Solutions to the Differential Equation $\frac{dy(t)}{dt} = ky(t)$

Last Day, we saw that all solutions $y(t)$ to the differential equation $\frac{dy(t)}{dt} = ky(t)$ are of the form

$$y(t) = y(0)e^{kt}.$$

Such a function describes exponential growth when $k > 0$ and exponential decay when $k < 0$. Last day, we worked through examples of Population growth and radioactive decay.
Solutions to the Differential Equation $\frac{dy(t)}{dt} = ky(t)$

Last Day, we saw that all solutions $y(t)$ to the differential equation $\frac{dy(t)}{dt} = ky(t)$ are of the form

$$y(t) = y(0)e^{kt}.$$

Such a function describes exponential growth when $k > 0$ and exponential decay when $k < 0$. Last day, we worked through examples of Population growth and radioactive decay.

This differential equation also applies to interest compounded continuously

$$\frac{dA(t)}{dt} = rA(t), \quad A(t) = \text{amount in account at time } t, \ r = \text{interest rate (see below)}.$$
Solutions to the Differential Equation $\frac{dy(t)}{dt} = ky(t)$

Last Day, we saw that all solutions $y(t)$ to the differential equation
$\frac{dy(t)}{dt} = ky(t)$ are of the form

$$y(t) = y(0)e^{kt}.$$

Such a function describes exponential growth when $k > 0$ and exponential decay when $k < 0$. Last day, we worked through examples of Population growth and radioactive decay.

- **This differential equation also applies to interest compounded continuously**
 \[\frac{dA(t)}{dt} = rA(t), \quad A(t) = \text{amount in account at time } t, \quad r = \text{interest rate} \ (\text{see below}) \]

- **Interest** If we invest A_0 in an account paying $r \times 100$ % interest per annum and the interest is compounded continuously, the amount in the account after t years is given by

 $$A(t) = A_0e^{rt}.$$
Example If I invest $1000 for 5 years at a 4% interest rate with the interest compounded continuously,
(a) how much will be in my account at the end of the 5 years?

(b) How long before there is $2000 in the account?
Interest Compounded Continuously

Example If I invest $1000 for 5 years at a 4% interest rate with the interest compounded continuously,
(a) how much will be in my account at the end of the 5 years?

▶ We are given that $A_0 = 1000$ and $r = 0.04$.

(b) How long before there is $2000 in the account?
Example If I invest $1000 for 5 years at a 4% interest rate with the interest compounded continuously,

(a) how much will be in my account at the end of the 5 years?

- We are given that \(A_0 = 1000 \) and \(r = 0.04 \).
- Because the interest is compounded continuously, we have \(A(t) = A_0 e^{0.04t} = 1000e^{0.04t} \)

(b) How long before there is $2000 in the account?
Interest Compounded Continuously

Example If I invest $1000 for 5 years at a 4% interest rate with the interest compounded continuously,
(a) how much will be in my account at the end of the 5 years?

▶ *We are given that* \(A_0 = 1000 \) *and* \(r = 0.04 \).

▶ *Because the interest is compounded continuously, we have*
\[
A(t) = A_0 e^{0.04t} = 1000e^{0.04t}
\]

▶ \(A(5) = 1000e^{0.04(5)} = $1221.4. \)

(b) How long before there is $2000 in the account?

▶ We must solve for \(t \) in the equation
\[
2000 = 1000e^{0.04t}
\]

▶ Dividing by 1000 and taking the natural logarithm of both sides, we get
\[
2 = e^{0.04t} \rightarrow \ln 2 = 0.04t \rightarrow t = \frac{\ln 2}{0.04} \approx 17.33 \text{ yrs}.
\]
Example If I invest $1000 for 5 years at a 4\% interest rate with the interest compounded continuously,
(a) how much will be in my account at the end of the 5 years?

- We are given that $A_0 = 1000$ and $r = 0.04$.

- Because the interest is compounded continuously, we have $A(t) = A_0 e^{0.04t} = 1000e^{0.04t}$

- $A(5) = 1000e^{0.04(5)} = $1221.4.

(b) How long before there is $2000 in the account?

- We must solve for t in the equation $2000 = 1000e^{0.04t}$.

Example If I invest $1000 for 5 years at a 4% interest rate with the interest compounded continuously,

(a) how much will be in my account at the end of the 5 years?

- We are given that \(A_0 = 1000 \) and \(r = 0.04 \).
- Because the interest is compounded continuously, we have \(A(t) = A_0 e^{0.04t} = 1000 e^{0.04t} \).
- \(A(5) = 1000 e^{0.04(5)} = 1221.4 \).

(b) How long before there is $2000 in the account?

- We must solve for \(t \) in the equation \(2000 = 1000 e^{0.04t} \).
- Dividing by 1000 and taking the natural logarithm of both sides, we get

\[
2 = e^{0.04t} \quad \rightarrow \quad \ln 2 = 0.04t \quad \rightarrow \quad t = \ln 2 / 0.04 \approx 17.33 \text{ yrs}.
\]
Compound Interest

Sometimes interest is not compounded continuously. If I invest A_0 in an account with an interest rate of $r\%$ per annum, the amount in the bank account after t years depends on the number of times the interest is compounded per year. In the chart below

\[A_0 = A(0) \] is the initial amount invested at time $t = 0$.

\[A(t) \] is the amount in the account after t years.

\[n \] is the number of times the interest is compounded per year.

