General Logarithms and Exponentials

Last day, we looked at the inverse of the logarithm function, the exponential function. We have the following formulas:

\[
\ln(ab) = \ln a + \ln b, \quad \ln\left(\frac{a}{b}\right) = \ln a - \ln b
\]

\[
\ln(a^x) = x \ln a
\]

\[
\lim_{x \to \infty} \ln x = \infty, \quad \lim_{x \to 0} \ln x = -\infty
\]

\[
\frac{d}{dx} \ln |x| = \frac{1}{x}
\]

\[
\int \frac{1}{x} dx = \ln |x| + C
\]

\[
e^x = e^x \quad \text{and} \quad e^{\ln(x)} = x
\]

\[
e^{x+y} = e^x e^y, \quad e^{x-y} = \frac{e^x}{e^y}, \quad (e^x)^y = e^{xy}
\]

\[
\lim_{x \to \infty} e^x = \infty, \quad \text{and} \quad \lim_{x \to -\infty} e^x = 0
\]

\[
\frac{d}{dx} e^x = e^x
\]

\[
\int e^x dx = e^x + C
\]
For $a > 0$ and x any real number, we define

$$a^x = e^{x \ln a}, \quad a > 0.$$

The function a^x is called the exponential function with base a. Note that $\ln(a^x) = x \ln a$ is true for all real numbers x and all $a > 0$. (We saw this before for x a rational number).

Note: The above definition for a^x does not apply if $a < 0$.

Annette Pilkington

Natural Logarithm and Natural Exponential
We can derive the following laws of exponents directly from the definition and the corresponding laws for the exponential function e^x:

$$a^{x+y} = a^x a^y \quad a^{x-y} = \frac{a^x}{a^y} \quad (a^x)^y = a^{xy} \quad (ab)^x = a^x b^x$$
We can derive the following laws of exponents directly from the definition and the corresponding laws for the exponential function e^x:

\[
\begin{align*}
 a^{x+y} &= a^x a^y \\
 a^{x-y} &= \frac{a^x}{a^y} \\
 (a^x)^y &= a^{xy} \\
 (ab)^x &= a^x b^x
\end{align*}
\]

For example, we can prove the first rule in the following way:
We can derive the following laws of exponents directly from the definition and the corresponding laws for the exponential function e^x:

\[
\begin{align*}
 a^{x+y} &= a^x a^y \\
 a^{x-y} &= \frac{a^x}{a^y} \\
 (a^x)^y &= a^{xy} \\
 (ab)^x &= a^x b^x
\end{align*}
\]

For example, we can prove the first rule in the following way:

\[
a^{x+y} = e^{(x+y)\ln a}
\]
Laws of Exponents

We can derive the following laws of exponents directly from the definition and the corresponding laws for the exponential function e^x:

\[
\begin{align*}
 a^{x+y} &= a^x a^y \\
 a^{x-y} &= \frac{a^x}{a^y} \\
 (a^x)^y &= a^{xy} \\
 (ab)^x &= a^x b^x
\end{align*}
\]

- For example, we can prove the first rule in the following way:
 - $a^{x+y} = e^{(x+y) \ln a}$
 - $= e^{x \ln a + y \ln a}$
 - $= a^x a^y$
We can derive the following laws of exponents directly from the definition and the corresponding laws for the exponential function e^x:

\[
\begin{align*}
 a^{x+y} &= a^x a^y \\
 a^{x-y} &= \frac{a^x}{a^y} \\
 (a^x)^y &= a^{xy} \\
 (ab)^x &= a^x b^x
\end{align*}
\]

▶ For example, we can prove the first rule in the following way:

\[
\begin{align*}
 a^{x+y} &= e^{(x+y)\ln a} \\
 &= e^{x\ln a+y\ln a} \\
 &= e^{x\ln a} e^{y\ln a} = a^x a^y.
\end{align*}
\]
Laws of Exponents

We can derive the following laws of exponents directly from the definition and the corresponding laws for the exponential function e^x:

\[
a^{x+y} = a^x a^y \quad a^{x-y} = \frac{a^x}{a^y} \quad (a^x)^y = a^{xy} \quad (ab)^x = a^x b^x
\]

► For example, we can prove the first rule in the following way:

\[
\begin{align*}
 a^{x+y} &= e^{(x+y)\ln a} \\
 &= e^{x \ln a + y \ln a} \\
 &= e^{x \ln a} e^{y \ln a} = a^x a^y.
\end{align*}
\]

