
Exponential growth and Decay Inverse Trigonometric functions. Inverse Tangent Function Indeterminate Forms

Solutions to the Differential Equation dy(t)
dt = ky(t)

Last Day, we saw that all solutions y(t) to the differential equation
dy(t)

dt
= ky(t) are of the form

y(t) = y(0)ekt .

Such a function describes exponential growth when k > 0 and exponential
decay when k < 0. Last day, we worked through examples of Population
growth and radioactive decay.

I This differential equation also applies to interest compunded continuously
dA(t)

dt
= rA(t), A(t) = amount in account at time t, r = interest rate (see below)

I Interest If we invest $A0 in an account paying r × 100 % interest per
anumn and the interest is compounded continuously, the amount in the
account after t years is given by

A(t) = A0ert .
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Interest Compounded Continuously

Example If I invest $1000 for 5 years at a 4% interest rate with the interest
compounded continuously,
(a) how much will be in my account at the end of the 5 years?

I We are given that A0 = 1000 and r = 0.04.

I Because the interest is compounded continuously, we have
A(t) = A0e0.04t = 1000e0.04t

I A(5) = 1000e0.04(5) = $1221.4.

(b) How long before there is $2000 in the account?

I We must solve for t in the equation 2000 = 1000e0.04t .

I Dividing by 1000 and taking the natural logarithm of both sides, we get

2 = e0.04t → ln 2 = 0.04t → t = ln 2/0.04 ≈ 17.33yrs.
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Compound Interest

Sometimes interest is not compounded continuously. If I invest $A0 in an
account with an interest rate of r% per annum, the amount in the bank
account after t years depends on the number of times the interest is
compounded per year. In the chart below

A0 = A(0) is the initial amount invested at time t = 0.
A(t) is the amount in the account after t years.

n = the number of times the interest is compounded per year.

We Have A(t) = A0(1 +
r

n
)nt

Amt.
after t years A(0) A(1) A(2) . . . A(t)

n = 1 A0 A0(1 + r) A0(1 + r)2 . . . A0(1 + r)t

n = 2 A0 A0(1 + r
2

)2 A0(1 + r
2

)4 . . . A0(1 + r
2

)2t

n = 12 A0 A0(1 + r
12

)12 A0(1 + r
12

)24 . . . A0(1 + r
12

)12t

.

.

.

.

.

.

.

.

.

.

.

.

n A0 A0(1 + r
n

)n A0(1 + r
n

)2n . . . A0(1 + r
n

)nt

.

.

.

.

.

.

.

.

.

.

.

.

n → ∞ A0 lim
n→∞ A0(1 +

r

n
)n lim

n→∞ A0(1 +
r

n
)2n

. . . lim
n→∞ A0(1 +

r

n
)nt

(compounded

continuously) = A0 = A0er = A0e2r . . . = A0ert
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Compound Interest

Example If I borrow $50,000 at a 10% interest rate for 5 years with the
interest compounded quarterly, how much will I owe after 5 years?

I A(t) = A0(1 + r
n

)nt

I A(t) = 50, 000(1 + .1
4

)4t

I A(5) = 50, 000(1 + .1
4

)20 ≈ 81, 930.82
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Restricted Sine Function.

The trigonometric function sin x is not one-to-one functions, hence in order to
create an inverse, we must restrict its domain.
The restricted sine function is given by

f (x) =

8<:
sin x −π

2
≤ x ≤ π

2

undefined otherwise

We have Domain(f) = [−π
2
, π

2
] and Range(f) = [−1, 1].
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Inverse Sine Function (arcsin x = sin−1x).

We see from the graph of the restricted sine function (or from its derivative)
that the function is one-to-one and hence has an inverse, shown in red in the
diagram below.
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This inverse function, f −1(x), is denoted by f −1(x) = sin−1 x or arcsin x .
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Properties of sin−1 x .

Domain(sin−1) = [−1, 1] and Range(sin−1) = [−π
2
, π

2
].

Since f −1(x) = y if and only if f (y) = x , we have:

sin−1 x = y if and only if sin(y) = x and − π

2
≤ y ≤ π

2
.

Since f (f −1)(x) = x f −1(f (x)) = x we have:

sin(sin−1(x)) = x for x ∈ [−1, 1] sin−1(sin(x)) = x for x ∈
ˆ
− π

2
,
π

2

˜
.

from the graph: sin−1 x is an odd function and sin−1(−x) = − sin−1 x .
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Evaluating sin−1 x .