We Have

\[A(t) = A_0 \left(1 + \frac{r}{n}\right)^{nt} \]

<table>
<thead>
<tr>
<th>Amt. after t years</th>
<th>$A(0)$</th>
<th>$A(1)$</th>
<th>$A(2)$</th>
<th>\ldots</th>
<th>$A(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 1$</td>
<td>A_0</td>
<td>$A_0(1 + r)$</td>
<td>$A_0(1 + r)^2$</td>
<td>\ldots</td>
<td>$A_0(1 + r)^t$</td>
</tr>
<tr>
<td>$n = 2$</td>
<td>A_0</td>
<td>$A_0\left(1 + \frac{r}{2}\right)^2$</td>
<td>$A_0\left(1 + \frac{r}{2}\right)^4$</td>
<td>\ldots</td>
<td>$A_0\left(1 + \frac{r}{2}\right)^{2t}$</td>
</tr>
<tr>
<td>$n = 12$</td>
<td>A_0</td>
<td>$A_0\left(1 + \frac{r}{12}\right)^{12}$</td>
<td>$A_0\left(1 + \frac{r}{12}\right)^{24}$</td>
<td>\ldots</td>
<td>$A_0\left(1 + \frac{r}{12}\right)^{12t}$</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$n \to \infty$</td>
<td>A_0</td>
<td>$\lim_{n \to \infty} A_0\left(1 + \frac{r}{n}\right)^n$</td>
<td>$\lim_{n \to \infty} A_0\left(1 + \frac{r}{n}\right)^{2n}$</td>
<td>\ldots</td>
<td>$\lim_{n \to \infty} A_0\left(1 + \frac{r}{n}\right)^{nt}$</td>
</tr>
<tr>
<td>(compounded continuously)</td>
<td>$= A_0$</td>
<td>$= A_0 e^r$</td>
<td>$= A_0 e^{2r}$</td>
<td>\ldots</td>
<td>$= A_0 e^{rt}$</td>
</tr>
</tbody>
</table>
Example If I borrow $50,000 at a 10% interest rate for 5 years with the interest compounded quarterly, how much will I owe after 5 years?
Example If I borrow $50,000 at a 10% interest rate for 5 years with the interest compounded quarterly, how much will I owe after 5 years?

\[A(t) = A_0 (1 + \frac{r}{n})^{nt} \]
Example If I borrow $50,000 at a 10% interest rate for 5 years with the interest compounded quarterly, how much will I owe after 5 years?

\[A(t) = A_0 \left(1 + \frac{r}{n}\right)^{nt} \]

\[A(t) = 50,000 \left(1 + \frac{1}{4}\right)^{4t} \]
Compound Interest

Example If I borrow $50,000 at a 10% interest rate for 5 years with the interest compounded quarterly, how much will I owe after 5 years?

- \(A(t) = A_0(1 + \frac{r}{n})^{nt} \)
- \(A(t) = 50,000(1 + \frac{1}{4})^{4t} \)
- \(A(5) = 50,000(1 + \frac{1}{4})^{20} \approx 81,930.82 \)
The trigonometric function \(\sin x \) is not one-to-one functions, hence in order to create an inverse, we must restrict its domain. The restricted sine function is given by

\[
 f(x) = \begin{cases}
 \sin x & -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
 \text{undefined} & \text{otherwise}
\end{cases}
\]

We have Domain\((f) = [-\frac{\pi}{2}, \frac{\pi}{2}]\) and Range\((f) = [-1, 1]\).
Inverse Sine Function \((\arcsin x = \sin^{-1} x)\).

We see from the graph of the restricted sine function (or from its derivative) that the function is one-to-one and hence has an inverse, shown in red in the diagram below.

This inverse function, \(f^{-1}(x)\), is denoted by \(f^{-1}(x) = \sin^{-1} x \text{ or } \arcsin x\).
Properties of $\sin^{-1} x$.

Domain(\sin^{-1}) = $[-1, 1]$ and Range(\sin^{-1}) = $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

Since $f^{-1}(x) = y$ if and only if $f(y) = x$, we have:

$\sin^{-1} x = y$ if and only if $\sin(y) = x$ and $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.

Since $f(f^{-1})(x) = x$ $f^{-1}(f(x)) = x$ we have:

$\sin(\sin^{-1}(x)) = x$ for $x \in [-1, 1]$ $\sin^{-1}(\sin(x)) = x$ for $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

From the graph: $\sin^{-1} x$ is an odd function and $\sin^{-1}(-x) = -\sin^{-1} x$.
Evaluating $\sin^{-1} x$.

Example Evaluate $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ using the graph above.

Example Evaluate $\sin^{-1}(\sqrt{3}/2)$ and $\sin^{-1}(-\sqrt{3}/2)$.
Evaluating $\sin^{-1} x$.

Example Evaluate $\sin^{-1} \left(\frac{-1}{\sqrt{2}} \right)$ using the graph above.

- We see that the point $\left(\frac{-1}{\sqrt{2}}, \frac{\pi}{4} \right)$ is on the graph of $y = \sin^{-1} x$.

Example Evaluate $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$ and $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$.

Annette Pilkington
Evaluating $\sin^{-1} x$.

Example Evaluate $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ using the graph above.

- We see that the point $\left(\frac{-1}{\sqrt{2}}, \frac{\pi}{4}\right)$ is on the graph of $y = \sin^{-1} x$.
- Therefore $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right) = \frac{\pi}{4}$.

Example Evaluate $\sin^{-1}(\sqrt{3}/2)$ and $\sin^{-1}(-\sqrt{3}/2)$.

Annette Pilkington

Exponential Growth and Inverse Trigonometric Functions
Evaluating $\sin^{-1} x$.

Example Evaluate $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ using the graph above.

- We see that the point $\left(\frac{-1}{\sqrt{2}}, \frac{\pi}{4}\right)$ is on the graph of $y = \sin^{-1} x$.
- Therefore $\sin^{-1}\left(\frac{-1}{\sqrt{2}}\right) = \frac{\pi}{4}$.

Example Evaluate $\sin^{-1}(\sqrt{3}/2)$ and $\sin^{-1}(-\sqrt{3}/2)$.

- $\sin^{-1}(\sqrt{3}/2) = y$ is the same statement as: y is an angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\sin y = \sqrt{3}/2$.
- $\sin^{-1}(-\sqrt{3}/2) = \text{same as the previous example but negative}$.
Evaluating $\sin^{-1} x$.

Example Evaluate $\sin^{-1} \left(\frac{-1}{\sqrt{2}} \right)$ using the graph above.

- We see that the point $\left(\frac{-1}{\sqrt{2}}, \frac{\pi}{4} \right)$ is on the graph of $y = \sin^{-1} x$.
- Therefore $\sin^{-1} \left(\frac{-1}{\sqrt{2}} \right) = \frac{\pi}{4}$.

Example Evaluate $\sin^{-1} (\sqrt{3}/2)$ and $\sin^{-1} (-\sqrt{3}/2)$.