► The other laws follow in a similar manner.
We can also derive the following rules of differentiation using the definition of the function a^x, $a > 0$, the corresponding rules for the function e^x and the chain rule.

$$
\frac{d}{dx} (a^x) = \frac{d}{dx} (e^{x \ln a}) = a^x \ln a
$$

$$
\frac{d}{dx} (a^{g(x)}) = \frac{d}{dx} (e^{g(x) \ln a}) = g'(x) a^{g(x)} \ln a
$$
We can also derive the following rules of differentiation using the definition of the function a^x, $a > 0$, the corresponding rules for the function e^x and the chain rule.

\[
\frac{d}{dx} (a^x) = \frac{d}{dx} (e^{x \ln a}) = a^x \ln a \\
\frac{d}{dx} (a^{g(x)}) = \frac{d}{dx} (e^{g(x) \ln a}) = g'(x) a^{g(x)} \ln a
\]

- Example: Find the derivative of 5^{x^3+2x}.
We can also derive the following rules of differentiation using the definition of the function a^x, $a > 0$, the corresponding rules for the function e^x and the chain rule.

\[
\frac{d}{dx}(a^x) = \frac{d}{dx}(e^{x \ln a}) = a^x \ln a \quad \frac{d}{dx}(a^{g(x)}) = \frac{d}{dx}e^{g(x) \ln a} = g'(x)a^{g(x)} \ln a
\]

Example: Find the derivative of 5^{x^3+2x}.

Instead of memorizing the above formulas for differentiation, I can just convert this to an exponential function of the form $e^{h(x)}$ using the definition of 5^u, where $u = x^3 + 2x$ and differentiate using the techniques we learned in the previous lecture.
We can also derive the following rules of differentiation using the definition of the function a^x, $a > 0$, the corresponding rules for the function e^x and the chain rule.

$$\frac{d}{dx}(a^x) = \frac{d}{dx}(e^{x \ln a}) = a^x \ln a$$

$$\frac{d}{dx}(a^{g(x)}) = \frac{d}{dx}e^{g(x) \ln a} = g'(x)a^{g(x)} \ln a$$

Example: Find the derivative of 5^{x^3+2x}.

Instead of memorizing the above formulas for differentiation, I can just convert this to an exponential function of the form $e^{h(x)}$ using the definition of 5^u, where $u = x^3 + 2x$ and differentiate using the techniques we learned in the previous lecture.

We have, by definition, $5^{x^3+2x} = e^{(x^3+2x) \ln 5}$
We can also derive the following rules of differentiation using the definition of the function a^x, $a > 0$, the corresponding rules for the function e^x and the chain rule.

\[
\frac{d}{dx}(a^x) = \frac{d}{dx}(e^{x \ln a}) = a^x \ln a \quad \frac{d}{dx}(a^{g(x)}) = \frac{d}{dx} e^{g(x) \ln a} = g'(x) a^{g(x) \ln a}
\]

- Example: Find the derivative of 5^{x^3+2x}.
- Instead of memorizing the above formulas for differentiation, I can just convert this to an exponential function of the form $e^{h(x)}$ using the definition of 5^u, where $u = x^3 + 2x$ and differentiate using the techniques we learned in the previous lecture.

- We have, by definition, $5^{x^3+2x} = e^{(x^3+2x) \ln 5}$
- Therefore $\frac{d}{dx} 5^{x^3+2x} = \frac{d}{dx} e^{(x^3+2x) \ln 5} = e^{(x^3+2x) \ln 5} \frac{d}{dx} (x^3 + 2x) \ln 5$
We can also derive the following rules of differentiation using the definition of the function a^x, $a > 0$, the corresponding rules for the function e^x and the chain rule.

\[
\frac{d}{dx}(a^x) = \frac{d}{dx}(e^{x \ln a}) = a^x \ln a
\]

\[
\frac{d}{dx}(a^{g(x)}) = \frac{d}{dx} e^{g(x) \ln a} = g'(x) a^{g(x)} \ln a
\]

Example: Find the derivative of 5^{x^3+2x}.

Instead of memorizing the above formulas for differentiation, I can just convert this to an exponential function of the form $e^{h(x)}$ using the definition of 5^u, where $u = x^3 + 2x$ and differentiate using the techniques we learned in the previous lecture.

