Taylor and McLaurin Series

So Far

We saw last day that some functions are equal to a power series on part of
their domain. For example

_ 1 2 3 _ — n
f(X)—ﬁ—l—Fx—Fx + x4 —;x, for —1<x<1,
2 3 4 n+1 oo
In(1+x):xfx—+x—fx—+~-~+(f = ( for —1 < x < 1,
2 2 4 e
3 5 7
(X)_Z(— 2n+1 _%+%_X7_... on the interval (—1,1).

In this section, we will develop a method to find power series
expansions/representations for a wider range of functions and devise a method
to identify the values of x for which the function equals the power series
expansion. (This is not always the entire interval of convergence of the power
series.)

Annette Pilkington Lecture 32 Taylor and McLaurin Series



Taylor and McLaurin Series

Definition

Definition We say that f(x) has a power series expansion at a if

f(x) = Zc,,(x —a)" forall  x suchthat |x—a|] <R

n=0
for some R >0

Note f(x) has a power series expansion at 0 if
f(x) = Zc,,x" for all  x such that |x| < R
n=0

for some R > 0.
Example We see that f(x) = =, g(x) = In(1 + x) and h(x) = tan™ ' x all
have powers series expansions at 0.
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Questions

Questions

Sometimes a function has a power series expansion at a point a and sometimes
it does not. One of the benefits of the existence of such an expansion is that
we can approximate values of the function with a polynomial. Another is that
we can actually find the sum of some series.

Our main questions are

» Q1. If a function f(x) has a power series expansion at a, can we tell
what that power series expansion is?

> Q2. For which values of x do the values of f(x) and the sum of the
power series expansion coincide?
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Questions

Questions

Sometimes a function has a power series expansion at a point a and sometimes
it does not. One of the benefits of the existence of such an expansion is that
we can approximate values of the function with a polynomial. Another is that
we can actually find the sum of some series.

Our main questions are

» Q1. If a function f(x) has a power series expansion at a, can we tell
what that power series expansion is?

> Q2. For which values of x do the values of f(x) and the sum of the
power series expansion coincide?

> We will see that in answer to question 1, we can give a precise formula for
the power series.
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Questions

Questions

Sometimes a function has a power series expansion at a point a and sometimes
it does not. One of the benefits of the existence of such an expansion is that
we can approximate values of the function with a polynomial. Another is that
we can actually find the sum of some series.

Our main questions are

» Q1. If a function f(x) has a power series expansion at a, can we tell
what that power series expansion is?

> Q2. For which values of x do the values of f(x) and the sum of the
power series expansion coincide?

> We will see that in answer to question 1, we can give a precise formula for
the power series.

» We will examine the error in estimation by partial sums to answer
question 2.
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Taylor and McLaurin Series

Taylor and McLaurin Series

Definition If (x) is a function with infinitely many derivatives at a, the Taylor
Series of the function f(x) at/about a is the power series

> £(n)
T =31 ‘a) (x —a)"

n=0

! 2 (3)
= f(a)+%(X—aw"z—fa)(x—a)ﬂfT(a)(x_a)3+...

If this series is called the McLaurin Series of the function f:

= f(0) , F(0)_, fP(0) »  f¥(0) 5
Zo p X = O+ e T T
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Taylor and McLaurin Series

Matching derivatives

The Taylor series of f at a is given by T(x) =

(n) (5 n /(3 £
S, o (x—a) = Fa) + 2 (x —a) + 5@

B (x—a) + 52 (x—a) 4o
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Taylor and McLaurin Series

Matching derivatives

The Taylor series of f at a is given by T(x) =
Bl (n) a n (a (3) a
anofn!()(x_a) :f(a)+f1(!)(x_a)_|_ ( )2 ( (x —a)3+---.

> If T(x) is defined in an open interval around a, then it is differentiable at
a, since it is a power series.

£(2)
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Taylor and McLaurin Series

Matching derivatives

The Taylor series of f at a is given by T(x) =
o fM(a n '(a 2 B3)(a
S Tt —a) = fla) + P (x—a) + (- + S (- a) 4

n!

> If T(x) is defined in an open interval around a, then it is differentiable at
a, since it is a power series.

» Furthermore, every derivative of T(x) at a equals the corresponding
derivative of f(x) at a.
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Taylor and McLaurin Series

Matching derivatives

The Taylor series of f at a is given by T(x) =
Bl (n) a n (a (3) a
anofn!()(x_a) :f(a)+f1(!)(x_a)_|_ ( )2 ( (x —a)3+---.

> If T(x) is defined in an open interval around a, then it is differentiable at
a, since it is a power series.

£(2)

» Furthermore, every derivative of T(x) at a equals the corresponding
derivative of f(x) at a.

» by changing x to a in the formula above, we see that
T(a)=f(a)+0+0+---=f(a).
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Taylor and McLaurin Series

Matching derivatives

The Taylor series of f at a is given by T(x) =
oo f(N(a n "(a £2) G)(a
anofn!()(x_a) :f(a)+f1(!)(x_a)_|_ ( )2 ( (x —a)3+---.

> If T(x) is defined in an open interval around a, then it is differentiable at
a, since it is a power series.