- $\sin^{-1} (\sqrt{3}/2) = y$ is the same statement as:
 y is an angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\sin y = \sqrt{3}/2$.
- Consulting our unit circle, we see that $y = \frac{\pi}{3}$.
Evaluating $\sin^{-1} x$.

Example Evaluate $\sin^{-1} \left(\frac{-1}{\sqrt{2}} \right)$ using the graph above.

- We see that the point $\left(\frac{-1}{\sqrt{2}}, \frac{\pi}{4} \right)$ is on the graph of $y = \sin^{-1} x$.
- Therefore $\sin^{-1} \left(\frac{-1}{\sqrt{2}} \right) = \frac{\pi}{4}$.

Example Evaluate $\sin^{-1} (\sqrt{3}/2)$ and $\sin^{-1} (-\sqrt{3}/2)$.

- $\sin^{-1} (\sqrt{3}/2) = y$ is the same statement as:
 y is an angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\sin y = \sqrt{3}/2$.
- Consulting our unit circle, we see that $y = \frac{\pi}{3}$.

- $\sin^{-1} (-\sqrt{3}/2) = -\sin^{-1} (\sqrt{3}/2) = -\frac{\pi}{3}$.
More Examples For $\sin^{-1} x$

Example Evaluate $\sin^{-1}(\sin \pi)$.

Example Evaluate $\cos(\sin^{-1}(\sqrt{3}/2))$.
More Examples For $\sin^{-1} x$

Example Evaluate $\sin^{-1}(\sin \pi)$.

- We have $\sin \pi = 0$, hence $\sin^{-1}(\sin \pi) = \sin^{-1}(0) = 0$.

Example Evaluate $\cos(\sin^{-1}(\sqrt{3}/2))$.
More Examples For $\sin^{-1} x$

Example Evaluate $\sin^{-1}(\sin \pi)$.

- *We have* $\sin \pi = 0$, *hence* $\sin^{-1}(\sin \pi) = \sin^{-1}(0) = 0$.

Example Evaluate $\cos(\sin^{-1}(\sqrt{3}/2))$.

- *We saw above that* $\sin^{-1}(\sqrt{3}/2) = \frac{\pi}{3}$.
More Examples For $\sin^{-1} x$

Example Evaluate $\sin^{-1}(\sin \pi)$.

- *We have* $\sin \pi = 0$, *hence* $\sin^{-1}(\sin \pi) = \sin^{-1}(0) = 0$.

Example Evaluate $\cos(\sin^{-1}(\sqrt{3}/2))$.

- *We saw above that* $\sin^{-1}(\sqrt{3}/2) = \frac{\pi}{3}$.

- *Therefore* $\cos(\sin^{-1}(\sqrt{3}/2)) = \cos\left(\frac{\pi}{3}\right) = 1/2$.
Example Give a formula in terms of x for $\tan(\sin^{-1}(x))$
Example Give a formula in terms of \(x \) for \(\tan(\sin^{-1}(x)) \)

- We draw a right angled triangle with \(\theta = \sin^{-1} x \).
Example Give a formula in terms of x for $\tan(\sin^{-1}(x))$

- We draw a right angled triangle with $\theta = \sin^{-1} x$.

- From this we see that $\tan(\sin^{-1}(x)) = \tan(\theta) = \frac{x}{\sqrt{1-x^2}}$.

\[
\begin{align*}
\theta & \\
\sqrt{1-x^2} & \\
x & \\
1 & \\
\end{align*}
\]
Derivative of $\sin^{-1} x$.

\[
\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1-x^2}}, \quad -1 \leq x \leq 1.
\]

Please read through the proof given in your notes using implicit differentiation. We can also derive a formula for \(\frac{d}{dx} \sin^{-1}(k(x)) \) using the chain rule, or we can apply the above formula along with the chain rule directly.

Example Find the derivative

\[
\frac{d}{dx} \sin^{-1} \sqrt{\cos x}
\]
Derivative of $\sin^{-1} x$.

\[
\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}, \quad -1 \leq x \leq 1.
\]

Please read through the proof given in your notes using implicit differentiation. We can also derive a formula for $\frac{d}{dx} \sin^{-1}(k(x))$ using the chain rule, or we can apply the above formula along with the chain rule directly.

Example
Find the derivative

\[
\frac{d}{dx} \sin^{-1} \sqrt{\cos x}
\]

▶ We have $\frac{d}{dx} \sin^{-1} \sqrt{\cos x} = \frac{1}{\sqrt{1-(\sqrt{\cos x})^2}} \frac{d}{dx} \sqrt{\cos x}$.
Derivative of $\sin^{-1} x$.

$$\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1-x^2}}, \quad -1 \leq x \leq 1.$$

Please read through the proof given in your notes using implicit differentiation. We can also derive a formula for $\frac{d}{dx} \sin^{-1}(k(x))$ using the chain rule, or we can apply the above formula along with the chain rule directly.

Example Find the derivative

$$\frac{d}{dx} \sin^{-1} \sqrt{\cos x}.$$

- We have $\frac{d}{dx} \sin^{-1} \sqrt{\cos x} = \frac{1}{\sqrt{1-(\sqrt{\cos x})^2}} \frac{d}{dx} \sqrt{\cos x}$

- $$= \frac{1}{\sqrt{1-\cos x}} \cdot \frac{-\sin x}{2\sqrt{\cos x}} = \frac{-\sin x}{2\sqrt{\cos x}\sqrt{1-\cos x}}$$
We can define the function $\cos^{-1} x$ similarly. You can read the definition in your book. It can be shown that $\frac{d}{dx} \cos^{-1} x = -\frac{d}{dx} \sin^{-1} x$ and one can use this to prove that

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}.$$
The tangent function is not a one to one function. The **restricted tangent function** is given by

\[
h(x) = \begin{cases}
 \tan x & -\frac{\pi}{2} < x < \frac{\pi}{2} \\
 \text{undefined} & \text{otherwise}
\end{cases}
\]

We see from the graph of the restricted tangent function (or from its derivative) that the function is one-to-one and hence has an inverse, which we denote by

\[
h^{-1}(x) = \tan^{-1} x \text{ or } \arctan x.
\]
Graphs of Restricted Tangent and $\tan^{-1}x$.

\[y = h(x) \]

\[y = \arctan(x) \]
Properties of $\tan^{-1}x$.