We have, by definition, $5^{x^3+2x} = e^{(x^3+2x) \ln 5}$

Therefore $\frac{d}{dx} 5^{x^3+2x} = \frac{d}{dx} e^{(x^3+2x) \ln 5} = e^{(x^3+2x) \ln 5} \frac{d}{dx} (x^3 + 2x) \ln 5$

$= (\ln 5)(3x^2 + 2)e^{(x^3+2x) \ln 5} = (\ln 5)(3x^2 + 2)5^{x^3+2x}$.
For $a > 0$ we can draw a picture of the graph of

$$y = a^x$$

using the techniques of graphing developed in Calculus I.

- We get a different graph for each possible value of a. We split the analysis into two cases,
Graphs of General exponential functions

For $a > 0$ we can draw a picture of the graph of

$$y = a^x$$

using the techniques of graphing developed in Calculus I.

- We get a different graph for each possible value of a. We split the analysis into two cases,
- since the family of functions $y = a^x$ slope downwards when $0 < a < 1$ and
For $a > 0$ we can draw a picture of the graph of

$$y = a^x$$

using the techniques of graphing developed in Calculus I.

- We get a different graph for each possible value of a.
 We split the analysis into two cases,
- since the family of functions $y = a^x$ slope downwards when $0 < a < 1$ and
- the family of functions $y = a^x$ slope upwards when $a > 1$.

Case 1: Graph of $y = a^x$, $0 < a < 1$

- **y-intercept**: The y-intercept is given by $y = a^0 = e^0 = 1$.
- **x-intercept**: The values of $a^x = e^x \ln a$ are always positive and there is no x-intercept.
- **Slope**: If $0 < a < 1$, the graph of $y = a^x$ has a negative slope and is always decreasing. $\frac{d}{dx}(a^x) = a^x \ln a < 0$. In this case, a smaller value of a gives a steeper curve for $x < 0$.
- The graph is concave up since the second derivative is $\frac{d^2}{dx^2}(a^x) = a^x (\ln a)^2 > 0$.
- As $x \to \infty$, $x \ln a$ approaches $-\infty$, since $\ln a < 0$ and therefore $a^x = e^x \ln a \to 0$.
- As $x \to -\infty$, $x \ln a$ approaches ∞, since both x and $\ln a$ are less than 0. Therefore $a^x = e^x \ln a \to \infty$.

For $0 < a < 1$, $\lim_{x \to \infty} a^x = 0$, $\lim_{x \to -\infty} a^x = \infty$.
Case 1: Graph of $y = a^x$, $0 < a < 1$

- **y-intercept:** The y-intercept is given by $y = a^0 = e^{0 \ln a} = e^0 = 1$.

- **x-intercept:** The values of $a^x = e^{x \ln a}$ are always positive and there is no x-intercept.

- **Slope:** If $0 < a < 1$, the graph of $y = a^x$ has a negative slope and is always decreasing, $\frac{dy}{dx}(a^x) = a^x \ln a < 0$. In this case a smaller value of a gives a steeper curve for $x < 0$.

- The graph is concave up since the second derivative is $\frac{d^2y}{dx^2}(a^x) = a^x (\ln a)^2 > 0$.

- As $x \to \infty$, $x \ln a$ approaches $-\infty$, since $\ln a < 0$ and therefore $a^x = e^{x \ln a} \to 0$.

- As $x \to -\infty$, $x \ln a$ approaches ∞, since both x and $\ln a$ are less than 0. Therefore $a^x = e^{x \ln a} \to \infty$.

For $0 < a < 1$, $\lim_{x \to \infty} a^x = 0$, $\lim_{x \to -\infty} a^x = \infty$.

Annette Pilkington
Natural Logarithm and Natural Exponential
Case 1: Graph of $y = a^x$, $0 < a < 1$

- **y-intercept**: The y-intercept is given by $y = a^0 = e^{0 \ln a} = e^0 = 1$.

- **x-intercept**: The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.
Case 1: Graph of $y = a^x$, $0 < a < 1$

- **y-intercept:** The y-intercept is given by $y = a^0 = e^{0 \ln a} = e^0 = 1$.

- **x-intercept:** The values of $a^x = e^{x \ln a}$ are always positive and there is no x-intercept.

- **Slope:** If $0 < a < 1$, the graph of $y = a^x$ has a negative slope and is always decreasing,
 $\frac{d}{dx}(a^x) = a^x \ln a < 0$. In this case a smaller value of a gives a steeper curve [for $x < 0$].