» Furthermore, every derivative of T(x) at a equals the corresponding
derivative of f(x) at a.

» by changing x to a in the formula above, we see that

T(a):f(a)+0+0+---:f(a)
> T(x) =0+ f(a) + 20@ (x — 2) + ¥0C@(x _ 22+ So
T'(a) = F'(a) 4 04+ 04 - = £(a).
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Taylor and McLaurin Series

Matching derivatives

The Taylor series of f at a is given by T(x) =

(")a n (a
S, o (x—a) = Fa) + 2 (x —a) + 5@

>

£(2)

B (x—a) + 52 (x—a) 4o

If T(x) is defined in an open interval around a, then it is differentiable at
a, since it is a power series.

Furthermore, every derivative of T(x) at a equals the corresponding
derivative of f(x) at a.

by changing x to a in the formula above, we see that

T(a):f(a)+0+0+---:f(a)

T(x) = 0+ f/(a) + 220@ (x — 2) + X0 (x — 212+ So
T'(a) = F1(a) 4+ 0+ 04 --- = £(a).
T”(x)—0+0+2” ("’)+32’ @) (x —a)+..., So

T'(a) =206 4 040+ = FO(a).
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Taylor and McLaurin Series

Matching derivatives

The Taylor series of f at a is given by T(x) =
Bl (n) a n (a (3) a
anofn!()(x_a) :f(a)+f1(!)(x_a)_|_ ( )2 ( (x —a)3+---.

> If T(x) is defined in an open interval around a, then it is differentiable at
a, since it is a power series.

£(2)

» Furthermore, every derivative of T(x) at a equals the corresponding
derivative of f(x) at a.

» by changing x to a in the formula above, we see that

T(a):f(a)+o+o+~~-=f(a)

> T/ =04 /(a) + X5 (x — ) & F5lx ) .. So
T(a)*f(a)+0+0+ = f'(a).

> T”(x)*0+0+2” 1 4 22036 (— 5) 4., So
T'(a) = 220@ 4 04 0+ - = FO)(a).

> T(3)( )_0_|_()_|_0_;_3"r (a)—|— c.... So
TO(a) = 206 g4 *f3’( )-
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Taylor and McLaurin Series

Matching derivatives

The Taylor series of f at a is given by T(x) =
Bl (n) a n (a (3) a
anofn!()(x_a) :f(a)+f1(!)(x_a)_|_ ( )2 ( (x —a)3+---.

>

>

£(2)

If T(x) is defined in an open interval around a, then it is differentiable at
a, since it is a power series.

Furthermore, every derivative of T(x) at a equals the corresponding
derivative of f(x) at a.

by changing x to a in the formula above, we see that

T(a):f(a)+0+0+---:f(a)

T(x) = 0+ f/(a) + 220@ (x — 2) + X0 (x — 212+ So
T'(a) = F'(a) 4 04+ 04 - = £(a).
T”(x)—0+0+2” ("’)+32’ @) (x —a)+..., So

T'(a) =206 4 040+ = FO(a).

TG (x )—o+0+o+3'f (@) 4 etc.... So

TO@) = 20@ 4 o4 = f3>( ).

etc.....
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Exai

Example (McLaurin Series.)

Example Find the McLaurin Series of the function f(x) = €*. Find the radius
of convergence of this series.
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Exai

Example (McLaurin Series.)

Example Find the McLaurin Series of the function f(x) = €*. Find the radius
of convergence of this series.

> We need to calculate the derivatives of f(x) and evaluate them at 0.
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Exai

Example (McLaurin Series.)

Example Find the McLaurin Series of the function f(x) = €*. Find the radius
of convergence of this series.

> We need to calculate the derivatives of f(x) and evaluate them at 0.
> f(x)=e F'i(x) =€, f'(x)=¢,... , F(x) = e~
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Exai

Example (McLaurin Series.)

Example Find the McLaurin Series of the function f(x) = €*. Find the radius
of convergence of this series.

> We need to calculate the derivatives of f(x) and evaluate them at 0.
> f(x)=e F'i(x) =€, f'(x)=¢,... , F(x) = e~
> f(0)=e"=1,f(0)=e"=1,f(0)=e=1,... (N0)=e’=1.
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Exai

Example (McLaurin Series.)

Example Find the McLaurin Series of the function f(x) = €*. Find the radius
of convergence of this series.
> We need to calculate the derivatives of f(x) and evaluate them at 0.
> f(x)=¢" f'(x) =€ f'(x) =€, ..., FI(x) =e"
> f(0)=e"=1,f(0)=e"=1,f(0)=e=1,... (N0)=e’=1.
> The M?I;aurin series for f(x) = € is given by
oo fU(0) n

4 (2) (3)
oo~ X" =f(0) + f1(10)x+ : 2!(0)X2 +1 3!(0)X3 +ee
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Exai

Example (McLaurin Series.)

Example Find the McLaurin Series of the function f(x) = €*. Find the radius
of convergence of this series.

> We need to calculate the derivatives of f(x) and evaluate them at 0.

> f(x)=¢" f'(x) =€ f'(x) =€, ..., FI(x) =e"

> f(0)=e"=1,f(0)=e"=1,f(0)=e=1,... (N0)=e’=1.

