
General Logarithms and Exponentials

Last day, we looked at the inverse of the logarithm function, the exponential
function. we have the following formulas:

ln(x)

ln(ab) = ln a+ln b, ln(
a

b
) = ln a−ln b

ln ax = x ln a

lim
x→∞

ln x =∞, lim
x→0

ln x = −∞

d

dx
ln |x | =

1

xZ
1

x
dx = ln |x |+ C

ex

ln ex = x and e ln(x) = x

ex+y = exey , ex−y =
ex

ey
, (ex)y = exy .

lim
x→∞

ex =∞, and lim
x→−∞

ex = 0

d

dx
ex = ex

Z
exdx = ex + C
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General exponential functions

For a > 0 and x any real number, we define

ax = ex ln a, a > 0.

The function ax is called the exponential function with base a.
Note that ln(ax) = x ln a is true for all real numbers x and all a > 0. (We saw
this before for x a rational number).
Note: The above definition for ax does not apply if a < 0.
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Laws of Exponents

We can derive the following laws of exponents directly from the definition and
the corresponding laws for the exponential function ex :

ax+y = axay ax−y =
ax

ay
(ax)y = axy (ab)x = axbx

I For example, we can prove the first rule in the following way:

I ax+y = e(x+y) ln a

I = ex ln a+y ln a

I = ex ln aey ln a = axay .

I The other laws follow in a similar manner.

Annette Pilkington Natural Logarithm and Natural Exponential



Laws of Exponents

We can derive the following laws of exponents directly from the definition and
the corresponding laws for the exponential function ex :

ax+y = axay ax−y =
ax

ay
(ax)y = axy (ab)x = axbx

I For example, we can prove the first rule in the following way:

I ax+y = e(x+y) ln a

I = ex ln a+y ln a

I = ex ln aey ln a = axay .

I The other laws follow in a similar manner.

Annette Pilkington Natural Logarithm and Natural Exponential



Laws of Exponents

We can derive the following laws of exponents directly from the definition and
the corresponding laws for the exponential function ex :

ax+y = axay ax−y =
ax

ay
(ax)y = axy (ab)x = axbx

I For example, we can prove the first rule in the following way:

I ax+y = e(x+y) ln a

I = ex ln a+y ln a

I = ex ln aey ln a = axay .

I The other laws follow in a similar manner.

Annette Pilkington Natural Logarithm and Natural Exponential



Laws of Exponents

We can derive the following laws of exponents directly from the definition and
the corresponding laws for the exponential function ex :

ax+y = axay ax−y =
ax

ay
(ax)y = axy (ab)x = axbx

I For example, we can prove the first rule in the following way:

I ax+y = e(x+y) ln a

I = ex ln a+y ln a

I = ex ln aey ln a = axay .

I The other laws follow in a similar manner.

Annette Pilkington Natural Logarithm and Natural Exponential



Laws of Exponents

We can derive the following laws of exponents directly from the definition and
the corresponding laws for the exponential function ex :

ax+y = axay ax−y =
ax

ay
(ax)y = axy (ab)x = axbx

I For example, we can prove the first rule in the following way:

I ax+y = e(x+y) ln a

I = ex ln a+y ln a

I = ex ln aey ln a = axay .

I The other laws follow in a similar manner.

Annette Pilkington Natural Logarithm and Natural Exponential



Laws of Exponents

We can derive the following laws of exponents directly from the definition and
the corresponding laws for the exponential function ex :

ax+y = axay ax−y =
ax

ay
(ax)y = axy (ab)x = axbx

I For example, we can prove the first rule in the following way:

I ax+y = e(x+y) ln a

I = ex ln a+y ln a

I = ex ln aey ln a = axay .

I The other laws follow in a similar manner.

Annette Pilkington Natural Logarithm and Natural Exponential



Derivatives

We can also derive the following rules of differentiation using the definition of
the function ax , a > 0, the corresponding rules for the function ex and the
chain rule.

d

dx
(ax) =

d

dx
(ex ln a) = ax ln a

d

dx
(ag(x)) =

d

dx
eg(x) ln a = g ′(x)ag(x) ln a

I Example: Find the derivative of 5x3+2x .

I Instead of memorizing the above formulas for differentiation, I can just
convert this to an exponential function of the form eh(x) using the
definition of 5u, where u = x3 + 2x and differentiate using the techniques
we learned in the previous lecture.

I We have, by definition, 5x3+2x = e(x3+2x) ln 5

I Therefore d
dx

5x3+2x = d
dx

e(x3+2x) ln 5 = e(x3+2x) ln 5 d
dx

(x3 + 2x) ln 5

I = (ln 5)(3x2 + 2)e(x3+2x) ln 5 = (ln 5)(3x2 + 2)5x3+2x .
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Graphs of General exponential functions

For a > 0 we can draw a picture of the graph of

y = ax

using the techniques of graphing developed in Calculus I.

I We get a different graph for each possible value of a.
We split the analysis into two cases,

I since the family of functions y = ax slope downwards when 0 < a < 1 and

I the family of functions y = ax slope upwards when a > 1.
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Case 1:Graph of y = ax , 0 < a < 1

-4 -2 2 4
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y=1x

y=H1�8Lx

y=H1�4Lx

y=H1�2Lx

I y-intercept: The y-intercept is
given by
y = a0 = e0 ln a = e0 = 1.

I x-intercept: The values of
ax = ex ln a are always positive
and there is no x intercept.

