Solutions to the Differential Equation $rac{dy(t)}{dt} = ky(t)$

Last Day, we saw that all solutions y(t) to the differential equation $\frac{dy(t)}{dt} = ky(t)$ are of the form

$$y(t)=y(0)e^{kt}$$

Such a function describes exponential growth when k>0 and exponential decay when k<0. Last day, we worked through examples of Population growth and radioactive decay.

Solutions to the Differential Equation $rac{dy(t)}{dt} = ky(t)$

Last Day, we saw that all solutions y(t) to the differential equation $\frac{dy(t)}{dt} = ky(t)$ are of the form

$$y(t)=y(0)e^{kt}$$

Such a function describes exponential growth when k>0 and exponential decay when k<0. Last day, we worked through examples of Population growth and radioactive decay.

This differential equation also applies to interest compunded continuously $\frac{dA(t)}{dt} = rA(t)$, A(t) = amount in account at time t, r = interest rate (see below)

Solutions to the Differential Equation $rac{dy(t)}{dt} = ky(t)$

Last Day, we saw that all solutions y(t) to the differential equation $\frac{dy(t)}{dt} = ky(t)$ are of the form

$$y(t)=y(0)e^{kt}.$$

Such a function describes exponential growth when k>0 and exponential decay when k<0. Last day, we worked through examples of Population growth and radioactive decay.

- This differential equation also applies to interest compunded continuously $\frac{dA(t)}{dt} = rA(t)$, A(t) = amount in account at time t, r = interest rate (see below)
- ▶ Interest If we invest $\$A_0$ in an account paying $r \times 100$ % interest per anumn and the interest is compounded continuously, the amount in the account after t years is given by

$$A(t)=A_0e^{rt}.$$

Example If I invest \$1000 for 5 years at a 4% interest rate with the interest compounded continuously,

(a) how much will be in my account at the end of the 5 years?

(b) How long before there is \$2000 in the account?

Example If I invest \$1000 for 5 years at a 4% interest rate with the interest compounded continuously,

- (a) how much will be in my account at the end of the 5 years?
 - We are given that $A_0 = 1000$ and r = 0.04.

(b) How long before there is \$2000 in the account?

- (a) how much will be in my account at the end of the 5 years?
 - We are given that $A_0 = 1000$ and r = 0.04.
 - ▶ Because the interest is compounded continuously, we have $A(t) = A_0 e^{0.04t} = 1000 e^{0.04t}$
- (b) How long before there is \$2000 in the account?

- (a) how much will be in my account at the end of the 5 years?
 - We are given that $A_0 = 1000$ and r = 0.04.
 - ▶ Because the interest is compounded continuously, we have $A(t) = A_0e^{0.04t} = 1000e^{0.04t}$
 - $A(5) = 1000e^{0.04(5)} = $1221.4.$
- (b) How long before there is \$2000 in the account?

- (a) how much will be in my account at the end of the 5 years?
 - We are given that $A_0 = 1000$ and r = 0.04.
 - ▶ Because the interest is compounded continuously, we have $A(t) = A_0e^{0.04t} = 1000e^{0.04t}$
 - $A(5) = 1000e^{0.04(5)} = $1221.4.$
- (b) How long before there is \$2000 in the account?
 - We must solve for t in the equation $2000 = 1000e^{0.04t}$.

- (a) how much will be in my account at the end of the 5 years?
 - We are given that $A_0 = 1000$ and r = 0.04.
 - ▶ Because the interest is compounded continuously, we have $A(t) = A_0e^{0.04t} = 1000e^{0.04t}$
 - $A(5) = 1000e^{0.04(5)} = $1221.4.$
- (b) How long before there is \$2000 in the account?
 - We must solve for t in the equation $2000 = 1000e^{0.04t}$.
 - ▶ Dividing by 1000 and taking the natural logarithm of both sides, we get

$$2 = e^{0.04t} \rightarrow \ln 2 = 0.04t \rightarrow t = \ln 2/0.04 \approx 17.33 yrs.$$

Sometimes interest is not compounded continuously. If I invest $$A_0$$ in an account with an interest rate of r% per annum, the amount in the bank account after t years depends on the number of times the interest is compounded per year. In the chart below

 $A_0 = A(0)$ is the initial amount invested at time t = 0. A(t) is the amount in the account after t years. n =the number of times the interest is compounded per year.

$$A(t) = A_0 (1 + \frac{r}{n})^{nt}$$

Amt. after t years	A(0)	A(1)	A(2)	 A(t)
n = 1	A ₀	$A_0(1 + r)$	$A_0(1+r)^2$	 $A_0(1+r)^t$
n = 2	A ₀	$A_0(1+\frac{r}{2})^2$	$A_0(1+\frac{r}{2})^4$	 $A_0(1+\tfrac{r}{2})^{2t}$
n = 12	A ₀	$A_0(1+\frac{r}{12})^{12}$	$A_0(1+\frac{r}{12})^{24}$	 $A_0(1+\frac{r}{12})^{12t}$
n	: A ₀ :	$A_0(1+\frac{r}{n})^n$ \vdots	$A_0(1+\frac{r}{n})^{2n}$ \vdots	 $A_0(1+\frac{r}{n})^{nt}$ \vdots
$n \to \infty$ (compounded	A ₀	$\lim_{n\to\infty}A_0(1+\frac{r}{n})^n$	$\lim_{n\to\infty}A_0(1+\frac{r}{n})^{2n}$	 $\lim_{n\to\infty}A_0(1+\frac{r}{n})^{nt}$
continuously)	= A ₀	$=A_0e^r$	$= A_0 e^{2r}$	 $=A_0e^{rt}$