» The McLaurin series for f(x) = e* is given by

jas f(",:!(O)Xn =f(0)+ f/1(10)x + %% + %f, e
> When we plug in the values for f"(0) from above, we get that the McL
series for f(x) = e* is given by 3°°° X :14_%_1_%7_’_%_’_“.
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Exai

Example (McLaurin Series.)

Example Find the McLaurin Series of the function f(x) = €*. Find the radius
of convergence of this series.
> We need to calculate the derivatives of f(x) and evaluate them at 0.
> f(x)=¢" f'(x) =€ f'(x) =€, ..., FI(x) =e"
> f(0)=e"=1,f(0)=e"=1,f(0)=e=1,... (N0)=e’=1.
» The McLaurin series for f(x) = e* is given by
<. f(",:!(O)Xn = £(0) + fll(!O)X + %)g + %)Q 4.
> When we plug in the values for f"(0) from above, we get that the McL
series for f(x) = e* is given by 3°°° X :14_%_1_);_’_%_’_“.
> Recall that last day we showed that this series converges for all values of
x. We have yet to show that it converges to e*.
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Exai

Example (McLaurin Series.)

Example Find the McLaurin Series of the function f(x) = €*. Find the radius
of convergence of this series.

>

>
>
>

We need to calculate the derivatives of f(x) and evaluate them at 0.
f(x) =€, fl(x)=e" f'(x) =e,... , f(x) = ¢
f0)=e’=1,f(0)=e"=1,f"(0)=e"=1,... FP0)=e=1.
The McLaurin series for f(x) = € is given by
o £ / 0 ®
0 100 = 7(0) + P 0 g
When we plug in the values for £"(0) from above, we get that the McL
. X - . oo x" X x2 X3
series for f(x) = e*isgiven by > ° S =1+ H+ 5+ 5+
Recall that last day we showed that this series converges for all values of
x. We have yet to show that it converges to e*.

Because this series converges for all values of x, we have the following
important limit:

n

.X
lim — =0 for all values of x.
n—oo N!
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Exai

Example ( McLaurin Series)

Example Find the McLaurin Series of the function f(x) = sin x. Find the
radius of convergence of this series.
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Exai

Example ( McLaurin Series)

Example Find the McLaurin Series of the function f(x) = sin x. Find the
radius of convergence of this series.

> We need to calculate the derivatives of f(x) and evaluate them at 0.
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Exai

Example ( McLaurin Series)

Example Find the McLaurin Series of the function f(x) = sin x. Find the
radius of convergence of this series.

> We need to calculate the derivatives of f(x) and evaluate them at 0.
> f(x) =sinx, f'(x) = cosx, f’(x) = —sinx, f®(x) = —cosx,
fA(x) =sinx... , f("(x) = complicated .
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Exai

Example ( McLaurin Series)

Example Find the McLaurin Series of the function f(x) = sin x. Find the
radius of convergence of this series.
> We need to calculate the derivatives of f(x) and evaluate them at 0.
> f(x) =sinx, f'(x) = cosx, f’(x) = —sinx, f®(x) = —cosx,
fA(x) =sinx... , f("(x) = complicated .
» £(0)=0, f(0)=1, f'(0) =0, FF0) = -1, FY0)=0...

" (ny 0 if n iseven
f (0)_{ +1 if n isodd
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Exai

Example ( McLaurin Series)

Example Find the McLaurin Series of the function f(x) = sin x. Find the
radius of convergence of this series.
> We need to calculate the derivatives of f(x) and evaluate them at 0.
> f(x) =sinx, f'(x) = cosx, f’(x) = —sinx, f®(x) = —cosx,
fA(x) =sinx... , f("(x) = complicated .
» £(0)=0, f(0)=1, f'(0) =0, FF0) = -1, FY0)=0...
n 0 if n iseven
F0(0) = { £1 if n isodd

» The McLaurin series for f(x) = sin x is given by
o £l 4 (2 (3)
f (O)Xn:f(0)+f1(!())x+f @2 PO,3,

n=0 n! 2! 3!
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Exai

Example ( McLaurin Series)

Example Find the McLaurin Series of the function f(x) = sin x. Find the
radius of convergence of this series.
> We need to calculate the derivatives of f(x) and evaluate them at 0.
> f(x) =sinx, f'(x) = cosx, f’(x) = —sinx, f®(x) = —cosx,
fA(x) =sinx... , f("(x) = complicated .
» £(0)=0, f(0)=1, f'(0) =0, FF0) = -1, FY0)=0...
n 0 if n iseven
FPO= 1 41 i n isodd
» The McLaurin series for f(x) = sinx is given by
;..;0 f(n:!(O)Xn — f( f (!o)X + 2(())Xz + (33)(0)X3 I
> When we plug in the values for f(" (0) from above, we get that the McL
series for f(x) =sinx is given by

0+ % +0+C02 yoy2 104!