- The graph is concave up since the second derivative is $\frac{d^2}{dx^2}(a^x) = a^x (\ln a)^2 > 0$.

- As $x \to \infty$, $x \ln a$ approaches $-\infty$, since $\ln a < 0$ and therefore $a^x = e^{x \ln a} \to 0$.

- As $x \to -\infty$, $x \ln a$ approaches ∞, since both x and $\ln a$ are less than 0. Therefore $a^x = e^{x \ln a} \to \infty$.

For $0 < a < 1$, $\lim_{x \to \infty} a^x = 0$, $\lim_{x \to -\infty} a^x = \infty$.

Annette Pilkington | Natural Logarithm and Natural Exponential
Case 1: Graph of $y = a^x$, $0 < a < 1$

- **Slope:** If $0 < a < 1$, the graph of $y = a^x$ has a negative slope and is always decreasing, $\frac{d}{dx}(a^x) = a^x \ln a < 0$. In this case a smaller value of a gives a steeper curve [for $x < 0$].

- The graph is concave up since the second derivative is $\frac{d^2}{dx^2}(a^x) = a^x (\ln a)^2 > 0$.

- **y-intercept:** The y-intercept is given by $y = a^0 = e^{0 \ln a} = e^0 = 1$.

- **x-intercept:** The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.
Case 1: Graph of \(y = a^x, \ 0 < a < 1 \)

- **Slope:** If \(0 < a < 1 \), the graph of \(y = a^x \) has a negative slope and is always decreasing, \(\frac{d}{dx}(a^x) = a^x \ln a < 0 \). In this case a smaller value of \(a \) gives a steeper curve [for \(x < 0 \)].

- **The graph is concave up since the second derivative is** \(\frac{d^2}{dx^2}(a^x) = a^x(\ln a)^2 > 0 \).

- **As \(x \to \infty \), \(x \ln a \) approaches \(-\infty \), since \(\ln a < 0 \) and therefore \(a^x = e^{x \ln a} \to 0 \).

- **y-intercept:** The y-intercept is given by \(y = a^0 = e^{0 \ln a} = e^0 = 1 \).

- **x-intercept:** The values of \(a^x = e^{x \ln a} \) are always positive and there is no x intercept.
Case 1: Graph of $y = a^x$, $0 < a < 1$

- **Slope:** If $0 < a < 1$, the graph of $y = a^x$ has a negative slope and is always decreasing, $\frac{d}{dx}(a^x) = a^x \ln a < 0$. In this case a smaller value of a gives a steeper curve [for $x < 0$].

- The graph is concave up since the second derivative is $\frac{d^2}{dx^2}(a^x) = a^x (\ln a)^2 > 0$.

- As $x \to \infty$, $x \ln a$ approaches $-\infty$, since $\ln a < 0$ and therefore $a^x = e^{x \ln a} \to 0$.

- As $x \to -\infty$, $x \ln a$ approaches ∞, since both x and $\ln a$ are less than 0. Therefore $a^x = e^{x \ln a} \to \infty$.

- **y-intercept:** The y-intercept is given by $y = a^0 = e^{0 \ln a} = e^0 = 1$.

- **x-intercept:** The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.

\[\lim_{x \to \infty} a^x = 0, \quad \lim_{x \to -\infty} a^x = \infty\]
Case 2: Graph of $y = a^x$, $a > 1$

- **y-intercept:** The y-intercept is given by $y = a^0 = e^{0 \ln a} = e^0 = 1$.

- If $a > 1$, the graph of $y = a^x$ has a positive slope and is always increasing, $\frac{dy}{dx}(a^x) = a^x \ln a > 0$.

- The graph is concave up since the second derivative is $\frac{d^2y}{dx^2}(a^x) = a^x (\ln a)^2 > 0$.

- In this case a larger value of a gives a steeper curve when $x > 0$.

- As $x \to \infty$, $x \ln a$ approaches ∞, since $\ln a > 0$ and therefore $a^x = e^{x \ln a} \to \infty$.

- As $x \to -\infty$, $x \ln a$ approaches $-\infty$, since $x < 0$ and $\ln a > 0$.

Therefore $a^x = e^{x \ln a} \to 0$. For $a > 1$, $\lim_{x \to \infty} a^x = \infty$, $\lim_{x \to -\infty} a^x = 0$.

