General Logarithms and Exponentials

Last day, we looked at the inverse of the logarithm function, the exponential function. we have the following formulas:

General exponential functions

For a > 0 and x any real number, we define

$$a^x = e^{x \ln a}, \quad a > 0.$$

The function a^x is called the exponential function with base a.

Note that $\ln(a^x) = x \ln a$ is true for all real numbers x and all a > 0. (We saw this before for x a rational number).

Note: The above definition for a^x does not apply if a < 0.

$$a^{x+y} = a^x a^y$$
 $a^{x-y} = \frac{a^x}{a^y}$ $(a^x)^y = a^{xy}$ $(ab)^x = a^x b^x$

We can derive the following laws of exponents directly from the definition and the corresponding laws for the exponential function e^x :

$$a^{x+y} = a^x a^y$$
 $a^{x-y} = \frac{a^x}{a^y}$ $(a^x)^y = a^{xy}$ $(ab)^x = a^x b^x$

▶ For example, we can prove the first rule in the following way:

$$a^{x+y} = a^x a^y$$
 $a^{x-y} = \frac{a^x}{a^y}$ $(a^x)^y = a^{xy}$ $(ab)^x = a^x b^x$

- ▶ For example, we can prove the first rule in the following way:
- $a^{x+y} = e^{(x+y) \ln a}$

$$a^{x+y} = a^x a^y$$
 $a^{x-y} = \frac{a^x}{a^y}$ $(a^x)^y = a^{xy}$ $(ab)^x = a^x b^x$

- ► For example, we can prove the first rule in the following way:
- $a^{x+y} = e^{(x+y) \ln a}$
- $ightharpoonup = e^{x \ln a + y \ln a}$

$$a^{x+y} = a^x a^y$$
 $a^{x-y} = \frac{a^x}{a^y}$ $(a^x)^y = a^{xy}$ $(ab)^x = a^x b^x$

- ► For example, we can prove the first rule in the following way:
- $a^{x+y} = e^{(x+y)\ln a}$
- $ightharpoonup = e^{x \ln a + y \ln a}$
- $ightharpoonup = e^{x \ln a} e^{y \ln a} = a^x a^y.$

$$a^{x+y} = a^x a^y$$
 $a^{x-y} = \frac{a^x}{a^y}$ $(a^x)^y = a^{xy}$ $(ab)^x = a^x b^x$

- ► For example, we can prove the first rule in the following way:
- $a^{x+y} = e^{(x+y) \ln a}$
- $ightharpoonup = e^{x \ln a + y \ln a}$
- $ightharpoonup = e^{x \ln a} e^{y \ln a} = a^x a^y.$
- ▶ The other laws follow in a similar manner.

$$\frac{d}{dx}(a^{x}) = \frac{d}{dx}(e^{x \ln a}) = a^{x} \ln a \qquad \frac{d}{dx}(a^{g(x)}) = \frac{d}{dx}e^{g(x) \ln a} = g'(x)a^{g(x)} \ln a$$

We can also derive the following rules of differentiation using the definition of the function a^x , a > 0, the corresponding rules for the function e^x and the chain rule.

$$\frac{d}{dx}(a^{x}) = \frac{d}{dx}(e^{x \ln a}) = a^{x} \ln a \qquad \qquad \frac{d}{dx}(a^{g(x)}) = \frac{d}{dx}e^{g(x) \ln a} = g'(x)a^{g(x)} \ln a$$

Example: Find the derivative of 5^{x^3+2x} .

$$\frac{d}{dx}(a^{x}) = \frac{d}{dx}(e^{x \ln a}) = a^{x} \ln a \qquad \qquad \frac{d}{dx}(a^{g(x)}) = \frac{d}{dx}e^{g(x) \ln a} = g'(x)a^{g(x)} \ln a$$

- Example: Find the derivative of 5^{x^3+2x} .
- ▶ Instead of memorizing the above formulas for differentiation, I can just convert this to an exponential function of the form $e^{h(x)}$ using the definition of 5^u , where $u = x^3 + 2x$ and differentiate using the techniques we learned in the previous lecture.