1)X
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Exai

Example ( McLaurin Series)

Example Find the McLaurin Series of the function f(x) = sin x. Find the
radius of convergence of this series.
> We need to calculate the derivatives of f(x) and evaluate them at 0.
> f(x) =sinx, f'(x) = cosx, f’(x) = —sinx, f®(x) = —cosx,
fA(x) =sinx... , f("(x) = complicated .
» £(0)=0, f(0)=1, f'(0) =0, FF0) = -1, FY0)=0...
n 0 if n iseven
FPO= 1 41 i n isodd
» The McLaurin series for f(x) = sinx is given by

oo M) n G

nzofn!(o)x = f( f(lo)x—l— 2(0)x2+ 3(0)x3+--~

> When we plug in the values for f(" (0) from above, we get that the McL
series for f(x) =sinx is given by
0+ % +0+C02 yoy2 104!

> which we can write with summation notation as > °

1)X

(_l)nx2n+1
0 @D
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Exai

Example ( McLaurin Series)

Example Find the McLaurin Series of the function f(x) = sin x. Find the
radius of convergence of this series.
> We need to calculate the derivatives of f(x) and evaluate them at 0.
> f(x) =sinx, f'(x) = cosx, f’(x) = —sinx, f®(x) = —cosx,
fA(x) =sinx... , f("(x) = complicated .
» £(0)=0, f(0)=1, f'(0) =0, FF0) = -1, FY0)=0...
n 0 if n iseven
FPO= 1 41 i n isodd
» The McLaurin series for f(x) = sinx is given by

oo M) n G
n=0 ! n!(O)X = f( f(lo)x'i' 2(0)X2+ 3(0)X3+"'
> When we plug in the values for f(" (0) from above, we get that the McL
series for f(x) =sinx is given by
0+ % +0+C02 yoy2 104!

> which we can write with summation notation as > °

1)X

(_l)nx2n+1
0 (@nt)l -
» To check the radius of convergence of this series, we use the ratio test,

: lans1l _ s [x[2F3/@n43) s |x[? _
limy— oo ol = limy— oo Flayerrsyi limp— oo Gr3) ) = 0 for all

values of x.
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Exai

Example ( McLaurin Series)

Example Find the McLaurin Series of the function f(x) = sin x. Find the
radius of convergence of this series.
> We need to calculate the derivatives of f(x) and evaluate them at 0.
> f(x) =sinx, f'(x) = cosx, f’(x) = —sinx, f®(x) = —cosx,
fA(x) =sinx... , f("(x) = complicated .
» £(0)=0, f(0)=1, f'(0) =0, FF0) = -1, FY0)=0...
n 0 if n iseven
FPO= 1 41 i n isodd
» The McLaurin series for f(x) = sinx is given by

oo M) n G
n=0 ! n!(O)X = f( f(lo)x'i' 2(0)X2+ 3(0)X3+"'
> When we plug in the values for f(" (0) from above, we get that the McL
series for f(x) =sinx is given by
0+ % +0+C02 yoy2 104!

> which we can write with summation notation as > °

1)X

(_l)nx2n+1
0 (@nt)l -
» To check the radius of convergence of this series, we use the ratio test,

lane1]l _ s x[2"*3/(2n43)! |x|?

||m,Hoo lanl ||m,Hoo m = ||m,,ﬂoo m =0 for all
values of x.

OO
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Exai

Example (Taylor series expansion of e* at 1)

Example Find the Taylor series expansion of the function f(x) = " at a=1.
Find the radius of convergence of this series.
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Exai

Example (Taylor series expansion of e* at 1)

Example Find the Taylor series expansion of the function f(x) = " at a=1.
Find the radius of convergence of this series.

> We calculate the derivatives of f(x) and evaluate them at 1.
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Exai

Example (Taylor series expansion of e* at 1)

Example Find the Taylor series expansion of the function f(x) = " at a=1.
Find the radius of convergence of this series.

> We calculate the derivatives of f(x) and evaluate them at 1.
> f(x)=¢" fi(x)=¢€" f'(x)=¢€5,..., f(")(x) = e~.

Annette Pilkington Lecture 32 Taylor and McLaurin Series



Exai

Example (Taylor series expansion of e* at 1)

Example Find the Taylor series expansion of the function f(x) = " at a=1.
Find the radius of convergence of this series.

> We calculate the derivatives of f(x) and evaluate them at 1.
> f(x)=¢" fi(x)=¢€" f'(x)=¢€5,..., f(")(x) = e~.
()= —e F(l) =l —e F() = el —e, ... FI(D) =&l —e.
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Exai

Example (Taylor series expansion of e* at 1)

Example Find the Taylor series expansion of the function f(x) = " at a=1.
Find the radius of convergence of this series.

> We calculate the derivatives of f(x) and evaluate them at 1.

> f(x)=e" fi(x) =€, f'(x)=¢,... , F(x) = e~

> f(l)=el=e f(I)=e'=e f'(1)=el=e, ... (1) =€l =e.
> The Taylor series for f(x) = €~ at is given by

oo fn n ’ ® ©)
52 W (x—1)" = F(1)+ T8 (x— 1)+ 58 (x—2)2+ 8 (x—1)° -
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Exai

Example (Taylor series expansion of e* at 1)

Example Find the Taylor series expansion of the function f(x) = " at a=1.
Find the radius of convergence of this series.

> We calculate the derivatives of f(x) and evaluate them at 1.