Annette Pilkington

Natural Logarithm and Natural Exponential
Case 2: Graph of $y = a^x$, $a > 1$

- **y-intercept:** The y-intercept is given by $y = a^0 = e^{0 \ln a} = e^0 = 1$.

- **x-intercept:** The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.
Case 2: Graph of $y = a^x$, $a > 1$

- **y-intercept**: The y-intercept is given by $y = a^0 = e^{0 \ln a} = e^0 = 1$.

- **x-intercept**: The values of $a^x = e^{x \ln a}$ are always positive and there is no x-intercept.

- If $a > 1$, the graph of $y = a^x$ has a positive slope and is always increasing, $\frac{d}{dx}(a^x) = a^x \ln a > 0$.

In this case a larger value of a gives a steeper curve when $x > 0$.

As $x \to \infty$, $x \ln a$ approaches ∞, since $\ln a > 0$ and therefore $a^x = e^{x \ln a} \to \infty$.

As $x \to -\infty$, $x \ln a$ approaches $-\infty$, since $x < 0$ and $\ln a > 0$. Therefore $a^x = e^{x \ln a} \to 0$.

For $a > 1$, $\lim_{x \to \infty} ax = \infty$, $\lim_{x \to -\infty} ax = 0$.

Annette Pilkington Natural Logarithm and Natural Exponential
Case 2: Graph of $y = a^x$, $a > 1$

- If $a > 1$, the graph of $y = a^x$ has a positive slope and is always increasing, $\frac{d}{dx}(a^x) = a^x \ln a > 0$.
- The graph is concave up since the second derivative is $\frac{d^2}{dx^2}(a^x) = a^x (\ln a)^2 > 0$.

- **y-intercept**: The y-intercept is given by $y = a^0 = e^{0 \ln a} = e^0 = 1$.
- **x-intercept**: The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.
Case 2: Graph of $y = a^x$, $a > 1$

- If $a > 1$, the graph of $y = a^x$ has a positive slope and is always increasing, $\frac{d}{dx}(a^x) = a^x \ln a > 0$.
- The graph is concave up since the second derivative is $\frac{d^2}{dx^2}(a^x) = a^x (\ln a)^2 > 0$.
- In this case a larger value of a gives a steeper curve [when $x > 0$].

- **y-intercept:** The y-intercept is given by $y = a^0 = e^{0 \ln a} = e^0 = 1$.

- **x-intercept:** The values of $a^x = e^{x \ln a}$ are always positive and there is no x-intercept.
Case 2: Graph of $y = a^x$, $a > 1$

▶ y-intercept: The y-intercept is given by
$$y = a^0 = e^{0 \ln a} = e^0 = 1.$$

▶ x-intercept: The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.

▶ If $a > 1$, the graph of $y = a^x$ has a positive slope and is always increasing, $\frac{d}{dx}(a^x) = a^x \ln a > 0$.

▶ The graph is concave up since the second derivative is
$$\frac{d^2}{dx^2}(a^x) = a^x (\ln a)^2 > 0.$$

▶ In this case a larger value of a gives a steeper curve [when $x > 0$].

▶ As $x \to \infty$, $x \ln a$ approaches ∞, since $\ln a > 0$ and therefore $a^x = e^{x \ln a} \to \infty$.

Annette Pilkington
Natural Logarithm and Natural Exponential
Case 2: Graph of $y = a^x$, $a > 1$

- For $a > 1$, the graph of $y = a^x$ has a positive slope and is always increasing, $\frac{d}{dx} (a^x) = a^x \ln a > 0$.
- The graph is concave up since the second derivative is $\frac{d^2}{dx^2} (a^x) = a^x (\ln a)^2 > 0$.
- In this case a larger value of a gives a steeper curve [when $x > 0$].
- As $x \to \infty$, $x \ln a$ approaches ∞, since $\ln a > 0$ and therefore $a^x = e^{x \ln a} \to \infty$.
- As $x \to -\infty$, $x \ln a$ approaches $-\infty$, since $x < 0$ and $\ln a > 0$. Therefore $a^x = e^{x \ln a} \to 0$.