Example Evaluate sin−1
“
−1√

2

”
using the graph above.

I We see that the point
“
−1√

2
, π

4

”
is on the graph of y = sin−1 x.

I Therefore sin−1
“
−1√

2

”
= π

4
.

Example Evaluate sin−1(
√

3/2) and sin−1(−
√

3/2).

I sin−1(
√

3/2) = y is the same statement as:

y is an angle between −π
2

and π
2

with sin y =
√

3/2.

I Consulting our unit circle, we see that y = π
3

.

I sin−1(−
√

3/2) = − sin−1(
√

3/2) = −π
3
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More Examples For sin−1 x

Example Evaluate sin−1(sinπ).

I We have sinπ = 0, hence sin−1(sinπ) = sin−1(0) = 0.

Example Evaluate cos(sin−1(
√

3/2)).

I We saw above that sin−1(
√

3/2) = π
3

.

I Therefore cos(sin−1(
√

3/2)) = cos
“
π
3

”
= 1/2.

Annette Pilkington Exponential Growth and Inverse Trigonometric Functions



Exponential growth and Decay Inverse Trigonometric functions. Inverse Tangent Function Indeterminate Forms

More Examples For sin−1 x

Example Evaluate sin−1(sinπ).

I We have sinπ = 0, hence sin−1(sinπ) = sin−1(0) = 0.

Example Evaluate cos(sin−1(
√

3/2)).

I We saw above that sin−1(
√

3/2) = π
3

.

I Therefore cos(sin−1(
√

3/2)) = cos
“
π
3

”
= 1/2.

Annette Pilkington Exponential Growth and Inverse Trigonometric Functions



Exponential growth and Decay Inverse Trigonometric functions. Inverse Tangent Function Indeterminate Forms

More Examples For sin−1 x

Example Evaluate sin−1(sinπ).

I We have sinπ = 0, hence sin−1(sinπ) = sin−1(0) = 0.

Example Evaluate cos(sin−1(
√

3/2)).

I We saw above that sin−1(
√

3/2) = π
3

.

I Therefore cos(sin−1(
√

3/2)) = cos
“
π
3

”
= 1/2.

Annette Pilkington Exponential Growth and Inverse Trigonometric Functions



Exponential growth and Decay Inverse Trigonometric functions. Inverse Tangent Function Indeterminate Forms

More Examples For sin−1 x

Example Evaluate sin−1(sinπ).

I We have sinπ = 0, hence sin−1(sinπ) = sin−1(0) = 0.

Example Evaluate cos(sin−1(
√

3/2)).

I We saw above that sin−1(
√

3/2) = π
3

.

I Therefore cos(sin−1(
√

3/2)) = cos
“
π
3

”
= 1/2.

Annette Pilkington Exponential Growth and Inverse Trigonometric Functions



Exponential growth and Decay Inverse Trigonometric functions. Inverse Tangent Function Indeterminate Forms

Preparation for the method of Trigonometric Substitution

Example Give a formula in terms of x for tan(sin−1(x))

I We draw a right angled triangle with θ = sin−1 x.

1 - x2

θ

x
1

I From this we see that tan(sin−1(x)) = tan(θ) = x√
1−x2

.
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Derivative of sin−1 x .

d

dx
sin−1 x =

1√
1− x2

, −1 ≤ x ≤ 1.

Please read through the proof given in your notes using implicit differentiation.
We can also derive a formula for d

dx
sin−1(k(x)) using the chain rule, or we can

apply the above formula along with the chain rule directly.

ExampleFind the derivative

d

dx
sin−1√cos x

.

I We have d
dx

sin−1√cos x = 1√
1−(
√

cos x)2
d
dx

√
cos x

I

=
1√

1− cos x
· − sin x

2
√

cos x
=

− sin x

2
√

cos x
√

1− cos x
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Inverse Cosine Function

We can define the function cos−1 x similarly. You can read the definition in
your book. It can be shown that that d

dx
cos−1 x = − d

dx
sin−1 x and one can

use this to prove that

sin−1 x + cos−1 x =
π

2
.
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Restricted Tangent Function

The tangent function is not a one to one function.