$$A(t) = A_0(1 + \frac{r}{n})^{nt}$$

$$A(t) = A_0(1 + \frac{r}{n})^{nt}$$

$$A(t) = 50,000(1 + \frac{1}{4})^{4t}$$

$$A(t) = A_0(1 + \frac{r}{n})^{nt}$$

$$A(t) = 50,000(1 + \frac{1}{4})^{4t}$$

$$A(5) = 50,000(1 + \frac{1}{4})^{20} \approx 81,930.82$$

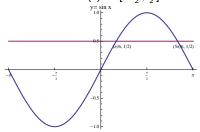
Restricted Sine Function.

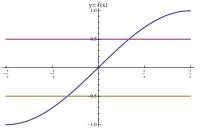
The trigonometric function $\sin x$ is not one-to-one functions, hence in order to create an inverse, we must restrict its domain.

The restricted sine function is given by

$$f(x) = \begin{cases} \sin x & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ \text{undefined} & \text{otherwise} \end{cases}$$

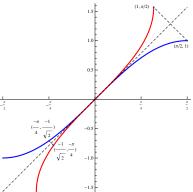
We have $\mathsf{Domain}(\mathsf{f}) = [-\frac{\pi}{2}, \frac{\pi}{2}]$ and $\mathsf{Range}(\mathsf{f}) = [-1, 1].$





Inverse Sine Function (arcsin $x = sin^{-1}x$).

We see from the graph of the restricted sine function (or from its derivative) that the function is one-to-one and hence has an inverse, shown in red in the diagram below.



This inverse function, $f^{-1}(x)$, is denoted by $f^{-1}(x) = \sin^{-1} x$ or $\arcsin x$.

Properties of $\sin^{-1} x$.

Domain(
$$\sin^{-1}$$
) = [-1, 1] and Range(\sin^{-1}) = [$-\frac{\pi}{2}, \frac{\pi}{2}$].

Since $f^{-1}(x) = y$ if and only if f(y) = x, we have:

$$sin^{-1} x = y$$
 if and only if $sin(y) = x$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

Since
$$f(f^{-1})(x) = x$$
 $f^{-1}(f(x)) = x$ we have:

$$\sin(\sin^{-1}(x))=x \text{ for } x\in[-1,1] \quad \sin^{-1}(\sin(x))=x \text{ for } x\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right].$$

from the graph: $\sin^{-1} x$ is an odd function and $\sin^{-1} (-x) = -\sin^{-1} x$.

Example Evaluate $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ using the graph above.

Example Evaluate $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ using the graph above.

• We see that the point $\left(\frac{-1}{\sqrt{2}}, \frac{\pi}{4}\right)$ is on the graph of $y = \sin^{-1} x$.

Example Evaluate $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ using the graph above.

- We see that the point $\left(\frac{-1}{\sqrt{2}}, \frac{\pi}{4}\right)$ is on the graph of $y = \sin^{-1} x$.
- ► Therefore $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right) = \frac{\pi}{4}$.

Example Evaluate $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ using the graph above.

- We see that the point $\left(\frac{-1}{\sqrt{2}}, \frac{\pi}{4}\right)$ is on the graph of $y = \sin^{-1} x$.
- ► Therefore $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right) = \frac{\pi}{4}$.

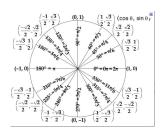
Example Evaluate $\sin^{-1}(\sqrt{3}/2)$ and $\sin^{-1}(-\sqrt{3}/2)$.

▶ $\sin^{-1}(\sqrt{3}/2) = y$ is the same statement as: y is an angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\sin y = \sqrt{3}/2$.

Example Evaluate $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ using the graph above.

- We see that the point $\left(\frac{-1}{\sqrt{2}}, \frac{\pi}{4}\right)$ is on the graph of $y = \sin^{-1} x$.
- ► Therefore $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right) = \frac{\pi}{4}$.

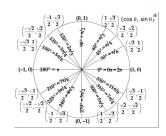
- ▶ $\sin^{-1}(\sqrt{3}/2) = y$ is the same statement as: y is an angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\sin y = \sqrt{3}/2$.
- Consulting our unit circle, we see that $y = \frac{\pi}{3}$.



Example Evaluate $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ using the graph above.

- We see that the point $\left(\frac{-1}{\sqrt{2}}, \frac{\pi}{4}\right)$ is on the graph of $y = \sin^{-1} x$.
- ► Therefore $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right) = \frac{\pi}{4}$.

- ▶ $\sin^{-1}(\sqrt{3}/2) = y$ is the same statement as: y is an angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\sin y = \sqrt{3}/2$.
- Consulting our unit circle, we see that $y = \frac{\pi}{3}$.



$$\Rightarrow$$
 $\sin^{-1}(-\sqrt{3}/2) = -\sin^{-1}(\sqrt{3}/2) = -\frac{\pi}{2}$

Example Evaluate $\sin^{-1}(\sin \pi)$.