- **y-intercept**: The y-intercept is given by $y = a^0 = e^{0 \ln a} = e^0 = 1$.
- **x-intercept**: The values of $a^x = e^{x \ln a}$ are always positive and there is no x intercept.

\[
\begin{align*}
\text{For } a > 1, \quad & x \to \infty \quad a^x = \infty, \quad x \to -\infty \quad a^x = 0.
\end{align*}
\]
We now have 4 different types of functions involving bases and powers. So far we have dealt with the first three types:
If \(a \) and \(b \) are constants and \(g(x) > 0 \) and \(f(x) \) and \(g(x) \) are both differentiable functions.

\[
\frac{d}{dx} a^b = 0, \quad \frac{d}{dx} (f(x))^b = b(f(x))^{b-1}f'(x), \quad \frac{d}{dx} a^{g(x)} = g'(x)a^{g(x)} \ln a,
\]

\[
\frac{d}{dx} (f(x))^{g(x)}
\]

For \(\frac{d}{dx} (f(x))^{g(x)} \), we use logarithmic differentiation or write the function as \((f(x))^{g(x)} = e^{g(x) \ln(f(x))} \) and use the chain rule.

Example Differentiate \(x^{2x^2} , x > 0 \).
Power Rules

We now have 4 different types of functions involving bases and powers. So far we have dealt with the first three types:

If \(a \) and \(b \) are constants and \(g(x) > 0 \) and \(f(x) \) and \(g(x) \) are both differentiable functions.

\[
\frac{d}{dx} a^b = 0, \quad \frac{d}{dx} (f(x))^b = b(f(x))^{b-1}f'(x), \quad \frac{d}{dx} a^g(x) = g'(x)a^{g(x)} \ln a,
\]

\[
\frac{d}{dx} (f(x))^{g(x)}
\]

For \(\frac{d}{dx} (f(x))^{g(x)} \), we use logarithmic differentiation or write the function as \((f(x))^{g(x)} = e^{g(x) \ln(f(x))} \) and use the chain rule.

Example Differentiate \(x^{2x^2}, x > 0 \).

▶ Also to calculate limits of functions of this type it may help write the function as \((f(x))^{g(x)} = e^{g(x) \ln(f(x))} \).
General Logarithmic Functions

Since \(f(x) = a^x \) is a monotonic function whenever \(a \neq 1 \), it has an inverse which we denote by

\[
f^{-1}(x) = \log_a x.
\]
Since $f(x) = a^x$ is a monotonic function whenever $a \neq 1$, it has an inverse which we denote by

$$f^{-1}(x) = \log_a x.$$

We get the following from the properties of inverse functions:
General Logarithmic Functions

Since \(f(x) = a^x \) is a monotonic function whenever \(a \neq 1 \), it has an inverse which we denote by

\[
f^{-1}(x) = \log_a x.
\]

- We get the following from the properties of inverse functions:

\[
f^{-1}(x) = y \quad \text{if and only if} \quad f(y) = x
\]

\[
\log_a (x) = y \quad \text{if and only if} \quad a^y = x
\]
Since \(f(x) = a^x \) is a monotonic function whenever \(a \neq 1 \), it has an inverse which we denote by

\[
 f^{-1}(x) = \log_a x.
\]

We get the following from the properties of inverse functions:

1. \(f^{-1}(x) = y \) if and only if \(f(y) = x \)
2. \(\log_a(x) = y \) if and only if \(a^y = x \)
3. \(f(f^{-1}(x)) = x \) \(f^{-1}(f(x)) = x \)
4. \(a^{\log_a(x)} = x \) \(\log_a(a^x) = x \).
It is not difficult to show that $\log_a x$ has similar properties to $\ln x = \log_e x$. This follows from the **Change of Base Formula** which shows that the function $\log_a x$ is a constant multiple of $\ln x$.

\[
\log_a x = \frac{\ln x}{\ln a}
\]
Change of base Formula

It is not difficult to show that \(\log_a x \) has similar properties to \(\ln x = \log_e x \). This follows from the Change of Base Formula which shows that the function \(\log_a x \) is a constant multiple of \(\ln x \).

\[
\log_a x = \frac{\ln x}{\ln a}
\]

Let \(y = \log_a x \).
It is not difficult to show that $\log_a x$ has similar properties to $\ln x = \log_e x$. This follows from the **Change of Base Formula** which shows that the function $\log_a x$ is a constant multiple of $\ln x$.

$$\log_a x = \frac{\ln x}{\ln a}$$

- Let $y = \log_a x$.
- Since a^y is the inverse of $\log_a x$, we have $a^y = x$.