Domain(\tan^{-1}) = $(-\infty, \infty)$ and Range(\tan^{-1}) = $(-\frac{\pi}{2}, \frac{\pi}{2})$.

Since $h^{-1}(x) = y$ if and only if $h(y) = x$, we have:

$\tan^{-1}x = y$ if and only if $\tan(y) = x$ and $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Since $h(h^{-1}(x)) = x$ and $h^{-1}(h(x)) = x$, we have:

$\tan(\tan^{-1}(x)) = x$ for $x \in (-\infty, \infty)$ and $\tan^{-1}(\tan(x)) = x$ for $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

From the graph, we have: $\tan^{-1}(-x) = -\tan^{-1}(x)$.

Also, since $\lim_{x \to \left(\frac{\pi}{2}^{-}\right)} \tan x = \infty$ and $\lim_{x \to \left(-\frac{\pi}{2}^{+}\right)} \tan x = -\infty$,

we have $\lim_{x \to \infty} \tan^{-1} x = \frac{\pi}{2}$ and $\lim_{x \to -\infty} \tan^{-1} x = -\frac{\pi}{2}$.
Evaluating $\tan^{-1} x$

Example Find $\tan^{-1}(1)$ and $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$.

Example Find $\cos(\tan^{-1}\left(\frac{1}{\sqrt{3}}\right))$.

![Diagram of the unit circle with angles and sine and cosine values.](diagram.png)
Evaluating $\tan^{-1} x$

Example Find $\tan^{-1}(1)$ and $\tan^{-1}(\frac{1}{\sqrt{3}})$.

- $\tan^{-1}(1)$ is the unique angle, θ, between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\tan \theta = \frac{\sin \theta}{\cos \theta} = 1$. By inspecting the unit circle, we see that $\theta = \frac{\pi}{4}$.

Example Find $\cos(\tan^{-1}(\frac{1}{\sqrt{3}}))$.

![Unit Circle Diagram](image)
Evaluating $\tan^{-1} x$

Example Find $\tan^{-1}(1)$ and $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$.

- $\tan^{-1}(1)$ is the unique angle, θ, between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\tan \theta = \frac{\sin \theta}{\cos \theta} = 1$. By inspecting the unit circle, we see that $\theta = \frac{\pi}{4}$.

- $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$ is the unique angle, θ, between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{1}{\sqrt{3}}$. By inspecting the unit circle, we see that $\theta = \frac{\pi}{6}$.

Example Find $\cos(\tan^{-1}\left(\frac{1}{\sqrt{3}}\right))$.

$\cos(\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$.

Figure Description:

- The unit circle is divided into various sections, each labeled with angles in radians and degrees.
- Key points are marked with their corresponding coordinates and angles, including $(0, 1)$, $(1, 0)$, $(0, -1)$, and $(1, 1)$.
Evaluating $\tan^{-1} x$

Example Find $\tan^{-1}(1)$ and $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$.

- $\tan^{-1}(1)$ is the unique angle, θ, between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\tan \theta = \frac{\sin \theta}{\cos \theta} = 1$. By inspecting the unit circle, we see that $\theta = \frac{\pi}{4}$.

- $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$ is the unique angle, θ, between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ with $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{1}{\sqrt{3}}$. By inspecting the unit circle, we see that $\theta = \frac{\pi}{6}$.

Example Find $\cos(\tan^{-1}\left(\frac{1}{\sqrt{3}}\right))$.

- $\cos(\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$.
Derivative of $\tan^{-1} x$.

Using implicit differentiation, we get

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{x^2 + 1}, \quad -\infty < x < \infty.$$

(Please read through the proof in your notes.) We can use the chain rule in conjunction with the above derivative.

Example Find the domain and derivative of $\tan^{-1}(\ln x)$
Derivative of $\tan^{-1} x$.

Using implicit differentiation, we get

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{x^2 + 1}, \quad -\infty < x < \infty.$$

(Please read through the proof in your notes.) We can use the chain rule in conjunction with the above derivative.

Example Find the domain and derivative of $\tan^{-1}(\ln x)$

- Domain = Domain of $\ln x = (0, \infty)$
Using implicit differentiation, we get

\[\frac{d}{dx} \tan^{-1} x = \frac{1}{x^2 + 1}, \quad -\infty < x < \infty. \]

(Please read through the proof in your notes.) We can use the chain rule in conjunction with the above derivative.

Example Find the domain and derivative of \(\tan^{-1}(\ln x) \)

\[\text{Domain} = \text{Domain of } \ln x = (0, \infty) \]

\[\frac{d}{dx} \tan^{-1}(\ln x) = \frac{1}{x} \cdot \frac{1}{1 + (\ln x)^2} = \frac{1}{x(1 + (\ln x)^2)}. \]
Integration Formulas

Reversing the derivative formulas above, we get

\[\int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1} x + C, \quad \int \frac{1}{x^2 + 1} \, dx = \tan^{-1} x + C, \]

Example

\[\int_{0}^{1/2} \frac{1}{1 + 4x^2} \, dx \]
Integration Formulas

Reversing the derivative formulas above, we get

\[\int \frac{1}{\sqrt{1 - x^2}} \, dx = \sin^{-1} x + C, \quad \int \frac{1}{x^2 + 1} \, dx = \tan^{-1} x + C, \]

Example

\[\int_{0}^{1/2} \frac{1}{1 + 4x^2} \, dx \]

- **We use substitution.** Let \(u = 2x \), then \(du = 2 \, dx \), \(u(0) = 0 \), \(u(1/2) = 1 \).
Integration Formulas

Reversing the derivative formulas above, we get

\[
\int \frac{1}{\sqrt{1 - x^2}} \, dx = \sin^{-1} x + C, \quad \int \frac{1}{x^2 + 1} \, dx = \tan^{-1} x + C,
\]

Example

\[
\int_{0}^{1/2} \frac{1}{1 + 4x^2} \, dx
\]

We use substitution. Let \(u = 2x \), then \(du = 2 \, dx \), \(u(0) = 0 \), \(u(1/2) = 1 \).