> f(x)=e" fi(x) =€, f'(x)=¢,... , F(x) = e~
> f(l)=e'=e f(1)=e'=¢ f'(1)=e' =e, ... (1) =¢' =
> The Taylor series for f(x) = €~ at is given by

oo fn n ’ ® ©)
52 W (x—1)" = F(1)+ T8 (x— 1)+ 58 (x—2)2+ 8 (x—1)° -

n!
» When we plug in the values for (" (1) from above, we get that the Taylor
series for f(x) = €* at a =1 is given by
n 2 3
o e(x—1)" _ e+ e(xlTl) + e(x;l) + e(x3!1) 4o

n=0 n!
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Exai

Example (Taylor series expansion of e* at 1)

Example Find the Taylor series expansion of the function f(x) = " at a=1.
Find the radius of convergence of this series.

> We calculate the derivatives of f(x) and evaluate them at 1.

> f(x)=¢" fi(x)=¢€" f'(x)=¢€5,..., f(")(x) = e~.
> f(]_) = el =e, f’(l) _ el —e f”(l) _ el —e ... f(n)(].) — el = e.
> The Taylor series for f(x) = " at is given by

oo fn n ’ ® ©)
52 W (x—1)" = F(1)+ T8 (x— 1)+ 58 (x—2)2+ 8 (x—1)° -

n!
» When we plug in the values for (" (1) from above, we get that the Taylor
series for f(x) = €* at a =1 is given by
n _1)2 _1)3
iio e(x;l) —e+ e(xlTl) + e(x2!1) + e(x3!1) 4.
» To check the radius of convergence of this series, we use the ratio test,

_ [x=1]"/(n+1)! _ e [x=1] _
= limp—oo FEL o lim,— oo ) 0 for all values

lan+1l
|an]

limp— oo

of x.
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Exai

Example (Taylor series expansion of e* at 1)

Example Find the Taylor series expansion of the function f(x) = " at a=1.
Find the radius of convergence of this series.

> We calculate the derivatives of f(x) and evaluate them at 1.

> f(x)=¢" fi(x)=¢€" f'(x)=¢€5,..., f(")(x) = e~.
> f(]_) = el =e, f’(l) _ el —e f”(l) _ el —e ... f(n)(].) — el = e.
> The Taylor series for f(x) = " at is given by

oo fn n ’ ® ©)
52 W (x—1)" = F(1)+ T8 (x— 1)+ 58 (x—2)2+ 8 (x—1)° -

n!
» When we plug in the values for (" (1) from above, we get that the Taylor
series for f(x) = €* at a =1 is given by
n _1)2 _1)3
iio e(x;l) —e+ e(xlTl) + e(x2!1) + e(x3!1) 4.
» To check the radius of convergence of this series, we use the ratio test,

_ [x=1]"/(n+1)! _ e [x=1] _
= limp—oo FEL o lim,— oo ) 0 for all values

lan+1l
|an]

limp— oo

of x.
» Therefore the radius of convergence is co.
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Exai

Example (Taylor series expansion of e* at 1)

Example Find the Taylor series expansion of the function f(x) = " at a=1.
Find the radius of convergence of this series.

> We calculate the derivatives of f(x) and evaluate them at 1.
f(x)=e" fl(x)=¢e, f'(x)=¢",... , F(x) = e~

fly=e'=e f(1)=el=¢ f'(1)=e'=e, ... f(1) =€l =e.
The Taylor series for f(x) = €* at is given by

oo fn n ’ ® ©)
52 W (x—1)" = F(1)+ T8 (x— 1)+ 58 (x—2)2+ 8 (x—1)° -

n!

vy

v

» When we plug in the values for (" (1) from above, we get that the Taylor
series for f(x) = €* at a =1 is given by
—1)" _ _1)2 _1\3
o e(x—1)" _ e+ e(xll 1) + e(x2!1) + e(x3!1) 4o

n=0 n!

» To check the radius of convergence of this series, we use the ratio test,

_ [x=1]"/(n+1)! _ e [x=1] _
= limp—oo FEL o lim,— oo ) 0 for all values

lan+1l
|an]

limp— oo

of x.
» Therefore the radius of convergence is co.

» In fact it can be shown that this series also converges to e* everywhere.
(F.Y.l. Even though the partial sums differ from the McL series of €*,
both series turn out to be the same. )

Annette Pilkington Lecture 32 Taylor and McLaurin Series



Answer to Q1

Theorem If f has a power series expansion at a, that is if

o]

f(x)= Zc,,(x —a)" for all  x such that |x —a| < R

n=0

for some R > 0, then that power series is the Taylor series of f at a. We must
have

f)(a) — F)( "
&= and f(x) :; x—a)

for all  x such that |x—a] <R.

If a = 0 the series in question is the McLaurin series of f.
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Answer to Q1

Theorem If f has a power series expansion at a, that is if

f(x)= Zc,,(x —a)" for all  x such that |x —a| < R

n=0

for some R > 0, then that power series is the Taylor series of f at a. We must
have

f)(a — f")(a n
Cn = n|() and f(x):Z:; n!( )(x—a)

for all  x such that |x—a] <R.

If a = 0 the series in question is the McLaurin series of f.