$$\frac{d}{dx}(a^{x}) = \frac{d}{dx}(e^{x \ln a}) = a^{x} \ln a \qquad \qquad \frac{d}{dx}(a^{g(x)}) = \frac{d}{dx}e^{g(x) \ln a} = g'(x)a^{g(x)} \ln a$$

- Example: Find the derivative of 5^{x^3+2x} .
- Instead of memorizing the above formulas for differentiation, I can just convert this to an exponential function of the form $e^{h(x)}$ using the definition of 5^u , where $u=x^3+2x$ and differentiate using the techniques we learned in the previous lecture.
- We have, by definition, $5^{x^3+2x} = e^{(x^3+2x)\ln 5}$

$$\frac{d}{dx}(a^x) = \frac{d}{dx}(e^{x \ln a}) = a^x \ln a \qquad \qquad \frac{d}{dx}(a^{g(x)}) = \frac{d}{dx}e^{g(x) \ln a} = g'(x)a^{g(x)} \ln a$$

- Example: Find the derivative of 5^{x^3+2x} .
- ▶ Instead of memorizing the above formulas for differentiation, I can just convert this to an exponential function of the form $e^{h(x)}$ using the definition of 5^u , where $u = x^3 + 2x$ and differentiate using the techniques we learned in the previous lecture.
- We have, by definition, $5^{x^3+2x} = e^{(x^3+2x)\ln 5}$
- ► Therefore $\frac{d}{dx}5^{x^3+2x} = \frac{d}{dx}e^{(x^3+2x)\ln 5} = e^{(x^3+2x)\ln 5}\frac{d}{dx}(x^3+2x)\ln 5$

$$\frac{d}{dx}(a^x) = \frac{d}{dx}(e^{x \ln a}) = a^x \ln a \qquad \qquad \frac{d}{dx}(a^{g(x)}) = \frac{d}{dx}e^{g(x) \ln a} = g'(x)a^{g(x)} \ln a$$

- \triangleright Example: Find the derivative of 5^{x^3+2x} .
- ▶ Instead of memorizing the above formulas for differentiation, I can just convert this to an exponential function of the form $e^{h(x)}$ using the definition of 5^u , where $u = x^3 + 2x$ and differentiate using the techniques we learned in the previous lecture.
- We have, by definition, $5^{x^3+2x} = e^{(x^3+2x)\ln 5}$
- ► Therefore $\frac{d}{dx}5^{x^3+2x} = \frac{d}{dx}e^{(x^3+2x)\ln 5} = e^{(x^3+2x)\ln 5}\frac{d}{dx}(x^3+2x)\ln 5$
- $= (\ln 5)(3x^2 + 2)e^{(x^3 + 2x)\ln 5} = (\ln 5)(3x^2 + 2)5^{x^3 + 2x}.$

Graphs of General exponential functions

For a > 0 we can draw a picture of the graph of

$$y = a^{x}$$

using the techniques of graphing developed in Calculus I.

We get a different graph for each possible value of a.
 We split the analysis into two cases,

Graphs of General exponential functions

For a > 0 we can draw a picture of the graph of

$$y = a^{x}$$

using the techniques of graphing developed in Calculus I.

- We get a different graph for each possible value of a.
 We split the analysis into two cases,
- ightharpoonup since the family of functions $y=a^x$ slope downwards when 0 < a < 1 and

Graphs of General exponential functions

For a > 0 we can draw a picture of the graph of

$$y = a^{x}$$

using the techniques of graphing developed in Calculus I.

- We get a different graph for each possible value of a. We split the analysis into two cases,
- since the family of functions $y = a^x$ slope downwards when 0 < a < 1 and
- the family of functions $y = a^x$ slope upwards when a > 1.

▶ y-intercept: The y-intercept is given by $y = a^0 = e^{0 \ln a} = e^0 = 1$.

- y-intercept: The y-intercept is given by $v = a^0 = e^{0 \ln a} = e^0 = 1$.
- ×-intercept: The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.

▶ Slope: If 0 < a < 1, the graph of $y = a^x$ has a negative slope and is always decreasing, $\frac{d}{dx}(a^x) = a^x \ln a < 0$. In this case a smaller value of a gives a steeper curve [for x < 0].

- y-intercept: The y-intercept is given by
 y = a⁰ = e^{0 ln a} = e⁰ = 1.
- ▶ x-intercept: The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.