\[
\int_{0}^{1/2} \frac{1}{1 + 4x^2} \, dx = \frac{1}{2} \int_{0}^{1} \frac{1}{1 + u^2} \, du = \frac{1}{2} \tan^{-1} u|_{0}^{1} = \frac{1}{2} [\tan^{-1}(1) - \tan^{-1}(0)]
\]
Reversing the derivative formulas above, we get

\[
\int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1} x + C, \quad \int \frac{1}{x^2 + 1} \, dx = \tan^{-1} x + C,
\]

Example

\[
\int_0^{1/2} \frac{1}{1 + 4x^2} \, dx
\]

We use substitution. Let \(u = 2x \), then \(du = 2\,dx \), \(u(0) = 0 \), \(u(1/2) = 1 \).

\[
\int_0^{1/2} \frac{1}{1 + 4x^2} \, dx = \frac{1}{2} \int_0^1 \frac{1}{1 + u^2} \, du = \frac{1}{2} \tan^{-1} u|_0^1 = \frac{1}{2} [\tan^{-1}(1) - \tan^{-1}(0)]
\]

\[
= \frac{1}{2} \left[\frac{\pi}{4} - 0 \right] = \frac{\pi}{8}.
\]
Exponential growth and Decay
Inverse Trigonometric functions. Inverse Tangent Function
Indeterminate Forms
Integration

Example

\[\int \frac{1}{\sqrt{9 - x^2}} \, dx \]
Exponential growth and Decay Inverse Trigonometric functions Inverse Tangent Function Indeterminate Forms

Integration

Example

\[
\int \frac{1}{\sqrt{9 - x^2}} \, dx
\]

\[
\int \frac{1}{\sqrt{9 - x^2}} \, dx = \int \frac{1}{3\sqrt{1 - \frac{x^2}{9}}} \, dx = \frac{1}{3} \int \frac{1}{\sqrt{1 - \frac{x^2}{9}}} \, dx
\]
Example

\[
\int \frac{1}{\sqrt{9 - x^2}} \, dx
\]

\[
\int \frac{1}{\sqrt{9 - x^2}} \, dx = \int \frac{1}{3 \sqrt{1 - \frac{x^2}{9}}} \, dx = \frac{1}{3} \int \frac{1}{\sqrt{1 - \frac{x^2}{9}}} \, dx
\]

Let \(u = \frac{x}{3} \), then \(dx = 3 \, du \)
Integration

Example

\[\int \frac{1}{\sqrt{9 - x^2}} \, dx \]

\[\int \frac{1}{\sqrt{9 - x^2}} \, dx = \int \frac{1}{3\sqrt{1 - \frac{x^2}{9}}} \, dx = \frac{1}{3} \int \frac{1}{\sqrt{1 - \frac{x^2}{9}}} \, dx \]

\[\text{Let } u = \frac{x}{3}, \text{ then } dx = 3du \]

\[\int \frac{1}{\sqrt{9 - x^2}} \, dx = \frac{1}{3} \int \frac{3}{\sqrt{1 - u^2}} \, du = \sin^{-1} u + C = \sin^{-1} \left(\frac{x}{3} \right) + C \]
Indeterminate forms of type $\frac{0}{0}$ and $\frac{\infty}{\infty}$.

Definition An indeterminate form of the type $\frac{0}{0}$ is a limit of a quotient where both numerator and denominator approach 0.

Example

\[
\lim_{x \to 0} \frac{e^x - 1}{\sin x}, \quad \lim_{x \to \infty} \frac{x^{-2}}{e^{-x}}, \quad \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}
\]

Definition An indeterminate form of the type $\frac{\infty}{\infty}$ is a limit of a quotient $\frac{f(x)}{g(x)}$ where $f(x) \to \infty$ or $-\infty$ and $g(x) \to \infty$ or $-\infty$.

Example

\[
\lim_{x \to \infty} \frac{x^2 + 2x + 1}{e^x}, \quad \lim_{x \to 0^+} \frac{x^{-1}}{\ln x}.
\]
Indeterminate forms of type \(\frac{0}{0} \) and \(\frac{\infty}{\infty} \).

L’Hospital’s Rule Suppose \(\lim \) stands for any one of

\[
\lim_{x \to a} \quad \lim_{x \to a^+} \quad \lim_{x \to a^-} \quad \lim_{x \to \infty} \quad \lim_{x \to -\infty}
\]

and \(\frac{f(x)}{g(x)} \) is an indeterminate form of type \(\frac{0}{0} \) or \(\frac{\infty}{\infty} \).

If \(\lim \frac{f'(x)}{g'(x)} \) is a finite number \(L \) or is \(\pm \infty \), then

\[
\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}.
\]

(Assuming that \(f(x) \) and \(g(x) \) are both differentiable in some open interval around \(a \) or \(\infty \) (as appropriate) except possible at \(a \), and that \(g'(x) \neq 0 \) in that interval).
Examples of Indeterminate forms of type $\frac{0}{0}$.

Example Find

$$\lim_{x \to 0} \frac{e^x - 1}{\sin x}$$
Examples of Indeterminate forms of type $\frac{0}{0}$.

Example Find

$$\lim_{x \to 0} \frac{e^x - 1}{\sin x}$$

- *Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L’Hospital’s rule.*
Examples of Indeterminate forms of type \(\frac{0}{0} \).

Example Find

\[
\lim_{x \to 0} \frac{e^x - 1}{\sin x}
\]

- Since this is an indeterminate form of type \(\frac{0}{0} \), we can apply L’Hospital’s rule.

\[
\lim_{x \to 0} \frac{e^x - 1}{\sin x} = \left(L’Hosp. \right) \lim_{x \to 0} \frac{e^x}{\cos x} = \left(Eval. \right) 1
\]
Examples of Indeterminate forms of type $\frac{0}{0}$.

Example Find

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}}$$
Examples of Indeterminate forms of type $\frac{0}{0}$.

Example Find

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}}$$

Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L'Hospital’s rule.
Examples of Indeterminate forms of type $\frac{0}{0}$.

Example Find

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}}$$

- Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L'Hospital's rule.