» Example This result is saying that if f(x) = € has a power series
expansion at 0, then that power series expansion must be the McLaurin

series of e which is

2 X3

1 X
+ x + o + 3 + -
However the result is not saying that e* sums to this series. To prove

that we need to use Taylor's theorem below.
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Answer to question 1

» Example The result also says that IF f(x) = e* has a power series
expansion at 1, then that power series expansion must be

x—1)? x—1)3 > (x—-1
6(2!)+(3!) Ze.)

ete(x—1)+

n=0

However, we must use Taylor's theorem on the remainder to show that
this series sums to f(x) = €~ for all values of x.
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Answer to question 1

» Example The result also says that IF f(x) = e* has a power series
expansion at 1, then that power series expansion must be

x—1)? x—1)3 > (x—-1
6(2!)+(3!) Ze.)

ete(x—1)+
n=0
However, we must use Taylor's theorem on the remainder to show that
this series sums to f(x) = €~ for all values of x.

» Example Also we have that IF sin x has a power series expansion at 0,

then that power series expansion must be
( 1)nx2n+l

%) _ 7
2o Gt *3|+**7;+~---
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Q2: When does f(x) = >, m(x )

n!

Our second question now becomes:
For which values of x does the Taylor series of f at a converge to f(x)?

For any value of x, the Taylor series of the function f(x) about x = a
converges to f(x) when the partial sums of the series ( T,(x) below) converge
to f(x) . We let

\ Ru(x) = f(x) — Ta(x)

u

where

F)(a)

n!

f(2)(a) (x—a)2+ f(3;!(a)

2| (Xfa)3+...+

To(x) = f(a)+ f'l(f) (x—a)+ (x—a)".

Ta(x) given above is called the nth Taylor polynomial of f at a and R,(x) is
called the remainder of the Taylor series.
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Q2: When does f(x) = >, m(x )

n!

Our second question now becomes:
For which values of x does the Taylor series of f at a converge to f(x)?

For any value of x, the Taylor series of the function f(x) about x = a
converges to f(x) when the partial sums of the series ( T,(x) below) converge
to f(x) . We let

u

\ Ru(x) = f(x) — Ta(x)

where

F)(a)

3
(Xfa) “+- -+ n!

(x—a)™.

' ) ®)
Ta(x) = f(a)+f1(!a) (x—a)t " 2!(3) (x—a)+ -2 3!("”)

Ta(x) given above is called the nth Taylor polynomial of f at a and R,(x) is
called the remainder of the Taylor series.

» Theorem Let f(x), To(x) and R,(x) be as above. If

lim R,(x)=0 for |x—a|l <R,

n—oo

then f is equal to the sum of its Taylor series on the interval |x — a| < R.
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Taylor's Theorem on the remainder

The following theorem is crucial in calculating lim,— oo Rn(x) on an interval
around a:

Taylor's Inequality If |f("")(x)| < M for |x — a| < d then the remainder
Rn(x) of the Taylor Series satisfies the inequality

|Rn(x)] < !|xfa|"Jrl for |x —al <d.

M
(n+1)
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Taylor's Theorem on the remainder

The following theorem is crucial in calculating lim,— oo Rn(x) on an interval
around a:

Taylor's Inequality If |f("")(x)| < M for |x — a| < d then the remainder
Rn(x) of the Taylor Series satisfies the inequality

|Rn(x)] < ! Ix —a|™  for |x—a| <d.

M
(n+1)

» Example: Taylor’s Inequality applied to sinx. If f(x) = sinx, then for
any n, f"*(x) is either 4 sin x or & cos x. In either case |f(")(x)| < 1
for all values of x. Therefore, with M =1 and a = 0 and d any number,
Taylor's inequality tells us that

[Rn(x)] < ﬁ|x|"+1 for |x| <d (= oo here).
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Taylor's Theorem on the remainder

The following theorem is crucial in calculating lim,— oo Rn(x) on an interval
around a:

Taylor's Inequality If |f("")(x)| < M for |x — a| < d then the remainder
Rn(x) of the Taylor Series satisfies the inequality

M | _ |n+l

[Ra(x)| < m X

for |x —a| <d.

» Example: Taylor’s Inequality applied to sinx. If f(x) = sinx, then for
any n, f"*(x) is either 4 sin x or & cos x. In either case |f(")(x)| < 1
for all values of x. Therefore, with M =1 and a = 0 and d any number,
Taylor's inequality tells us that

[Rn(x)] < n+1 x|™ for |x| < d (= oo here).

» Example: Taylor’s Inequality applied to e*. If h(x) = €%, then for any
value of n, K" (x) = e*. Now if d is any number, | know that
|A™ D (x)| = |¥| < e? for all x with |x| < d. Hence applying Taylor's
inequality to the McLaurin series for € (with a = 0) we get that

[Rn(x)] < o x| for x| < d.

Annette Pilkington Lecture 32 Taylor and McLaurin Series



Answers to Question 2

Example Prove that sin x is equal to the sum of its McLaurin series for all x,
that is, show that

2n+1 3 5 7

X X X
smfo< Py TR TR TR TR

for all x.
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Answers to Question 2

Example Prove that sin x is equal to the sum of its McLaurin series for all x,
that is, show that

2n+1 3 5 7

X X X
smfo< Py TR TR TR TR

for all x.