- y-intercept: The y-intercept is given by
 y = a⁰ = e^{0 ln a} = e⁰ = 1.
- ► x-intercept: The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.

- ▶ Slope: If 0 < a < 1, the graph of $y = a^x$ has a negative slope and is always decreasing, $\frac{d}{dx}(a^x) = a^x \ln a < 0$. In this case a smaller value of a gives a steeper curve [for x < 0].
 - The graph is concave up since the second derivative is $\frac{d^2}{dx^2}(a^x) = a^x(\ln a)^2 > 0.$

- y-intercept: The y-intercept is given by
 y = a⁰ = e^{0 ln a} = e⁰ = 1.
- ► x-intercept: The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.

- ▶ Slope: If 0 < a < 1, the graph of $y = a^x$ has a negative slope and is always decreasing, $\frac{d}{dx}(a^x) = a^x \ln a < 0$. In this case a smaller value of a gives a steeper curve [for x < 0].
- ► The graph is concave up since the second derivative is $\frac{d^2}{dx^2}(a^x) = a^x(\ln a)^2 > 0.$
- As $x \to \infty$, $x \ln a$ approaches $-\infty$, since $\ln a < 0$ and therefore $a^x = e^{x \ln a} \to 0.$

- y-intercept: The y-intercept is given by
 y = a⁰ = e^{0 ln a} = e⁰ = 1.
- ► x-intercept: The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.

- ▶ Slope: If 0 < a < 1, the graph of $y = a^x$ has a negative slope and is always decreasing, $\frac{d}{dx}(a^x) = a^x \ln a < 0$. In this case a smaller value of a gives a steeper curve [for x < 0].
- ► The graph is concave up since the second derivative is $\frac{d^2}{dx^2}(a^x) = a^x(\ln a)^2 > 0.$
- As $x \to \infty$, $x \ln a$ approaches $-\infty$, since $\ln a < 0$ and therefore $a^x = e^{x \ln a} \to 0.$
- ▶ As $x \to -\infty$, $x \ln a$ approaches ∞ , since both x and $\ln a$ are less than 0. Therefore $a^x = e^{x \ln a} \to \infty$.

$$\label{eq:alpha_series} \boxed{ \text{For } 0 < a < 1, \quad \lim_{X \to \infty} a^X = 0, \quad \lim_{X \to -\infty} a^X = \infty }$$

y-intercept: The y-intercept is given by $y = a^0 = e^{0 \ln a} = e^0 = 1.$

- y-intercept: The y-intercept is given by
 y = a⁰ = e^{0 ln a} = e⁰ = 1.
- ▶ x-intercept: The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.

▶ If a > 1, the graph of $y = a^x$ has a positive slope and is always increasing, $\frac{d}{dx}(a^x) = a^x \ln a > 0$.

- y-intercept: The y-intercept is given by
 y = a⁰ = e^{0 ln a} = e⁰ = 1.
- ×-intercept: The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.

- ▶ If a > 1, the graph of $y = a^x$ has a positive slope and is always increasing, $\frac{d}{dx}(a^x) = a^x \ln a > 0$.
- ► The graph is concave up since the second derivative is $\frac{d^2}{dv^2}(a^x) = a^x(\ln a)^2 > 0.$

- y-intercept: The y-intercept is given by
 y = a⁰ = e^{0 ln a} = e⁰ = 1.
- ▶ x-intercept: The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.

- If a > 1, the graph of y = a^x has a positive slope and is always increasing, d/dx(a^x) = a^x ln a > 0.
 The graph is concave up since the second derivative is d²/dx(a^x) = a^x(ln a)² > 0.
- In this case a larger value of a gives a steeper curve [when x > 0].

- y-intercept: The y-intercept is given by
 y = a⁰ = e^{0 ln a} = e⁰ = 1.
- ▶ x-intercept: The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.

- y-intercept: The y-intercept is given by $v = a^0 = e^{0 \ln a} = e^0 = 1$.
- ▶ x-intercept: The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.

- ▶ If a > 1, the graph of $y = a^x$ has a positive slope and is always increasing, $\frac{d}{dx}(a^x) = a^x \ln a > 0$.
- ► The graph is concave up since the second derivative is $\frac{d^2}{dx^2}(a^x) = a^x(\ln a)^2 > 0.$
- In this case a larger value of a gives a steeper curve [when x > 0].