Example Evaluate $\cos(\sin^{-1}(\sqrt{3}/2))$.

More Examples For $\sin^{-1} x$

Example Evaluate $\sin^{-1}(\sin \pi)$.

• We have $\sin \pi = 0$, hence $\sin^{-1}(\sin \pi) = \sin^{-1}(0) = 0$.

Example Evaluate $\cos(\sin^{-1}(\sqrt{3}/2))$.

More Examples For $\sin^{-1} x$

Example Evaluate $\sin^{-1}(\sin \pi)$.

• We have $\sin \pi = 0$, hence $\sin^{-1}(\sin \pi) = \sin^{-1}(0) = 0$.

Example Evaluate $\cos(\sin^{-1}(\sqrt{3}/2))$.

• We saw above that $\sin^{-1}(\sqrt{3}/2) = \frac{\pi}{3}$.

More Examples For $\sin^{-1} x$

Example Evaluate $\sin^{-1}(\sin \pi)$.

• We have $\sin \pi = 0$, hence $\sin^{-1}(\sin \pi) = \sin^{-1}(0) = 0$.

Example Evaluate $\cos(\sin^{-1}(\sqrt{3}/2))$.

- We saw above that $\sin^{-1}(\sqrt{3}/2) = \frac{\pi}{3}$.
- Therefore $\cos(\sin^{-1}(\sqrt{3}/2)) = \cos\left(\frac{\pi}{3}\right) = 1/2$.

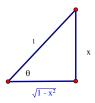
Preparation for the method of Trigonometric Substitution

Example Give a formula in terms of x for $tan(sin^{-1}(x))$

Preparation for the method of Trigonometric Substitution

Example Give a formula in terms of x for $tan(sin^{-1}(x))$

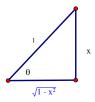
• We draw a right angled triangle with $\theta = \sin^{-1} x$.



Preparation for the method of Trigonometric Substitution

Example Give a formula in terms of x for $tan(sin^{-1}(x))$

• We draw a right angled triangle with $\theta = \sin^{-1} x$.



From this we see that $tan(sin^{-1}(x)) = tan(\theta) = \frac{x}{\sqrt{1-x^2}}$.

Derivative of $\sin^{-1} x$.

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}, \quad -1 \le x \le 1.$$

Please read through the proof given in your notes using implicit differentiation. We can also derive a formula for $\frac{d}{dx}\sin^{-1}(k(x))$ using the chain rule, or we can apply the above formula along with the chain rule directly.

ExampleFind the derivative

$$\frac{d}{dx} \sin^{-1} \sqrt{\cos x}$$

Derivative of $\sin^{-1} x$.

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}, \quad -1 \le x \le 1.$$

Please read through the proof given in your notes using implicit differentiation. We can also derive a formula for $\frac{d}{dx}\sin^{-1}(k(x))$ using the chain rule, or we can apply the above formula along with the chain rule directly.

ExampleFind the derivative

$$\frac{d}{dx}\sin^{-1}\sqrt{\cos x}$$

• We have $\frac{d}{dx} \sin^{-1} \sqrt{\cos x} = \frac{1}{\sqrt{1 - (\sqrt{\cos x})^2}} \frac{d}{dx} \sqrt{\cos x}$

Derivative of $\sin^{-1} x$.

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}, \quad -1 \le x \le 1.$$

Please read through the proof given in your notes using implicit differentiation. We can also derive a formula for $\frac{d}{dx}\sin^{-1}(k(x))$ using the chain rule, or we can apply the above formula along with the chain rule directly.

ExampleFind the derivative

$$\frac{d}{dx}\sin^{-1}\sqrt{\cos x}$$

• We have
$$\frac{d}{dx} \sin^{-1} \sqrt{\cos x} = \frac{1}{\sqrt{1 - (\sqrt{\cos x})^2}} \frac{d}{dx} \sqrt{\cos x}$$

$$=\frac{1}{\sqrt{1-\cos x}}\cdot\frac{-\sin x}{2\sqrt{\cos x}}=\frac{-\sin x}{2\sqrt{\cos x}\sqrt{1-\cos x}}$$

Inverse Cosine Function

We can define the function $\cos^{-1}x$ similarly. You can read the definition in your book. It can be shown that that $\frac{d}{dx}\cos^{-1}x=-\frac{d}{dx}\sin^{-1}x$ and one can use this to prove that

$$sin^{-1}x + cos^{-1}x = \frac{\pi}{2}.$$

Restricted Tangent Function

The tangent function is not a one to one function.

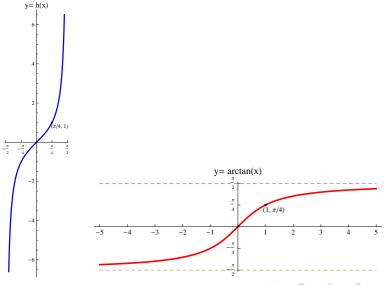
The restricted tangent function is given by

$$h(x) = \begin{cases} & \tan x & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ & \text{undefined} & \text{otherwise} \end{cases}$$

We see from the graph of the restricted tangent function (or from its derivative) that the function is one-to-one and hence has an inverse, which we denote by

$$h^{-1}(x) = \tan^{-1} x$$
 or $\arctan x$.