- As it stands, this quotient gets more complicated when we apply L'Hospital's rule, so we rearrange it before we apply the rule.
Examples of Indeterminate forms of type $\frac{0}{0}$.

Example Find

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}}$$

- Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L'Hospital’s rule.

- As it stands, this quotient gets more complicated when we apply L'Hospital’s rule, so we rearrange it before we apply the rule.

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}} = \lim_{x \to \infty} \frac{1/x^2}{e^{-x}} = \lim_{x \to \infty} \frac{e^x}{x^2}$$
Examples of Indeterminate forms of type $\frac{0}{0}$.

Example Find

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}}$$

- Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L'Hospital's rule.
- As it stands, this quotient gets more complicated when we apply L'Hospital's rule, so we rearrange it before we apply the rule.

$$\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}} = \lim_{x \to \infty} \frac{1/x^2}{1/e^x} = \lim_{x \to \infty} \frac{e^x}{x^2}$$

$$\lim_{x \to \infty} \frac{e^x}{x^2} = (L'Hosp.) \lim_{x \to \infty} \frac{e^x}{2x} = (L'Hosp.) \lim_{x \to \infty} \frac{e^x}{2}$$
Examples of Indeterminate forms of type $0/0$.

Example Find

\[
\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}}
\]

- Since this is an indeterminate form of type $0/0$, we can apply L'Hospital’s rule.

- As it stands, this quotient gets more complicated when we apply L'Hospital’s rule, so we rearrange it before we apply the rule.

\[
\lim_{x \to \infty} \frac{x^{-2}}{e^{-x}} = \lim_{x \to \infty} \frac{1/x^2}{e^{-x}} = \lim_{x \to \infty} \frac{e^x}{x^2}
\]

- \[
\lim_{x \to \infty} \frac{e^x}{x^2} = (L' Hosp.) \lim_{x \to \infty} \frac{e^x}{2x} = (L' Hosp.) \lim_{x \to \infty} \frac{e^x}{2}
\]

- As $x \to \infty$, we have $e^x \to \infty$ and therefore $\lim_{x \to \infty} \frac{e^x}{2} = \infty$.
Examples of Indeterminate forms of type $\frac{0}{0}$.

Example Find

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}$$
Examples of Indeterminate forms of type $\frac{0}{0}$.

Example Find

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}$$

- **Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L’Hospital’s rule.** (Cos x and $x - \frac{\pi}{2}$ are both differentiable everywhere and $g'(x) \neq 0$ where $g(x) = x - \frac{\pi}{2}$).
Examples of Indeterminate forms of type $\frac{0}{0}$.

Example Find

$$\lim_{x \to \pi/2} \frac{\cos x}{x - \pi/2}$$

- Since this is an indeterminate form of type $\frac{0}{0}$, we can apply L’Hospital’s rule. ($\cos x$ and $x - \pi/2$ are both differentiable everywhere and $g'(x) \neq 0$ where $g(x) = x - \pi/2$).

$$\lim_{x \to \pi/2} \frac{\cos x}{x - \pi/2} = \lim_{x \to \pi/2} \frac{-\sin x}{1} = -1 \quad \text{(Eval.)}$$
Example Find

\[\lim_{{x \to \infty}} \frac{{x^2 + 2x + 1}}{e^x} \]
Examples of Indeterminate forms of type $\frac{\infty}{\infty}$.

Example Find

$$\lim_{x \to \infty} \frac{x^2 + 2x + 1}{e^x}$$

- *Since this is an indeterminate form of type $\frac{\infty}{\infty}$, we can apply L'Hospital's rule.*
Examples of Indeterminate forms of type $\frac{\infty}{\infty}$.

Example Find

$$\lim_{x \to \infty} \frac{x^2 + 2x + 1}{e^x}$$

Since this is an indeterminate form of type $\frac{\infty}{\infty}$, we can apply L'Hospital's rule.

$$\lim_{x \to \infty} \frac{x^2 + 2x + 1}{e^x} = (L'Hosp.) \lim_{x \to \infty} \frac{2x + 2}{e^x} = (L'Hosp.) \lim_{x \to \infty} \frac{2}{e^x} = 0$$
Examples of Indeterminate forms of type $\frac{\infty}{\infty}$.

Example Find

$$\lim_{x \to \infty} \frac{x^2 + 2x + 1}{e^x}$$

- Since this is an indeterminate form of type $\frac{\infty}{\infty}$, we can apply L'Hospital's rule.

$$\lim_{x \to \infty} \frac{x^2 + 2x + 1}{e^x} = \lim_{x \to \infty} \frac{2x + 2}{e^x} = \lim_{x \to \infty} \frac{2}{e^x}$$

- As $x \to \infty$, we have $e^x \to \infty$ and therefore $\lim_{x \to \infty} \frac{2}{e^x} = 0$.
Examples of Indeterminate forms of type $\frac{\infty}{\infty}$.

Example Find

$$\lim_{x \to 0^+} \frac{x^{-1}}{\ln(x)}$$
Examples of Indeterminate forms of type \(\frac{\infty}{\infty} \).

Example Find

\[
\lim_{{x \to 0^+}} \frac{x^{-1}}{\ln(x)}
\]

- Since this is an indeterminate form of type \(\frac{\infty}{\infty} \), we can apply L'Hospital's rule.
Examples of Indeterminate forms of type $\frac{\infty}{\infty}$.

Example Find

$$\lim_{x \to 0^+} \frac{x^{-1}}{\ln(x)}$$

Since this is an indeterminate form of type $\frac{\infty}{\infty}$, we can apply L'Hospital's rule.

$$\lim_{x \to 0^+} \frac{x^{-1}}{\ln(x)} = \lim_{x \to 0^+} -\frac{x^{-2}}{1/x} = \lim_{x \to 0^+} -\frac{1/x^2}{1/x} = \lim_{x \to 0^+} -\frac{1}{x} = -\infty$$
Indeterminate forms of type $0 \cdot \infty$.