Annette Pilkington

Natural Logarithm and Natural Exponential
It is not difficult to show that $\log_a x$ has similar properties to $\ln x = \log_e x$. This follows from the Change of Base Formula which shows that the function $\log_a x$ is a constant multiple of $\ln x$.

$$\log_a x = \frac{\ln x}{\ln a}$$

- Let $y = \log_a x$.
- Since a^y is the inverse of $\log_a x$, we have $a^y = x$.
- Taking the natural logarithm of both sides, we get $y \ln a = \ln x$,
Change of base Formula

It is not difficult to show that \(\log_a x \) has similar properties to \(\ln x = \log_e x \). This follows from the Change of Base Formula which shows that The function \(\log_a x \) is a constant multiple of \(\ln x \).

\[
\log_a x = \frac{\ln x}{\ln a}
\]

- Let \(y = \log_a x \).
- Since \(a^y \) is the inverse of \(\log_a x \), we have \(a^y = x \).
- Taking the natural logarithm of both sides, we get \(y \ln a = \ln x \),
- which gives, \(y = \frac{\ln x}{\ln a} \).
Change of base Formula

It is not difficult to show that \(\log_a x \) has similar properties to \(\ln x = \log_e x \). This follows from the Change of Base Formula which shows that The function \(\log_a x \) is a constant multiple of \(\ln x \).

\[
\log_a x = \frac{\ln x}{\ln a}
\]

- Let \(y = \log_a x \).
- Since \(a^x \) is the inverse of \(\log_a x \), we have \(a^y = x \).
- Taking the natural logarithm of both sides, we get \(y \ln a = \ln x \),
- which gives, \(y = \frac{\ln x}{\ln a} \).
- The algebraic properties of the natural logarithm thus extend to general logarithms, by the change of base formula.

\[
\log_a 1 = 0, \quad \log_a(xy) = \log_a(x) + \log_a(y), \quad \log_a(x^r) = r \log_a(x)
\]

for any positive number \(a \neq 1 \). In fact for most calculations (especially limits, derivatives and integrals) it is advisable to convert \(\log_a x \) to natural logarithms. The most commonly used logarithm functions are \(\log_{10} x \) and \(\ln x = \log_e x \). Annette Pilkington

Natural Logarithm and Natural Exponential
Using Change of base Formula for derivatives

Change of base formula

\[\log_a x = \frac{\ln x}{\ln a} \]

From the above change of base formula for \(\log_a x \), we can easily derive the following **differentiation formulas**:

\[
\frac{d}{dx} (\log_a x) = \frac{d}{dx} \frac{\ln x}{\ln a} = \frac{1}{x \ln a} \\
\frac{d}{dx} (\log_a g(x)) = \frac{g'(x)}{g(x) \ln a}.
\]
A special Limit

We derive the following limit formula by taking the derivative of \(f(x) = \ln x \) at \(x = 1 \). We know that \(f'(1) = 1/1 = 1 \). We also know that

\[
f'(1) = \lim_{x \to 0} \frac{\ln(1 + x) - \ln 1}{x} = \lim_{x \to 0} \ln(1 + x)^{1/x} = 1.
\]

Applying the (continuous) exponential function to the limit on the left hand side (of the last equality), we get

\[
e^{\lim_{x \to 0} \ln(1 + x)^{1/x}} = \lim_{x \to 0} e^{\ln(1 + x)^{1/x}} = \lim_{x \to 0} (1 + x)^{1/x}.
\]

Applying the exponential function to the right hand side (of the last equality), we get \(e^1 = e \). Hence

\[
e = \lim_{x \to 0} (1 + x)^{1/x}
\]

Note If we substitute \(y = 1/x \) in the above limit we get

\[
e = \lim_{y \to \infty} \left(1 + \frac{1}{y}\right)^y \quad \text{and} \quad e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n
\]

where \(n \) is an integer (see graphs below). We look at large values of \(n \) below to get an approximation of the value of \(e \).
A special Limit

\[n = 10 \rightarrow \left(1 + \frac{1}{n}\right)^n = 2.59374246, \quad n = 100 \rightarrow \left(1 + \frac{1}{n}\right)^n = 2.70481383, \]

\[n = 100 \rightarrow \left(1 + \frac{1}{n}\right)^n = 2.71692393, \quad n = 1000 \rightarrow \left(1 + \frac{1}{n}\right)^n = 2.1814593. \]