As $x \to \infty$, $x \ln a$ approaches ∞ , since $\ln a > 0$ and therefore $a^x = e^{x \ln a} \to \infty$

- y-intercept: The y-intercept is given by
 y = a⁰ = e^{0 ln a} = e⁰ = 1.
- x-intercept: The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.

- ▶ If a > 1, the graph of $y = a^x$ has a positive slope and is always increasing, $\frac{d}{dx}(a^x) = a^x \ln a > 0$.
- ► The graph is concave up since the second derivative is $\frac{d^2}{d+2}(a^x) = a^x(\ln a)^2 > 0.$
- In this case a larger value of a gives a steeper curve [when x > 0].
- As $x \to \infty$, $x \ln a$ approaches ∞ , since $\ln a > 0$ and therefore $a^x = e^{x \ln a} \to \infty$
- As $x \to -\infty$, $x \ln a$ approaches $-\infty$, since x < 0 and $\ln a > 0$. Therefore $a^x = e^{x \ln a} \to 0$.

For
$$a > 1$$
, $\lim_{X \to \infty} a^X = \infty$, $\lim_{X \to -\infty} a^X = 0$.

Power Rules

We now have 4 different types of functions involving bases and powers. So far we have dealt with the first three types:

If a and b are constants and g(x) > 0 and f(x) and g(x) are both differentiable functions.

$$\frac{d}{dx}a^b = 0, \qquad \frac{d}{dx}(f(x))^b = b(f(x))^{b-1}f'(x), \qquad \frac{d}{dx}a^{g(x)} = g'(x)a^{g(x)}\ln a,$$
$$\frac{d}{dx}(f(x))^{g(x)}$$

For $\frac{d}{dx}(f(x))^{g(x)}$, we use logarithmic differentiation or write the function as $(f(x))^{g(x)} = e^{g(x)\ln(f(x))}$ and use the chain rule.

Example Differentiate x^{2x^2} , x > 0.

Power Rules

We now have 4 different types of functions involving bases and powers. So far we have dealt with the first three types:

If a and b are constants and g(x) > 0 and f(x) and g(x) are both differentiable functions.

$$\frac{d}{dx}a^b = 0, \qquad \frac{d}{dx}(f(x))^b = b(f(x))^{b-1}f'(x), \qquad \frac{d}{dx}a^{g(x)} = g'(x)a^{g(x)}\ln a,$$
$$\frac{d}{dx}(f(x))^{g(x)}$$

For $\frac{d}{dx}(f(x))^{g(x)}$, we use logarithmic differentiation or write the function as $(f(x))^{g(x)} = e^{g(x)\ln(f(x))}$ and use the chain rule.

Example Differentiate x^{2x^2} , x > 0.

Also to calculate limits of functions of this type it may help write the function as $(f(x))^{g(x)} = e^{g(x) \ln(f(x))}$.

Since $f(x) = a^x$ is a monotonic function whenever $a \neq 1$, it has an inverse which we denote by

$$f^{-1}(x) = \log_a x.$$

Since $f(x) = a^x$ is a monotonic function whenever $a \neq 1$, it has an inverse which we denote by

$$f^{-1}(x) = \log_a x.$$

▶ We get the following from the properties of inverse functions:

Since $f(x) = a^x$ is a monotonic function whenever $a \neq 1$, it has an inverse which we denote by

$$f^{-1}(x) = \log_a x.$$

▶ We get the following from the properties of inverse functions:

$$f^{-1}(x) = y$$
 if and only if $f(y) = x$

$$\log_a(x) = y$$
 if and only if $a^y = x$

Since $f(x) = a^x$ is a monotonic function whenever $a \neq 1$, it has an inverse which we denote by

$$f^{-1}(x) = \log_a x.$$

▶ We get the following from the properties of inverse functions:

$$f^{-1}(x) = y$$
 if and only if $f(y) = x$

$$\log_a(x) = y$$
 if and only if $a^y = x$

$$f(f^{-1}(x)) = x$$
 $f^{-1}(f(x)) = x$
 $a^{\log_a(x)} = x$ $\log_a(a^x) = x$.