Definition \(\lim f(x)g(x) \) is an indeterminate form of the type $0 \cdot \infty$ if \[
\lim f(x) = 0 \quad \text{and} \quad \lim g(x) = \pm\infty.
\]

Example \(\lim_{x \to 0} x \ln |x| \)

We can convert the above indeterminate form to an indeterminate form of type $0 \cdot 0$ by writing \[
f(x)g(x) = \frac{f(x)}{1/g(x)}
\]
or to an indeterminate form of the type ∞/∞ by writing \[
f(x)g(x) = \frac{g(x)}{1/f(x)}.
\]

We then apply L’Hospital’s rule to the limit.
Example of an Indeterminate form of type $0 \cdot \infty$.

Example: $\lim_{x \to 0} x \ln |x|$
Example of an Indeterminate form of type $0 \cdot \infty$.

Example $\lim_{x \to 0} x \ln |x|$

- We can convert the above indeterminate form to an indeterminate form of type $\frac{\infty}{\infty}$ by writing

$$f(x)g(x) = \frac{g(x)}{1/f(x)}.$$
Example of an Indeterminate form of type $0 \cdot \infty$.

Example $\lim_{x \to 0} x \ln |x|$

- We can convert the above indeterminate form to an indeterminate form of type $\frac{\infty}{\infty}$ by writing

$$f(x)g(x) = \frac{g(x)}{1/f(x)}.$$

- $\lim_{x \to 0} x \ln |x| = \lim_{x \to 0} \frac{\ln |x|}{1/x}$.

Annette Pilkington

Exponential Growth and Inverse Trigonometric Functions
Example of an Indeterminate form of type $0 \cdot \infty$.

Example \(\lim_{x \to 0} x \ln |x| \)

- We can convert the above indeterminate form to an indeterminate form of type ∞ / ∞ by writing
 \[f(x)g(x) = \frac{g(x)}{1/f(x)}. \]

- \(\lim_{x \to 0} x \ln |x| = \lim_{x \to 0} \frac{\ln |x|}{1/x} \).

- We then apply L’Hospital’s rule to the limit.
Example of an Indeterminate form of type $0 \cdot \infty$.

Example $\lim_{x \to 0} x \ln |x|$

- We can convert the above indeterminate form to an indeterminate form of type $\infty \cdot \infty$ by writing
 \[f(x)g(x) = \frac{g(x)}{1/f(x)}. \]

- $\lim_{x \to 0} x \ln |x| = \lim_{x \to 0} \frac{\ln |x|}{1/x}$.

- We then apply L’Hospital’s rule to the limit.

- $\lim_{x \to 0} \frac{\ln |x|}{1/x} = \lim_{x \to 0} \frac{1/x}{(-1/x^2)} = \lim_{x \to 0} \frac{1}{(-1/x)} = \lim_{x \to 0} (-x) = 0$
Indeterminate forms of type 0^0, ∞^0, 1^∞.

<table>
<thead>
<tr>
<th>Type</th>
<th>Limit</th>
<th>$\lim f(x) = 0$</th>
<th>$\lim g(x) = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^0</td>
<td>$\lim [f(x)]^{g(x)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∞^0</td>
<td>$\lim [f(x)]^{g(x)}$</td>
<td>$\lim f(x) = \infty$</td>
<td>$\lim g(x) = 0$</td>
</tr>
<tr>
<td>1^∞</td>
<td>$\lim [f(x)]^{g(x)}$</td>
<td>$\lim f(x) = 1$</td>
<td>$\lim g(x) = \infty$</td>
</tr>
</tbody>
</table>

Example
$\lim_{x \to 0} (1 + x)^{\frac{1}{x}}$.

Method
Indeterminate forms of type 0^0, ∞^0, 1^∞.

<table>
<thead>
<tr>
<th>Type</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^0</td>
<td>$\lim [f(x)]^{g(x)}$ $\quad \lim f(x) = 0 \quad \lim g(x) = 0$</td>
</tr>
<tr>
<td>∞^0</td>
<td>$\lim [f(x)]^{g(x)}$ $\quad \lim f(x) = \infty \quad \lim g(x) = 0$</td>
</tr>
<tr>
<td>1^∞</td>
<td>$\lim [f(x)]^{g(x)}$ $\quad \lim f(x) = 1 \quad \lim g(x) = \infty$</td>
</tr>
</tbody>
</table>

Example $\lim_{x \to 0} (1 + x)^{\frac{1}{x}}$.

Method

- Look at $\lim \ln[f(x)]^{g(x)} = \lim g(x) \ln[f(x)]$.
Indeterminate forms of type 0^0, ∞^0, 1^∞.

<table>
<thead>
<tr>
<th>Type</th>
<th>Limit</th>
</tr>
</thead>
</table>
| 0^0 | $\lim [f(x)]^{g(x)}$
$\lim f(x) = 0$
$\lim g(x) = 0$ |
| ∞^0 | $\lim [f(x)]^{g(x)}$
$\lim f(x) = \infty$
$\lim g(x) = 0$ |
| 1^∞ | $\lim [f(x)]^{g(x)}$
$\lim f(x) = 1$
$\lim g(x) = \infty$ |

Example
$\lim_{x \to 0} (1 + x)^{\frac{1}{x}}$.

Method

- Look at $\lim \ln [f(x)]^{g(x)} = \lim g(x) \ln [f(x)]$.
- Use L’Hospital to find $\lim g(x) \ln [f(x)] = \alpha$. ($\alpha$ might be finite or $\pm \infty$ here.)
Indeterminate forms of type 0^0, ∞^0, 1^∞.

<table>
<thead>
<tr>
<th>Type</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^0</td>
<td>$\lim [f(x)]^{g(x)}$</td>
</tr>
<tr>
<td></td>
<td>$\lim f(x) = 0$</td>
</tr>
<tr>
<td></td>
<td>$\lim g(x) = 0$</td>
</tr>
<tr>
<td>∞^0</td>
<td>$\lim [f(x)]^{g(x)}$</td>
</tr>
<tr>
<td></td>
<td>$\lim f(x) = \infty$</td>
</tr>
<tr>
<td></td>
<td>$\lim g(x) = 0$</td>
</tr>
<tr>
<td>1^∞</td>
<td>$\lim [f(x)]^{g(x)}$</td>
</tr>
<tr>
<td></td>
<td>$\lim f(x) = 1$</td>
</tr>
<tr>
<td></td>
<td>$\lim g(x) = \infty$</td>
</tr>
</tbody>
</table>

Example \(\lim_{x \to 0} (1 + x)^{\frac{1}{x}} \).