» | need to show that for any value of x, the remainder
Ra(x) = sin(x) — Tha(x) has the property that lim,— |Ra(x)| = 0.
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Answers to Question 2

Example Prove that sin x is equal to the sum of its McLaurin series for all x,
that is, show that
2t 3O K

smfo< Py TR TR TR TR

for all x.
» | need to show that for any value of x, the remainder
Ra(x) = sin(x) — Tha(x) has the property that lim,— |Ra(x)| = 0.

» When we apply Taylor's theorem to the remainder (as shown above), we
get [F"D(x)] < 1 and |Ra(x)| < (n+1 o x|™* for all x.
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Answers to Question 2

Example Prove that sin x is equal to the sum of its McLaurin series for all x,
that is, show that

2n+1 3 X5 X7

X
smfo< Py TR TR TR TR

for all x.

» | need to show that for any value of x, the remainder
Ra(x) = sin(x) — Tha(x) has the property that lim,— |Ra(x)| = 0.

» When we apply Taylor's theorem to the remainder (as shown above), we
get [F"D(x)] < 1 and |Ra(x)| < (n+1 o x|™* for all x.

> Therefore 0 < limp—oo |Ra(X)] limp—oo < (n+1 '|X|n+1 =0 for all x
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Answers to Question 2

Example Prove that sin x is equal to the sum of its McLaurin series for all x,
that is, show that

2n+1 3 5 7
X X X
S'”X*Z( Py TR TR TR TR

for all x.

» | need to show that for any value of x, the remainder
Ra(x) = sin(x) — Tha(x) has the property that lim,— |Ra(x)| = 0.

» When we apply Taylor's theorem to the remainder (as shown above), we
get [F"D(x)] < 1 and |Ra(x)| < (n+1 o x|™* for all x.
> Therefore 0 < limp—oo |Ra(X)] limp—oo < (n+1 '|X|n+1 =0 for all x

» Therefore

o 2+t 3 5,7
smx:Z(— )" (2n—|—1) fx—ﬁ-ya_ﬁ_,_...

n=0

for all x.
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Answers to Question 2

Example Prove that € is equal to the sum of its McLaurin series for all x,
that is, show that
o n! 21 3l

for all x.
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Answers to Question 2

Example Prove that € is equal to the sum of its McLaurin series for all x,
that is, show that

2 3 X4

:ix——1+x+x—+x—+—+
n 21 "3
for all x.

> | need to show that for any value of x, the remainder R,(x) = € — T,(x)
has the property that lim,— |Ra(x)| = 0.
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Answers to Question 2

Example Prove that € is equal to the sum of its McLaurin series for all x,
that is, show that

2 3 X4

:Zx——l+x+x—+x—+—+
n! 20 3l
for all x.
> | need to show that for any value of x, the remainder R,(x) = € — T,(x)
has the property that lim,— o |Ra(x)| = 0.
» When we apply Taylor’s theorem to the remainder (as shown above), we
get [F"D(x)| < e? and |R,(x)| < ,|x|”+:l for all x with |x| < d,
where d can be chosen arbitrarily.
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Answers to Question 2

Example Prove that € is equal to the sum of its McLaurin series for all x,
that is, show that

2 3 X4

:Zx——l+x+x—+x—+—+
n! 20 3l
for all x.

> | need to show that for any value of x, the remainder Ry(x) = € — T,(x)
has the property that lim,_.o |Ra(x)| = 0.

» When we apply Taylor’s theorem to the remainder (as shown above), we
get [F"D(x)| < e? and |R,(x)| < ,|x|”+:l for all x with |x| < d,
where d can be chosen arbitrarily.

> Therefore 0 < limp—co [Ra(x)[liMn—oo < 55 ,|><|"+1 =0 for all x with
x| < d.
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Answers to Question 2

Example Prove that € is equal to the sum of its McLaurin series for all x,
that is, show that
:ii—1+x+x—2+x—3+x—4+
n! 20 3l
for all x.
> | need to show that for any value of x, the remainder Ry(x) = € — T,(x)
has the property that lim,_.o |Ra(x)| = 0.
» When we apply Taylor’s theorem to the remainder (as shown above), we
get [F"D(x)| < e? and |R,(x)| < ,|x|”+:l for all x with |x| < d,
where d can be chosen arbitrarily.

> Therefore 0 < limp—oo |Ra(X)|liMn—oc < 555 ,|x|"+1 =0 for all x with
x| < d.

> Therefore e* = ;’ioxn—: :1+x+§+’§—?+’é—?+~~ for all x with
Ix| < d.
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Answers to Question 2

Example Prove that € is equal to the sum of its McLaurin series for all x,
that is, show that
:ii—1+x+x—2+x—3+x—4+
n! 20 3l
for all x.
> | need to show that for any value of x, the remainder Ry(x) = € — T,(x)
has the property that lim,_.o |Ra(x)| = 0.
» When we apply Taylor’s theorem to the remainder (as shown above), we
get [F"D(x)| < e? and |R,(x)| < ,|x|”+:l for all x with |x| < d,
where d can be chosen arbitrarily.