$$\log_a x = \frac{\ln x}{\ln a}$$

It is not difficult to show that $\log_a x$ has similar properties to $\ln x = \log_e x$. This follows from the **Change of Base Formula** which shows that The function $\log_a x$ is a constant multiple of $\ln x$.

$$\log_a x = \frac{\ln x}{\ln a}$$

$$\log_a x = \frac{\ln x}{\ln a}$$

- ightharpoonup Let $y = \log_a x$.
- ▶ Since a^x is the inverse of $\log_a x$, we have $a^y = x$.

$$\log_a x = \frac{\ln x}{\ln a}$$

- ▶ Let $y = \log_2 x$.
- ▶ Since a^x is the inverse of $\log_a x$, we have $a^y = x$.
- ▶ Taking the natural logarithm of both sides, we get $y \ln a = \ln x$,

$$\log_a x = \frac{\ln x}{\ln a}$$

- ightharpoonup Let $y = \log_a x$.
- ▶ Since a^x is the inverse of $\log_a x$, we have $a^y = x$.
- ▶ Taking the natural logarithm of both sides, we get $y \ln a = \ln x$,
- which gives, $y = \frac{\ln x}{\ln a}$.

It is not difficult to show that $\log_a x$ has similar properties to $\ln x = \log_e x$. This follows from the **Change of Base Formula** which shows that The function $\log_a x$ is a constant multiple of $\ln x$.

$$\log_a x = \frac{\ln x}{\ln a}$$

- ▶ Since a^x is the inverse of $\log_a x$, we have $a^y = x$.
- ▶ Taking the natural logarithm of both sides, we get $y \ln a = \ln x$,
- which gives, $y = \frac{\ln x}{\ln a}$.
- The algebraic properties of the natural logarithm thus extend to general logarithms, by the change of base formula.

$$\log_a 1 = 0, \quad \log_a(xy) = \log_a(x) + \log_a(y), \quad \log_a(x^r) = r \log_a(x).$$

for any positive number $a \neq 1$. In fact for most calculations (especially limits, derivatives and integrals) it is advisable to convert $\log_a x$ to natural logarithms. The most commonly used logarithm functions are $\log_{10} x$ and $\ln x = \log_a x$.

Using Change of base Formula for derivatives

Change of base formula

$$\log_a x = \frac{\ln x}{\ln a}$$

From the above change of base formula for $\log_a x$, we can easily derive the following **differentiation formulas**:

$$\frac{d}{dx}(\log_a x) = \frac{d}{dx} \frac{\ln x}{\ln a} = \frac{1}{x \ln a} \qquad \qquad \frac{d}{dx}(\log_a g(x)) = \frac{g'(x)}{g(x) \ln a}.$$

A special Limit

We derive the following limit formula by taking the derivative of $f(x) = \ln x$ at x = 1, We know that f'(1) = 1/1 = 1. We also know that

$$f'(1) = \lim_{x \to 0} \frac{\ln(1+x) - \ln 1}{x} = \lim_{x \to 0} \ln(1+x)^{1/x} = 1.$$

Applying the (continuous) exponential function to the limit on the left hand side (of the last equality), we get

$$e^{\lim_{x\to 0}\ln(1+x)^{1/x}}=\lim_{x\to 0}e^{\ln(1+x)^{1/x}}=\lim_{x\to 0}(1+x)^{1/x}.$$

Applying the exponential function to the right hand sided(of the last equality), we gat $e^1=e$. Hence

$$e = \lim_{x \to 0} (1+x)^{1/x}$$

Note If we substitute y = 1/x in the above limit we get

$$e = \lim_{y \to \infty} \left(1 + \frac{1}{y}\right)^y$$
 and $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$

where n is an integer (see graphs below). We look at large values of n below to get an approximation of the value of e.

A special Limit

$$n = 10 \rightarrow \left(1 + \frac{1}{n}\right)^n = 2.59374246, \quad n = 100 \rightarrow \left(1 + \frac{1}{n}\right)^n = 2.70481383,$$

 $n = 100 \rightarrow \left(1 + \frac{1}{n}\right)^n = 2.71692393, \quad n = 1000 \rightarrow \left(1 + \frac{1}{n}\right)^n = 2.1814593.$