Graphs of Restricted Tangent and $tan^{-1}x$.



Properties of $tan^{-1}x$.

$$\mathsf{Domain}(\mathsf{tan}^{-1}) = (-\infty, \infty) \text{ and } \mathsf{Range}(\mathsf{tan}^{-1}) = (-\tfrac{\pi}{2}, \tfrac{\pi}{2}).$$

Since $h^{-1}(x) = y$ if and only if h(y) = x, we have:

$$\tan^{-1} x = y$$
 if and only if $\tan(y) = x$ and $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Since
$$h(h^{-1}(x)) = x$$
 and $h^{-1}(h(x)) = x$, we have:

$$\tan(\tan^{-1}(x))=x \text{ for } x\in(-\infty,\infty) \quad \tan^{-1}(\tan(x))=x \text{ for } x\in\Big(-\frac{\pi}{2},\frac{\pi}{2}\Big).$$

From the graph, we have: $\tan^{-1}(-x) = -\tan^{-1}(x)$.

$$\tan^{-1}(-x) = -\tan^{-1}(x).$$

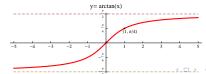
Also, since

$$\lim_{x \to (\frac{\pi}{2}^-)} \tan x = \infty \quad \text{and} \quad$$

$$\lim_{x\to (-\frac{\pi}{2}^+)}\tan x=-\infty,$$

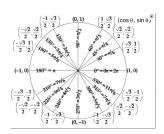
$$\lim_{n \to \infty} \tan^{-1} x = \frac{\pi}{2} \quad \text{and} \quad$$

we have
$$\left|\lim_{x\to\infty}\tan^{-1}x=\frac{\pi}{2}\right|$$
 and $\left|\lim_{x\to-\infty}\tan^{-1}x=-\frac{\pi}{2}\right|$



Example Find $tan^{-1}(1)$ and $tan^{-1}(\frac{1}{\sqrt{3}})$.

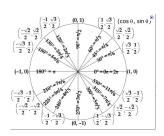
Example Find $cos(tan^{-1}(\frac{1}{\sqrt{3}}))$.



Example Find $tan^{-1}(1)$ and $tan^{-1}(\frac{1}{\sqrt{3}})$.

▶ $\tan^{-1}(1)$ is the unique angle, θ , between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\tan \theta = \frac{\sin \theta}{\cos \theta} = 1$. By inspecting the unit circle, we see that $\theta = \frac{\pi}{4}$.

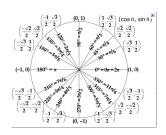
Example Find $cos(tan^{-1}(\frac{1}{\sqrt{3}}))$.



Example Find $tan^{-1}(1)$ and $tan^{-1}(\frac{1}{\sqrt{3}})$.

- ▶ $\tan^{-1}(1)$ is the unique angle, θ , between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\tan \theta = \frac{\sin \theta}{\cos \theta} = 1$. By inspecting the unit circle, we see that $\theta = \frac{\pi}{4}$.
- ▶ $\tan^{-1}(\frac{1}{\sqrt{3}})$ is the unique angle, θ , between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{1}{\sqrt{3}}$. By inspecting the unit circle, we see that $\theta = \frac{\pi}{6}$.

Example Find $cos(tan^{-1}(\frac{1}{\sqrt{3}}))$.

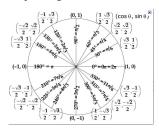


Example Find $tan^{-1}(1)$ and $tan^{-1}(\frac{1}{\sqrt{3}})$.

- ▶ $\tan^{-1}(1)$ is the unique angle, θ , between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\tan \theta = \frac{\sin \theta}{\cos \theta} = 1$. By inspecting the unit circle, we see that $\theta = \frac{\pi}{4}$.
- ▶ $\tan^{-1}(\frac{1}{\sqrt{3}})$ is the unique angle, θ , between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{1}{\sqrt{3}}$. By inspecting the unit circle, we see that $\theta = \frac{\pi}{6}$.

Example Find $cos(tan^{-1}(\frac{1}{\sqrt{3}}))$.

 $ightharpoonup \cos(\tan^{-1}(\frac{1}{\sqrt{3}})) = \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}.$



Derivative of $tan^{-1} x$.

Using implicit differentiation, we get

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{x^2 + 1}, \quad -\infty < x < \infty.$$

(Please read through the proof in your notes.) We can use the chain rule in conjunction with the above derivative.

Example Find the domain and derivative of $tan^{-1}(\ln x)$

Derivative of $tan^{-1} x$.

Using implicit differentiation, we get

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{x^2 + 1}, \quad -\infty < x < \infty.$$

(Please read through the proof in your notes.) We can use the chain rule in conjunction with the above derivative.

Example Find the domain and derivative of $tan^{-1}(\ln x)$

▶ Domain = Domain of $\ln x = (0, \infty)$

Derivative of $tan^{-1}x$.

Using implicit differentiation, we get

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{x^2 + 1}, \quad -\infty < x < \infty.$$

(Please read through the proof in your notes.) We can use the chain rule in conjunction with the above derivative.