The restricted tangent function is given by

h(x) =

8<:
tan x −π

2
< x < π

2

undefined otherwise

We see from the graph of the restricted tangent function (or from its derivative)
that the function is one-to-one and hence has an inverse, which we denote by

h−1(x) = tan−1 x or arctan x .
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Graphs of Restricted Tangent and tan−1x .
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Properties of tan−1x .
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2
, π

2
).
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“
− π

2
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π

2

”
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“
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2
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π

2

”
.
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2
−)
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2
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2
and lim

x→−∞
tan−1 x = −π

2

H1, Π�4L

-5 -4 -3 -2 -1 1 2 3 4 5

-
Π

2

-
Π

4

Π

4

Π

2

y= arctanHxL

Annette Pilkington Exponential Growth and Inverse Trigonometric Functions



Exponential growth and Decay Inverse Trigonometric functions. Inverse Tangent Function Indeterminate Forms

Evaluating tan−1 x

Example Find tan−1(1) and tan−1( 1√
3
).

I tan−1(1) is the unique angle, θ, between −π
2

and π
2

with
tan θ = sin θ

cos θ
= 1. By inspecting the unit circle, we see that θ = π

4
.

I tan−1( 1√
3
) is the unique angle, θ, between −π

2
and π

2
with

tan θ = sin θ
cos θ

= 1√
3
. By inspecting the unit circle, we see that θ = π

6
.

Example Find cos(tan−1( 1√
3
)).

I cos(tan−1( 1√
3
)) = cos(π

6
) =

√
3

2
.
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Derivative of tan−1 x .

Using implicit differentiation, we get

d

dx
tan−1 x =

1

x2 + 1
, −∞ < x <∞.

(Please read through the proof in your notes.) We can use the chain rule in
conjunction with the above derivative.

Example Find the domain and derivative of tan−1(ln x)

I Domain = Domain of ln x = (0,∞)

I

d

dx
tan−1(ln x) =

1
x

1 + (ln x)2
=

1

x(1 + (ln x)2)
.
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Integration Formulas

Reversing the derivative formulas above, we getZ
1√

1− x2
dx = sin−1 x + C ,

Z
1

x2 + 1
dx = tan−1 x + C ,

Example Z 1/2

0

1

1 + 4x2
dx

I We use substitution. Let u = 2x, then du = 2dx, u(0) = 0,
u(1/2) = 1.

I Z 1/2

0

1

1 + 4x2
dx =

1

2

Z 1

0

1

1 + u2
du =

1

2
tan−1 u|10 =

1

2
[tan−1(1)−tan−1(0)]

I
1

2
[
π

4
− 0] =

π

8
.
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Integration

Example Z
1√

9− x2
dx

I Z
1√

9− x2
dx =

Z
1

3
q

1− x2

9

dx =
1

3

Z
1q

1− x2

9

dx

I Let u = x
3

, then dx = 3du

I Z
1√

9− x2
dx =

1

3

Z
3√

1− u2
du = sin−1 u + C = sin−1 x

3
+ C
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Integration
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Indeterminate forms of type 0
0 and ∞∞ .

Definition An indeterminate form of the type 0
0

is a limit of a quotient
where both numerator and denominator approach 0.

Example

lim
x→0

ex − 1

sin x
lim

x→∞

x−2

e−x
lim

x→π
2

cos x

x − π
2

Definition An indeterminate form of the type ∞∞ is a limit of a quotient f (x)
g(x)

where f (x)→∞ or −∞ and g(x)→∞ or −∞ .

Example

lim
x→∞

x2 + 2x + 1

ex
lim

x→0+

x−1

ln x
.
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Indeterminate forms of type 0
0 and ∞∞ .

L’Hospital’s Rule Suppose lim stands for any one of

lim
x→a

lim
x→a+

lim
x→a−

lim
x→∞

lim
x→−∞

and f (x)
g(x)

is an indeterminate form of type 0
0

or ∞∞ .

If lim f ′(x)
g′(x)

is a finite number L or is ±∞, then

lim
f (x)

g(x)
= lim

f ′(x)

g ′(x)
.

(Assuming that f (x) and g(x) are both differentiable in some open interval

around a or ∞ (as appropriate) except possible at a, and that g ′(x) 6= 0 in that

interval).
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Examples of Indeterminate forms of type 0
0 .

Example Find

lim
x→0

ex − 1

sin x

I Since this is an indeterminate form of type 0
0
, we can apply L’Hospital’s

rule.

I

lim
x→0

ex − 1

sin x

=

(L′Hosp.)
lim
x→0

ex

cos x

=

(Eval .)
1
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Examples of Indeterminate forms of type 0
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Examples of Indeterminate forms of type 0
0 .

Example Find

lim
x→∞

x−2

e−x

I Since this is an indeterminate form of type 0
0
, we can apply L’Hospital’s

rule.