> Therefore 0 < limp—oo |Ra(X)|liMn—oc < 555 ,|x|"+1 =0 for all x with
x| < d.

> Therefore e* = ;’ioxn—: :1+x+§+’§—?+’é—?+~~ for all x with
Ix| < d.

> Since d can be chosen to be as big as | like, | can conclude that

o n 2 3 6

. x" X X
n=0
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Power series expansion of cos x.

Example Find a power series representation for cos x.
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Power series expansion of cos x.

Example Find a power series representation for cos x.

. o 0o n X2n+1 _ X3 X5 X7
» We have sinx =) > (—1) I e i S
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Power series expansion of cos x.

Example Find a power series representation for cos x.

. o's) x2" 1 x3 ><5 x7
» We have smx:ano(—l)"ﬁ =x—5 45 -5+
» Since dj)’(‘x = cos x, we can differentiate both sides of the above equation
to get
X2n+1 x3 X5
cosx =3 S Gy _ o dy | d
dx dx dx dx

n=0
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Power series expansion of cos x.

Example Find a power series representation for cos x.

2n+1

H o0 X’ X3 X5 X7
» We have sinx = Zn:O(_l)niQn-{-l)! =x—F+HE -5+

» Since dj)’(‘x = cos x, we can differentiate both sides of the above equation

to get
n x2rtt 3 5
cosX_Z (71) 2nt) :%_dﬁ dﬁ...
pre dx dx  dx dx
> Therefore
= a(2n+1)x*" 3x*  Bx*
cosx g( ) GnT 1) E
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Power series expansion of cos x.

Example Find a power series representation for cos x.

. o 0o n X2n+1 _ X3 X5 X7
» We have sinx =) > (—1) I e i S

> Since 98"X — cos x, we can differentiate both sides of the above equation

dx
to get .
< d(-1)"Gry  dx  dY | db
_ @Grt1)t _ ax G 51 .
cosx = ;0 dx dx dx + dx
» Therefore
R 2 (204 1)x 3x*  Bx*
cosx =2 (Do T e
» So
oo 2n 2 4 6
"X X
cosx:ZO(—l) o] _1_5+E_E
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Apps (Summing series)

We have

2 X3 X4

OoX
:Zf:1+x+—+—+—+
— n! 3!

for all x

Annette Pilkington Lecture 32 Taylor and McLaurin Series



Apps (Summing series)

We have
> n 2 3 4
. X X X X
e_z_gm_1+x+5+§+ﬁ+
for all x
» Therefore
=1 1 1 1
ezzgn—_1+1+—+§+ +-

Lecture 32 Taylor and McLaurin Series
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Apps (Summing series)

We have - , , .
eX:;§_1+x+%+%+%+
for all x )
» Therefore -
e:z;nl_1+1+l+%+ L.
> and o0 2 3 4
ezzzgi—"!:1+2+%+%+il+
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Apps (Summing series)

We have - , , .
eX:2§—1+X+%+%+%+
for all x )
» Therefore -
e:z;nl_1+1+l+%+ L.
> and o0 2 3 4
62:207,;:1+2+%+%+i|+
> and - )
BSC SR
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Apps (Finding Limits)

Example use power series to find the limit

. cos(x®) —1
M

(This is a long computation if you use L'Hopital’s rule).
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Apps (Finding Limits)

Example use power series to find the limit

. cos(x®) —1
M

(This is a long computation if you use L'Hopital’s rule).

» We have , R 6
> n X" X x* x
N RS AT
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Apps (Finding Limits)

Example use power series to find the limit

. cos(x®) —1
M

(This is a long computation if you use L'Hopital’s rule).

» We have
B . W2 xt KO
cosx = 2m—‘7+a‘a”
» and hence by substltutlon, we have
10 20 30
Sy_q_X_ X X
cos(x’) =1 T + a0 6l
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Apps (Finding Limits)

Example use power series to find the limit

. cos(x®) —1
>|<I—rpo x10

(This is a long computation if you use L'Hopital’s rule).

» We have
=) 2 4 X6
» and hence by substitution, we have
10 20 30
X X X
cos( ):1‘?+W‘H
> Therefore cos(x’) — 1= —%; + 2 %
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Apps (Finding Limits)

Example use power series to find the limit

. cos(x®) —1
>|<I—rpo x10

(This is a long computation if you use L'Hopital’s rule).

» We have
(o) 2 4 6

X

» and hence by substitution, we have

) =1 K10 . K20 30
COSI=27r T~ el
20 30
> Therefore cos(x’) — 1= —%; + — ...
cos(x%)—1 1 10 20
> and T—*EJFXT!*%!“‘
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Apps (Finding Limits)

Example use power series to find the limit

. cos(x®) —1
M

(This is a long computation if you use L'Hopital’s rule).

> We have - an P
cosx:ZO(— o 1_E+E_§

» and hence by substitution, we have

10 20
> Therefore cos(x®) — 1= —%7 + % — X -+
cos(xs)fl _ 1 x10 x20

>and =g =+ o
Since power series (with real x values) are continuous functions we have

5
. 1 _ . . .
limp— oo % = =% which is the value of the power series on the RHS

X 2

when x = 0.
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