Example Find the domain and derivative of $tan^{-1}(\ln x)$

- ▶ Domain = Domain of $\ln x = (0, \infty)$
- •

$$\frac{d}{dx}\tan^{-1}(\ln x) = \frac{\frac{1}{x}}{1 + (\ln x)^2} = \frac{1}{x(1 + (\ln x)^2)}.$$

Reversing the derivative formulas above, we get

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C, \quad \int \frac{1}{x^2+1} dx = \tan^{-1} x + C,$$

Example

$$\int_0^{1/2} \frac{1}{1 + 4x^2} \ dx$$

Reversing the derivative formulas above, we get

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C, \quad \int \frac{1}{x^2+1} dx = \tan^{-1} x + C,$$

Example

$$\int_0^{1/2} \frac{1}{1 + 4x^2} \ dx$$

We use substitution. Let u = 2x, then du = 2dx, u(0) = 0, u(1/2) = 1.

Reversing the derivative formulas above, we get

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C, \quad \int \frac{1}{x^2+1} dx = \tan^{-1} x + C,$$

Example

$$\int_0^{1/2} \frac{1}{1 + 4x^2} \ dx$$

- We use substitution. Let u = 2x, then du = 2dx, u(0) = 0, u(1/2) = 1.

$$\int_0^{1/2} \frac{1}{1+4x^2} dx = \frac{1}{2} \int_0^1 \frac{1}{1+u^2} du = \frac{1}{2} \tan^{-1} u |_0^1 = \frac{1}{2} [\tan^{-1}(1) - \tan^{-1}(0)]$$

Reversing the derivative formulas above, we get

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C, \quad \int \frac{1}{x^2+1} dx = \tan^{-1} x + C,$$

Example

$$\int_0^{1/2} \frac{1}{1 + 4x^2} \ dx$$

- We use substitution. Let u = 2x, then du = 2dx, u(0) = 0, u(1/2) = 1.

$$\int_0^{1/2} \frac{1}{1+4x^2} dx = \frac{1}{2} \int_0^1 \frac{1}{1+u^2} du = \frac{1}{2} \tan^{-1} u \Big|_0^1 = \frac{1}{2} [\tan^{-1}(1) - \tan^{-1}(0)]$$

•

$$\frac{1}{2}[\frac{\pi}{4} - 0] = \frac{\pi}{8}.$$

Integration

Example

$$\int \frac{1}{\sqrt{9-x^2}} \ dx$$

Integration

Example

$$\int \frac{1}{\sqrt{9-x^2}} \ dx$$

•

$$\int \frac{1}{\sqrt{9-x^2}} \ dx = \int \frac{1}{3\sqrt{1-\frac{x^2}{9}}} \ dx = \frac{1}{3} \int \frac{1}{\sqrt{1-\frac{x^2}{9}}} dx$$

Example

$$\int \frac{1}{\sqrt{9-x^2}} \ dx$$

$$\int \frac{1}{\sqrt{9-x^2}} \ dx = \int \frac{1}{3\sqrt{1-\frac{x^2}{9}}} \ dx = \frac{1}{3} \int \frac{1}{\sqrt{1-\frac{x^2}{9}}} dx$$

► Let $u = \frac{x}{3}$, then dx = 3du

Integration

Example

$$\int \frac{1}{\sqrt{9-x^2}} \ dx$$

$$\int \frac{1}{\sqrt{9-x^2}} \ dx = \int \frac{1}{3\sqrt{1-\frac{x^2}{9}}} \ dx = \frac{1}{3} \int \frac{1}{\sqrt{1-\frac{x^2}{9}}} dx$$

- Let $u = \frac{x}{3}$, then dx = 3du

$$\int \frac{1}{\sqrt{9-x^2}} dx = \frac{1}{3} \int \frac{3}{\sqrt{1-u^2}} du = \sin^{-1} u + C = \sin^{-1} \frac{x}{3} + C$$

Indeterminate forms of type $\frac{0}{0}$ and $\frac{\infty}{\infty}$.

Definition An indeterminate form of the type $\frac{0}{0}$ is a limit of a quotient where both numerator and denominator approach 0.

Example

$$\lim_{x \to 0} \frac{e^x - 1}{\sin x} \qquad \lim_{x \to \infty} \frac{x^{-2}}{e^{-x}} \qquad \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}$$

Definition An indeterminate form of the type $\frac{\infty}{\infty}$ is a limit of a quotient $\frac{f(x)}{g(x)}$ where $f(x) \to \infty$ or $-\infty$ and $g(x) \to \infty$ or $-\infty$.

Example

$$\lim_{x \to \infty} \frac{x^2 + 2x + 1}{e^x} \qquad \lim_{x \to 0^+} \frac{x^{-1}}{\ln x}.$$

Indeterminate forms of type $\frac{0}{0}$ and $\frac{\infty}{\infty}$.

L'Hospital's Rule Suppose lim stands for any one of

$$\lim_{x \to a} \lim_{x \to a^+} \lim_{x \to a^-} \lim_{x \to \infty} \lim_{x \to -\infty}$$

and $\frac{f(x)}{g(x)}$ is an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$. If $\lim \frac{f'(x)}{g'(x)}$ is a finite number L or is $\pm \infty$, then

$$\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}.$$

(Assuming that f(x) and g(x) are both differentiable in some open interval around a or ∞ (as appropriate) except possible at a, and that $g'(x) \neq 0$ in that interval).

$$\lim_{x \to 0} \frac{e^x - 1}{\sin x}$$

Example Find

$$\lim_{x \to 0} \frac{e^x - 1}{\sin x}$$

Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L'Hospital's rule.

