

for all x such that |x − a| < R.

If a = 0 the series in question is the McLaurin series of f .

I Example This result is saying that if f (x) = ex has a power series
expansion at 0, then that power series expansion must be the McLaurin
series of ex which is

1 + x +
x2

2!
+

x3

3!
+ · · ·

However the result is not saying that ex sums to this series. To prove
that we need to use Taylor’s theorem below.
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Answer to question 1

I Example The result also says that IF f (x) = ex has a power series
expansion at 1, then that power series expansion must be

e + e(x − 1) +
e(x − 1)2

2!
+

e(x − 1)3

3!
+ · · · =

∞X
n=0

e(x − 1)n

n!

However, we must use Taylor’s theorem on the remainder to show that
this series sums to f (x) = ex for all values of x .

I Example Also we have that IF sin x has a power series expansion at 0,
then that power series expansion must beP∞

n=0
(−1)nx2n+1

(2n+1)!
= x − x3

3!
+ x5

5!
− x7

7!
+ . . . .
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Q2: When does f (x) =
∑∞

n=0
f (n)(a)

n! (x − a)n ?

Our second question now becomes:
For which values of x does the Taylor series of f at a converge to f (x)?

For any value of x , the Taylor series of the function f (x) about x = a
converges to f (x) when the partial sums of the series (Tn(x) below) converge
to f (x) . We let

Rn(x) = f (x)− Tn(x) ,

where

Tn(x) = f (a)+
f ′(a)

1!
(x−a)+

f (2)(a)

2!
(x−a)2+

f (3)(a)

3!
(x−a)3+· · ·+ f (n)(a)

n!
(x−a)n.

Tn(x) given above is called the nth Taylor polynomial of f at a and Rn(x) is
called the remainder of the Taylor series.

I Theorem Let f (x), Tn(x) and Rn(x) be as above. If

lim
n→∞

Rn(x) = 0 for |x − a| < R,

then f is equal to the sum of its Taylor series on the interval |x − a| < R.
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Taylor’s Theorem on the remainder

The following theorem is crucial in calculating limn→∞ Rn(x) on an interval
around a:

Taylor’s Inequality If |f (n+1)(x)| ≤ M for |x − a| ≤ d then the remainder
Rn(x) of the Taylor Series satisfies the inequality

|Rn(x)| ≤ M

(n + 1)!
|x − a|n+1 for |x − a| ≤ d .

I Example: Taylor’s Inequality applied to sin x. If f (x) = sin x , then for
any n, f (n+1)(x) is either ± sin x or ± cos x . In either case |f (n+1)(x)| ≤ 1
for all values of x . Therefore, with M = 1 and a = 0 and d any number,
Taylor’s inequality tells us that
|Rn(x)| ≤ 1

(n+1)!
|x |n+1 for |x | ≤ d (=∞ here).

I Example: Taylor’s Inequality applied to ex . If h(x) = ex , then for any
value of n, h(n+1)(x) = ex . Now if d is any number, I know that
|h(n+1)(x)| = |ex | < ed for all x with |x | < d . Hence applying Taylor’s
inequality to the McLaurin series for ex (with a = 0) we get that

|Rn(x)| ≤ ed

(n+1)!
|x |n+1 for |x | ≤ d .
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Power series expansion of cos x .

Example Find a power series representation for cos x .

I We have sin x =
P∞

n=0(−1)n x2n+1

(2n+1)!
= x − x3

3!
+ x5

5!
− x7

7!
+ · · ·

I Since d sin x
dx

= cos x , we can differentiate both sides of the above equation
to get

cos x =
∞X
n=0

d(−1)n x2n+1

(2n+1)!

dx
=

dx

dx
−

d x3

3!

dx
+

d x5

5!

dx
· · ·

I Therefore

cos x =
∞X
n=0

(−1)n (2n + 1)x2n

(2n + 1)!
= 1− 3x2

3!
+

5x4

5!
· · ·

I So

cos x =
∞X
n=0

(−1)n x2n

2n!
= 1− x2

2!
+

x4

4!
− x6

6!
· · ·
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Apps (Summing series)

We have

ex =
∞X
n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ · · ·

for all x .

I Therefore

e =
∞X
n=0

1

n!
= 1 + 1 +

1

2!
+

1

3!
+

1

4!
+ · · ·

I and

e2 =
∞X
n=0

2n

n!
= 1 + 2 +

22

2!
+

23

3!
+

24

4!
+ · · ·

I and
1

e
=
∞X
n=0

(−1)n

n!
= 1− 1 +

1

2!
− 1

3!
+

1

4!
+ · · ·
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Apps (Summing series)

We have

ex =
∞X
n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ · · ·

for all x .

I Therefore

e =
∞X
n=0

1

n!
= 1 + 1 +

1

2!
+

1

3!
+

1

4!
+ · · ·

I and

e2 =
∞X
n=0

2n

n!
= 1 + 2 +

22

2!
+

23

3!
+

24

4!
+ · · ·

I and
1

e
=
∞X
n=0

(−1)n

n!
= 1− 1 +

1

2!
− 1

3!
+

1

4!
+ · · ·
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Taylor and McLaurin Series Questions Taylor and McLaurin Series Example (McLaurin Series.) Answer to Q1 Q2 APPS (New Series cos x) APPS (Sum of Series) APPS (Finding Limits)

Apps (Finding Limits)

Example use power series to find the limit

lim
x→0

cos(x5)− 1

x10

(This is a long computation if you use L’Hopital’s rule).

I We have

cos x =
∞X
n=0

(−1)n x2n

2n!
= 1− x2

2!
+

x4

4!
− x6

6!
· · ·

I and hence by substitution, we have

cos(x5) = 1− x10

2!
+

x20

4!
− x30

6!
· · ·

I Therefore cos(x5)− 1 = − x10

2!
+ x20

4!
− x30

6!
· · ·

I and cos(x5)−1

x10 = − 1
2

+ x10

4!
− x20

6!
· · ·

I Since power series (with real x values) are continuous functions we have

limn→∞
cos(x5)−1

x10 = −1
2

, which is the value of the power series on the RHS
when x = 0.
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