Method

- Look at $\lim \ln[f(x)]^{g(x)} = \lim g(x) \ln[f(x)]$.
- Use L’Hospital to find $\lim g(x) \ln[f(x)] = \alpha$. ($\alpha$ might be finite or $\pm \infty$ here.)
- Then $\lim f(x)^{g(x)} = \lim e^{\ln[f(x)]^{g(x)}} = e^\alpha$ since e^x is a continuous function. (where e^{∞} should be interpreted as ∞ and $e^{-\infty}$ should be interpreted as 0.)
Example of an Indeterminate form of type 1^∞.

Example $\lim_{x \to 0} (1 + x)^{\frac{1}{x}}$.

Method

Annette Pilkington
Example of an Indeterminate form of type 1^∞.

Example \(\lim_{x \to 0} (1 + x)^{\frac{1}{x}} \).

Method

- Look at \(\lim \ln[f(x)]^{g(x)} = \lim g(x) \ln[f(x)] \):
 - Look at \(\lim_{x \to 0} \ln[1 + x] \)
 - \(\lim_{x \to 0} \frac{1}{x} \ln[1 + x] \)

Examples:

- \(\lim_{x \to 0} (1 + x)^{\frac{1}{x}} \)
Example of an Indeterminate form of type 1^∞.

Example \(\lim_{x \to 0} (1 + x)^{1/x} \).

Method

- **Look at** \(\lim \ln[f(x)]^{g(x)} = \lim g(x) \ln[f(x)] \): **Look at**
 \(\lim_{x \to 0} \ln[1 + x]^{1/x} = \lim_{x \to 0} \frac{1}{x} \ln[1 + x] \)

- **Use L’Hospital to find** \(\lim g(x) \ln[f(x)] = \alpha \).

\[
\lim_{x \to 0} \frac{1}{x} \ln[1 + x] = \lim_{x \to 0} \frac{\ln[1 + x]}{x} = \alpha \\
\lim_{x \to 0} \frac{1/[1 + x]}{1} = 1 (= \alpha).
\]
Example of an Indeterminate form of type 1^{∞}.

Example \(\lim_{x \to 0} (1 + x)^{\frac{1}{x}} \).

Method

- *Look at* \(\lim \ln[f(x)]^{g(x)} = \lim g(x) \ln[f(x)] : \) *Look at* \(\lim_{x \to 0} \ln[1 + x]^{\frac{1}{x}} = \lim_{x \to 0} \frac{1}{x} \ln[1 + x] \)

- *Use L’Hospital to find* \(\lim g(x) \ln[f(x)] = \alpha \).

\[
\lim_{x \to 0} \frac{1}{x} \ln[1 + x] = \lim_{x \to 0} \frac{\ln[1 + x]}{x} = \lim_{x \to 0} \frac{1/[1 + x]}{1} = 1 (= \alpha).
\]

(L’Hosp.)

- *Then* \(\lim f(x)^{g(x)} = \lim e^{\ln[f(x)]^{g(x)}} = e^{\lim \ln[f(x)]^{g(x)}} = e^\alpha \)

\[
\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = \lim_{x \to 0} e^{\ln[(1+x)^{\frac{1}{x}}]} = e^{\lim_{x \to 0} \ln[(1+x)^{\frac{1}{x}}]} = e^1 = e.
\]
Indeterminate forms of type $\infty - \infty$.

Indeterminate Forms of the type $\infty - \infty$ occur when we encounter a limit of the form $\lim(f(x) - g(x))$ where $\lim f(x) = \lim g(x) = \infty$ or $\lim f(x) = \lim g(x) = -\infty$.

To deal with these limits, we try to convert to the previous indeterminate forms by adding fractions etc...

Example $\lim_{x \to 0^+} \frac{1}{x} - \frac{1}{\sin x}$.
Indeterminate forms of type $\infty - \infty$.

Indeterminate Forms of the type $\infty - \infty$ occur when we encounter a limit of the form

$$\lim(f(x) - g(x))$$

where $\lim f(x) = \lim g(x) = \infty$ or $\lim f(x) = \lim g(x) = -\infty$

To deal with these limits, we try to convert to the previous indeterminate forms by adding fractions etc...

Example

$$\lim_{x \to 0^+} \frac{1}{x} - \frac{1}{\sin x}$$

$$\Rightarrow \lim_{x \to 0^+} \frac{1}{x} - \frac{1}{\sin x} = \lim_{x \to 0^+} \frac{\sin x - x}{x \sin x}$$
Indeterminate forms of type $\infty - \infty$.

Indeterminate Forms of the type $\infty - \infty$ occur when we encounter a limit of the form

$$\lim (f(x) - g(x))$$

where $\lim f(x) = \lim g(x) = \infty$ or

$\lim f(x) = \lim g(x) = -\infty$

To deal with these limits, we try to convert to the previous indeterminate forms by adding fractions etc...

Example
$$\lim_{x \to 0^+} \frac{1}{x} - \frac{1}{\sin x}$$

- $$\lim_{x \to 0^+} \frac{1}{x} - \frac{1}{\sin x} = \lim_{x \to 0^+} \frac{\sin x - x}{x \sin x}$$

- *This is an indeterminate form of type $0/0$ so we can use L'Hospital.*
Indeterminate forms of type $\infty - \infty$.

Indeterminate Forms of the type $\infty - \infty$ occur when we encounter a limit of the form

$$\lim_{x \to a} (f(x) - g(x))$$

where $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$ or $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = -\infty$

To deal with these limits, we try to convert to the previous indeterminate forms by adding fractions etc...

Example

$$\lim_{x \to 0^+} \frac{1}{x} - \frac{1}{\sin x}$$

$$= \lim_{x \to 0^+} \frac{\sin x - x}{x \sin x} \quad (\text{L' Hospital})$$

$$= \lim_{x \to 0^+} \frac{\cos x - 1}{\sin x + x \cos x}$$

$$= \lim_{x \to 0^+} \frac{-\sin x}{\cos x + (\cos x - x \sin x)} = 0$$

Annette Pilkington