Example Find

$$\lim_{x\to 0}\frac{e^x-1}{\sin x}$$

▶ Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L'Hospital's rule.

•

$$\lim_{x \to 0} \frac{e^x - 1}{\sin x} = \lim_{x \to 0} \frac{e^x}{\cos x} = 1$$

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}}$$

Example Find

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}}$$

Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L'Hospital's rule.

$$\lim_{x\to\infty}\frac{x^{-2}}{e^{-x}}$$

- Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L'Hospital's rule.
- ► As it stands, this quotient gets more complicated when we apply L'Hospital's rule, so we rearrange it before we apply the rule.

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}}$$

- Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L'Hospital's rule.
- As it stands, this quotient gets more complicated when we apply L'Hospital's rule, so we rearrange it before we apply the rule.

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}} = \lim_{x \to \infty} \frac{1/x^2}{1/e^x} = \lim_{x \to \infty} \frac{e^x}{x^2}$$

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}}$$

- Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L'Hospital's rule.
- As it stands, this quotient gets more complicated when we apply L'Hospital's rule, so we rearrange it before we apply the rule.

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}} = \lim_{x \to \infty} \frac{1/x^2}{1/e^x} = \lim_{x \to \infty} \frac{e^x}{x^2}$$

$$\lim_{x\to\infty}\frac{e^x}{x^2} \quad = \quad \lim_{x\to\infty}\frac{e^x}{2x} \quad = \quad \lim_{x\to\infty}\frac{e^x}{2}$$

Example Find

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}}$$

- Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L'Hospital's rule.
- As it stands, this quotient gets more complicated when we apply L'Hospital's rule, so we rearrange it before we apply the rule.

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}} = \lim_{x \to \infty} \frac{1/x^2}{1/e^x} = \lim_{x \to \infty} \frac{e^x}{x^2}$$

$$\lim_{x\to\infty}\frac{e^x}{x^2} \quad = \quad \lim_{x\to\infty}\frac{e^x}{2x} \quad = \quad \lim_{x\to\infty}\frac{e^x}{2}$$

• As $x\to\infty$, we have $e^x\to\infty$ and therefore $\lim_{x\to\infty}\frac{e^x}{2}=\infty$.

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}$$

Example Find

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}$$

► Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L'Hospital's rule. ($\cos x$ and $x - \frac{\pi}{2}$ are both differentiable everywhere and $g'(x) \neq 0$ where $g(x) = x - \pi/2$).

Example Find

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}$$

► Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L'Hospital's rule. ($\cos x$ and $x - \frac{\pi}{2}$ are both differentiable everywhere and $g'(x) \neq 0$ where $g(x) = x - \pi/2$).

•

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}} = \lim_{x \to \frac{\pi}{2}} \frac{-\sin x}{1} = -1$$

$$\lim_{x\to\infty}\frac{x^2+2x+1}{e^x}$$

Example Find

$$\lim_{x \to \infty} \frac{x^2 + 2x + 1}{e^x}$$

Since this is an indeterminate form of type $\frac{\infty}{\infty}$, we can apply L'Hospital's rule.

Example Find

$$\lim_{x\to\infty}\frac{x^2+2x+1}{e^x}$$

Since this is an indeterminate form of type $\frac{\infty}{\infty}$, we can apply L'Hospital's rule.

•

$$\lim_{x \to \infty} \frac{x^2 + 2x + 1}{e^x} = \lim_{x \to \infty} \frac{2x + 2}{e^x} = \lim_{x \to \infty} \frac{2}{e^x}$$

Example Find

$$\lim_{x\to\infty}\frac{x^2+2x+1}{e^x}$$

Since this is an indeterminate form of type $\frac{\infty}{\infty}$, we can apply L'Hospital's rule.

•

$$\lim_{x \to \infty} \frac{x^2 + 2x + 1}{e^x} = \lim_{x \to \infty} \frac{2x + 2}{e^x} = \lim_{x \to \infty} \frac{2}{e^x}$$

• As $x\to\infty$, we have $e^x\to\infty$ and therefore $\lim_{x\to\infty}\frac{2}{e^x}=0$.

$$\lim_{x\to 0^+}\frac{x^{-1}}{\ln(x)}$$

Example Find

$$\lim_{x\to 0^+} \frac{x^{-1}}{\ln(x)}$$

▶ Since this is an indeterminate form of type $\frac{\infty}{\infty}$, we can apply L'Hospital's rule.

Examples of Indeterminate forms of type $\frac{\infty}{\infty}$.

Example Find

$$\lim_{x\to 0^+} \frac{x^{-1}}{\ln(x)}$$

- Since this is an indeterminate form of type $\frac{\infty}{\infty}$, we can apply L'Hospital's rule.

$$\lim_{x \to 0^+} \frac{x^{-1}}{\ln(x)} \quad = \lim_{x \to 0^+} \frac{-x^{-2}}{1/x} = \lim_{x \to 0^+} \frac{-1/x^2}{1/x} = \lim_{x \to 0^+} \frac{-1}{x} = -\infty$$

Indeterminate forms of type $0 \cdot \infty$.