I As it stands, this quotient gets more complicated when we apply
L’Hospital’s rule, so we rearrange it before we apply the rule.

I

lim
x→∞

x−2

e−x
= lim

x→∞

1/x2

1/ex
= lim

x→∞

ex

x2

I

lim
x→∞

ex

x2

=

(L′Hosp.)
lim

x→∞

ex

2x

=

(L′Hosp.)
lim

x→∞

ex

2

I As x →∞, we have ex →∞ and therefore limx→∞
ex

2
=∞ .
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Examples of Indeterminate forms of type 0
0 .

Example Find

lim
x→π

2

cos x

x − π
2

I Since this is an indeterminate form of type 0
0
, we can apply L’Hospital’s

rule. ( cos x and x − π
2

are both differentiable everywhere and g ′(x) 6= 0
where g(x) = x − π/2).

I

lim
x→π

2

cos x

x − π
2

=

(L′Hosp.)
lim

x→π
2

− sin x

1

=

(Eval .)
− 1
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Examples of Indeterminate forms of type ∞∞ .

Example Find

lim
x→∞

x2 + 2x + 1

ex

I Since this is an indeterminate form of type ∞∞ , we can apply L’Hospital’s
rule.

I

lim
x→∞

x2 + 2x + 1

ex

=

(L′Hosp.)
lim

x→∞

2x + 2

ex

=

(L′Hosp.)
lim

x→∞

2

ex

I As x →∞, we have ex →∞ and therefore limx→∞
2
ex = 0 .
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Indeterminate forms of type 0 · ∞.

Definition lim f (x)g(x) is an indeterminate form of the type 0 · ∞ if

lim f (x) = 0 and lim g(x) = ±∞.

Example limx→0 x ln |x |

We can convert the above indeterminate form to an indeterminate form of type
0
0

by writing

f (x)g(x) =
f (x)

1/g(x)

or to an indeterminate form of the type ∞∞ by writing

f (x)g(x) =
g(x)

1/f (x)
.

We them apply L’Hospital’s rule to the limit.
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Indeterminate forms of type 00, ∞0, 1∞.

Type Limit

00 lim [f (x)]g(x) lim f (x) = 0 lim g(x) = 0

∞0 lim [f (x)]g(x) lim f (x) =∞ lim g(x) = 0

1∞ lim [f (x)]g(x) lim f (x) = 1 lim g(x) =∞

Example limx→0(1 + x)
1
x .

Method

I Look at lim ln[f (x)]g(x) = lim g(x) ln[f (x)].

I Use L’Hospital to find lim g(x) ln[f (x)] = α. (α might be finite or ±∞
here. )

I Then lim f (x)g(x) = lim e ln[f (x)]g(x)

= eα since ex is a continuous
function. (where e∞ should be interpreted as ∞ and e−∞ should be
interpreted as 0. )
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Example of an Indeterminate form of type 1∞.

Example limx→0(1 + x)
1
x .

Method

I Look at lim ln[f (x)]g(x) = lim g(x) ln[f (x)]: Look at

limx→0 ln[1 + x)]
1
x = limx→0

1
x

ln[1 + x ]

I Use L’Hospital to find lim g(x) ln[f (x)] = α.

lim
x→0

1

x
ln[1 + x ] = lim

x→0

ln[1 + x ]

x

=

(L′Hosp.)
lim
x→0

1/[1 + x ]

1
= 1(= α).

I Then lim f (x)g(x) = lim e ln[f (x)]g(x)

= e lim ln[f (x)]g(x)

= eα

lim
x→0

(1 + x)
1
x = lim

x→0
e ln[(1+x)

1
x ] = e limx→0 ln[(1+x)

1
x ] = e1 = e.
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Indeterminate forms of type ∞−∞.

Indeterminate Forms of the type ∞−∞ occur when we encounter a limit
of the form
lim(f (x)− g(x)) where lim f (x) = lim g(x) =∞ or
lim f (x) = lim g(x) = −∞

To deal with these limits, we try to convert to the previous indeterminate forms
by adding fractions etc...

Example limx→0+
1
x
− 1

sin x

I limx→0+
1
x
− 1

sin x
= limx→0+

sin x−x
x sin x

I This is an indeterminate form of type 0
0

so we can use L’Hospital.

I

lim
x→0+

sin x − x

x sin x

=

(L′Hosp.)
= lim

x→0+

cos x − 1

sin x + x cos x

=

(L′Hosp.)
= lim

x→0+

− sin x

cos x + (cos x − x sin x)
=

0

2
= 0
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