I Slope: If 0 < a < 1, the graph of
y = ax has a negative slope and
is always decreasing,
d
dx

(ax) = ax ln a < 0. In this case
a smaller value of a gives a
steeper curve [for x < 0].

I The graph is concave up since
the second derivative is
d2

dx2 (ax) = ax(ln a)2 > 0.

I As x →∞, x ln a approaches
−∞, since ln a < 0 and therefore
ax = ex ln a → 0.

I As x → −∞, x ln a approaches
∞, since both x and ln a are less
than 0. Therefore
ax = ex ln a →∞.

For 0 < a < 1, lim
x→∞ ax = 0, lim

x→−∞
ax = ∞ .
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Case 2: Graph of y = ax , a > 1
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I y-intercept: The y-intercept is
given by
y = a0 = e0 ln a = e0 = 1.

I x-intercept: The values of
ax = ex ln a are always positive
and there is no x intercept.

I If a > 1, the graph of y = ax has
a positive slope and is always
increasing, d

dx
(ax) = ax ln a > 0.

I The graph is concave up since
the second derivative is
d2

dx2 (ax) = ax(ln a)2 > 0.

I In this case a larger value of a
gives a steeper curve [when
x > 0].

I As x →∞, x ln a approaches ∞,
since ln a > 0 and therefore
ax = ex ln a →∞

I As x → −∞, x ln a approaches
−∞, since x < 0 and ln a > 0.
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For a > 1, lim
x→∞ ax = ∞, lim

x→−∞
ax = 0 .
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Therefore ax = ex ln a → 0.

For a > 1, lim
x→∞ ax = ∞, lim

x→−∞
ax = 0 .
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Case 2: Graph of y = ax , a > 1
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I y-intercept: The y-intercept is
given by
y = a0 = e0 ln a = e0 = 1.

I x-intercept: The values of
ax = ex ln a are always positive
and there is no x intercept.

I If a > 1, the graph of y = ax has
a positive slope and is always
increasing, d

dx
(ax) = ax ln a > 0.
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Power Rules

We now have 4 different types of functions involving bases and powers. So far
we have dealt with the first three types:
If a and b are constants and g(x) > 0 and f (x) and g(x) are both
differentiable functions.

d

dx
ab = 0,

d

dx
(f (x))b = b(f (x))b−1f ′(x),

d

dx
ag(x) = g ′(x)ag(x) ln a,

d

dx
(f (x))g(x)

For d
dx

(f (x))g(x), we use logarithmic differentiation or write the function as

(f (x))g(x) = eg(x) ln(f (x)) and use the chain rule.

Example Differentiate x2x2

, x > 0.

I Also to calculate limits of functions of this type it may help write the
function as (f (x))g(x) = eg(x) ln(f (x)).
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General Logarithmic Functions

Since f (x) = ax is a monotonic function whenever a 6= 1, it has an inverse
which we denote by

f −1(x) = loga x .

I We get the following from the properties of inverse functions:

I

f −1(x) = y if and only if f (y) = x

loga(x) = y if and only if ay = x

I

f (f −1(x)) = x f −1(f (x)) = x

aloga(x) = x loga(ax) = x .
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Change of base Formula

It is not difficult to show that loga x has similar properties to ln x = loge x .
This follows from the Change of Base Formula which shows that The
function loga x is a constant multiple of ln x .

loga x =
ln x

ln a

I Let y = loga x .

I Since ax is the inverse of loga x , we have ay = x .

I Taking the natural logarithm of both sides, we get y ln a = ln x ,

I which gives, y = ln x
ln a

.

I The algebraic properties of the natural logarithm thus extend to general
logarithms, by the change of base formula.

loga 1 = 0, loga(xy) = loga(x) + loga(y), loga(x r ) = r loga(x).

for any positive number a 6= 1. In fact for most calculations (especially
limits, derivatives and integrals) it is advisable to convert loga x to natural
logarithms. The most commonly used logarithm functions are log10 x and
ln x = loge x .
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Using Change of base Formula for derivatives

Change of base formula

loga x =
ln x

ln a

From the above change of base formula for loga x , we can easily derive the
following differentiation formulas:

d

dx
(loga x) =

d

dx

ln x

ln a
=

1

x ln a

d

dx
(loga g(x)) =

g ′(x)

g(x) ln a
.
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A special Limit

We derive the following limit formula by taking the derivative of f (x) = ln x at
x = 1, We know that f ′(1) = 1/1 = 1. We also know that

f ′(1) = lim
x→0

ln(1 + x)− ln 1

x
= lim

x→0
ln(1 + x)1/x = 1.

Applying the (continuous) exponential function to the limit on the left hand
side (of the last equality), we get

e limx→0 ln(1+x)1/x

= lim
x→0

e ln(1+x)1/x

= lim
x→0

(1 + x)1/x .

Applying the exponential function to the right hand sided(of the last equality),
we gat e1 = e. Hence

e = lim
x→0

(1 + x)1/x

Note If we substitute y = 1/x in the above limit we get

e = lim
y→∞

“
1 +

1

y

”y

and e = lim
n→∞

“
1 +

1

n

”n

where n is an integer (see graphs below). We look at large values of n below to
get an approximation of the value of e.
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A special Limit

n = 10→
“

1 + 1
n

”n

= 2.59374246, n = 100→
“

1 + 1
n

”n

= 2.70481383,

n = 100→
“

1 + 1
n

”n

= 2.71692393, n = 1000→
“

1 + 1
n

”n

= 2.1814593.
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