Definition $\lim f(x)g(x)$ is an indeterminate form of the type $0 \cdot \infty$ if

$$\lim f(x) = 0$$
 and $\lim g(x) = \pm \infty$.

Example $\lim_{x\to 0} x \ln |x|$

We can convert the above indeterminate form to an indeterminate form of type $\frac{0}{0}$ by writing

$$f(x)g(x) = \frac{f(x)}{1/g(x)}$$

or to an indeterminate form of the type $\frac{\infty}{\infty}$ by writing

$$f(x)g(x) = \frac{g(x)}{1/f(x)}.$$

We them apply L'Hospital's rule to the limit.

Example $\lim_{x\to 0} x \ln |x|$

Example $\lim_{x\to 0} x \ln |x|$

• We can convert the above indeterminate form to an indeterminate form of type $\frac{\infty}{\infty}$ by writing

$$f(x)g(x) = \frac{g(x)}{1/f(x)}.$$

Example $\lim_{x\to 0} x \ln |x|$

We can convert the above indeterminate form to an indeterminate form of type $\frac{\infty}{\infty}$ by writing

$$f(x)g(x) = \frac{g(x)}{1/f(x)}.$$

 $ightharpoonup \lim_{x \to 0} x \ln |x| = \lim_{x \to 0} \frac{\ln |x|}{1/x}.$

Example $\lim_{x\to 0} x \ln |x|$

We can convert the above indeterminate form to an indeterminate form of type $\frac{\infty}{\infty}$ by writing

$$f(x)g(x) = \frac{g(x)}{1/f(x)}.$$

- $ightharpoonup |\lim_{x\to 0} x \ln |x| = \lim_{x\to 0} \frac{\ln |x|}{1/x}.$
- ▶ We then apply L'Hospital's rule to the limit.

Example $\lim_{x\to 0} x \ln |x|$

We can convert the above indeterminate form to an indeterminate form of type $\frac{\infty}{\infty}$ by writing

$$f(x)g(x) = \frac{g(x)}{1/f(x)}.$$

- $ightharpoonup |\lim_{x\to 0} x \ln |x| = \lim_{x\to 0} \frac{\ln |x|}{1/x}.$
- We then apply L'Hospital's rule to the limit.

$$\lim_{x \to 0} \frac{\ln |x|}{1/x} = \lim_{x \to 0} \frac{1/x}{(-1/x^2)} = \lim_{x \to 0} \frac{1}{(-1/x)} = \lim_{x \to 0} (-x) = 0$$

Туре	Limit		
00	$\lim [f(x)]^{g(x)}$	$\lim f(x) = 0$	$lim \ g(x) = 0$
∞^0	$\lim [f(x)]^{g(x)}$	$\lim f(x) = \infty$	$lim \ g(x) = 0$
1^{∞}	$\lim [f(x)]^{g(x)}$	lim f(x) = 1	$\lim g(x) = \infty$

Example
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}}$$
.

Туре	Limit		
00	$\lim [f(x)]^{g(x)}$	lim f(x) = 0	$lim \ g(x) = 0$
∞^0	$\lim [f(x)]^{g(x)}$	$\lim f(x) = \infty$	$lim \ g(x) = 0$
1^{∞}	$\lim [f(x)]^{g(x)}$	$lim \ f(x) = 1$	$\lim g(x) = \infty$

Example
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}}$$
.

Method

▶ Look at $\lim \ln[f(x)]^{g(x)} = \lim g(x) \ln[f(x)]$.

Туре	Limit		
00	$\lim [f(x)]^{g(x)}$	$\lim f(x) = 0$	$lim \ g(x) = 0$
∞^0	$\lim [f(x)]^{g(x)}$	$\lim f(x) = \infty$	$lim \ g(x) = 0$
1^{∞}	$\lim [f(x)]^{g(x)}$	lim f(x) = 1	$\lim g(x) = \infty$

Example $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$.

- ▶ Look at $\lim \ln[f(x)]^{g(x)} = \lim g(x) \ln[f(x)]$.
- Use L'Hospital to find $\lim g(x) \ln[f(x)] = \alpha$. (α might be finite or $\pm \infty$ here.)

Туре	Limit		
00	$\lim [f(x)]^{g(x)}$	$\lim f(x) = 0$	$lim \ g(x) = 0$
∞^0	$\lim [f(x)]^{g(x)}$	$\lim f(x) = \infty$	$lim \ g(x) = 0$
1^{∞}	$\lim [f(x)]^{g(x)}$	lim f(x) = 1	$\lim g(x) = \infty$

Example $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$.

- ▶ Look at $\lim \ln[f(x)]^{g(x)} = \lim g(x) \ln[f(x)]$.
- Use L'Hospital to find $\lim g(x) \ln[f(x)] = \alpha$. (α might be finite or $\pm \infty$ here.)
- Then $\lim_{x \to \infty} f(x)^{g(x)} = \lim_{x \to \infty} e^{\ln[f(x)]^{g(x)}} = e^{\alpha}$ since e^x is a continuous function. (where e^{∞} should be interpreted as ∞ and $e^{-\infty}$ should be interpreted as 0.)

Example $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$.

Example $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$.

Method

► Look at $\lim_{x\to 0} \ln[f(x)]^{g(x)} = \lim_{x\to 0} g(x) \ln[f(x)]$: Look at $\lim_{x\to 0} \ln[1+x]^{\frac{1}{x}} = \lim_{x\to 0} \frac{1}{x} \ln[1+x]$

Example $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$.

- ► Look at $\lim_{x\to 0} \ln[f(x)]^{g(x)} = \lim_{x\to 0} g(x) \ln[f(x)]$: Look at $\lim_{x\to 0} \ln[1+x]^{\frac{1}{x}} = \lim_{x\to 0} \frac{1}{x} \ln[1+x]$
- Use L'Hospital to find $\lim_{x \to \infty} g(x) \ln[f(x)] = \alpha$.

$$\lim_{x \to 0} \frac{1}{x} \ln[1+x] = \lim_{x \to 0} \frac{\ln[1+x]}{x} = \lim_{x \to 0} \frac{1/[1+x]}{1} = \mathbf{1} (=\alpha).$$

Example $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$.

Method

- ► Look at $\lim_{x\to 0} \ln[f(x)]^{g(x)} = \lim_{x\to 0} g(x) \ln[f(x)]$: Look at $\lim_{x\to 0} \ln[1+x]^{\frac{1}{x}} = \lim_{x\to 0} \frac{1}{x} \ln[1+x]$
- Use L'Hospital to find $\lim_{x \to \infty} g(x) \ln[f(x)] = \alpha$.

$$\lim_{x \to 0} \frac{1}{x} \ln[1+x] = \lim_{x \to 0} \frac{\ln[1+x]}{x} = \lim_{x \to 0} \frac{1/[1+x]}{1} = \frac{1}{1} (=\alpha).$$

► Then $\lim_{x \to \infty} f(x)^{g(x)} = \lim_{x \to \infty} e^{\ln[f(x)]^{g(x)}} = e^{\lim_{x \to \infty} \ln[f(x)]^{g(x)}} = e^{\alpha}$

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to 0} e^{\ln[(1+x)^{\frac{1}{x}}]} = e^{\lim_{x \to 0} \ln[(1+x)^{\frac{1}{x}}]} = e^{1} = e.$$

Indeterminate Forms of the type $\infty-\infty$ $\,$ occur when we encounter a limit of the form

$$\lim(f(x)-g(x))$$
 where $\lim f(x)=\lim g(x)=\infty$ or $\lim f(x)=\lim g(x)=-\infty$

To deal with these limits, we try to convert to the previous indeterminate forms by adding fractions etc...

Example
$$\lim_{x\to 0^+} \frac{1}{x} - \frac{1}{\sin x}$$

Indeterminate Forms of the type $\infty-\infty$ $\,$ occur when we encounter a limit of the form

$$\lim(f(x) - g(x))$$
 where $\lim f(x) = \lim g(x) = \infty$ or $\lim f(x) = \lim g(x) = -\infty$

To deal with these limits, we try to convert to the previous indeterminate forms by adding fractions etc...

Example $\lim_{x\to 0^+} \frac{1}{x} - \frac{1}{\sin x}$

$$\lim_{x\to 0^+} \frac{1}{x} - \frac{1}{\sin x} = \lim_{x\to 0^+} \frac{\sin x - x}{x \sin x}$$

Indeterminate Forms of the type $\infty-\infty$ $\,$ occur when we encounter a limit of the form

$$\lim(f(x) - g(x))$$
 where $\lim f(x) = \lim g(x) = \infty$ or $\lim f(x) = \lim g(x) = -\infty$

To deal with these limits, we try to convert to the previous indeterminate forms by adding fractions etc...

Example $\lim_{x\to 0^+} \frac{1}{x} - \frac{1}{\sin x}$

- $\lim_{x \to 0^+} \frac{1}{x} \frac{1}{\sin x} = \lim_{x \to 0^+} \frac{\sin x x}{x \sin x}$
- This is an indeterminate form of type $\frac{0}{0}$ so we can use L'Hospital.

Indeterminate Forms of the type $\infty-\infty$ $\,$ occur when we encounter a limit of the form

$$\lim (f(x) - g(x))$$
 where $\lim f(x) = \lim g(x) = \infty$ or $\lim f(x) = \lim g(x) = -\infty$

To deal with these limits, we try to convert to the previous indeterminate forms by adding fractions etc...

Example $\lim_{x\to 0^+} \frac{1}{x} - \frac{1}{\sin x}$

- $\lim_{x\to 0^+} \frac{1}{x} \frac{1}{\sin x} = \lim_{x\to 0^+} \frac{\sin x x}{x \sin x}$
- This is an indeterminate form of type $\frac{0}{0}$ so we can use L'Hospital.
- •

$$\lim_{x \to 0^{+}} \frac{\sin x - x}{x \sin x} = \lim_{x \to 0^{+}} \frac{\cos x - 1}{\sin x + x \cos x}$$

$$= \lim_{x \to 0^{+}} \frac{-\sin x}{\cos x + (\cos x - x \sin x)} = \frac{0}{2} = 0$$

