Last Day, we defined a new function

$$
\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0.
$$

This function is called the natural logarithm. We derived a number of properties of this new function:

 \leftarrow

 $\leftarrow \Xi \rightarrow$

G

Last Day, we defined a new function

$$
\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0.
$$

This function is called the natural logarithm. We derived a number of properties of this new function:

$$
\blacktriangleright \text{ Domain} = (0, \infty)
$$

 \leftarrow

 $\leftarrow \Xi \rightarrow$

G

Last Day, we defined a new function

$$
\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0.
$$

This function is called the natural logarithm. We derived a number of properties of this new function:

- \triangleright Domain = $(0, \infty)$
- In $x > 0$ if $x > 1$, $\ln x = 0$ if $x = 1$, $\ln x < 0$ if $x < 1$.

モミト

э

Last Day, we defined a new function

$$
\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0.
$$

This function is called the natural logarithm. We derived a number of properties of this new function:

 \triangleright Domain = $(0, \infty)$

$$
\blacksquare \ln x > 0 \text{ if } x > 1, \ln x = 0 \text{ if } x = 1, \ln x < 0 \text{ if } x < 1.
$$

$$
\blacktriangleright \ \frac{d(\ln x)}{dx} = \frac{1}{x}
$$

 \leftarrow

 $\leftarrow \Xi \rightarrow$

G

Last Day, we defined a new function

$$
\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0.
$$

This function is called the natural logarithm. We derived a number of properties of this new function:

 \triangleright Domain = $(0, \infty)$

$$
\blacksquare \ln x > 0 \text{ if } x > 1, \ln x = 0 \text{ if } x = 1, \ln x < 0 \text{ if } x < 1.
$$

- $\frac{d(\ln x)}{dx} = \frac{1}{x}$
- \triangleright The graph of $y = \ln x$ is increasing, continuous and concave down on the interval $(0, \infty)$.

 $\rightarrow \equiv$

重

Last Day, we defined a new function

$$
\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0.
$$

This function is called the natural logarithm. We derived a number of properties of this new function:

 \triangleright Domain = $(0, \infty)$

$$
\blacksquare \ln x > 0 \text{ if } x > 1, \ln x = 0 \text{ if } x = 1, \ln x < 0 \text{ if } x < 1.
$$

- $\frac{d(\ln x)}{dx} = \frac{1}{x}$
- \triangleright The graph of $y = \ln x$ is increasing, continuous and concave down on the interval $(0, \infty)$.
- \triangleright The function $f(x) = \ln x$ is a one-to-one function
- \triangleright Since $f(x) = \ln x$ is a one-to-one function, there is a unique number, e, with the property that

$$
\boxed{\text{ln }e=1.}
$$

モミト

Graph of $ln(x)$.

Using the information derived above, we can sketch a graph of the natural logarithm

 $4.17 +$

おす 重き

Ξ.

目

Graph of $ln(x)$.

Using the information derived above, we can sketch a graph of the natural logarithm

 \leftarrow

 \Rightarrow

∍

 299

We also derived the following algebraic properties of our new function by comparing derivatives. We can use these algebraic rules to simplify the natural logarithm of products and quotients:

 \leftarrow

 $2Q$

э

K 로)

We also derived the following algebraic properties of our new function by comparing derivatives. We can use these algebraic rules to simplify the natural logarithm of products and quotients:

$$
\blacktriangleright \ \ln 1 = 0
$$

 \leftarrow

 $2Q$

э

K 로)

We also derived the following algebraic properties of our new function by comparing derivatives. We can use these algebraic rules to simplify the natural logarithm of products and quotients:

- \blacktriangleright ln 1 = 0
- \blacktriangleright ln(ab) = ln a + ln b

 \leftarrow

 $\leftarrow \Xi \rightarrow$

G

We also derived the following algebraic properties of our new function by comparing derivatives. We can use these algebraic rules to simplify the natural logarithm of products and quotients:

- \blacktriangleright ln 1 = 0
- \blacktriangleright ln(ab) = ln a + ln b
- ln $a^r = r \ln a$

 $\leftarrow \Xi \rightarrow$

э

 200

Example using definition of e and rule 3

Example Evaluate $\int_1^{e^2}$ $\int_1^e \frac{1}{t} dt$

 \leftarrow \Box

 $\leftarrow \Xi \rightarrow$

G

Example using definition of e and rule 3

Example Evaluate $\int_1^{e^2}$ $\int_1^e \frac{1}{t} dt$

From the definition of $ln(x)$, we have

$$
\int_1^{e^2} \frac{1}{t} dt = \ln(e^2)
$$

 \leftarrow

∢ 重→

Þ

Example using definition of e and rule 3

Example Evaluate $\int_1^{e^2}$ $\int_1^e \frac{1}{t} dt$

I

From the definition of $ln(x)$, we have

$$
\int_1^{e^2} \frac{1}{t} dt = \ln(e^2)
$$

$$
=2\ln e=2.
$$

 \leftarrow

∢ 重→

Þ

Limits at ∞ and 0.

We can use the rules of logarithms given above to derive the following information about limits.

$$
\lim_{x \to \infty} \ln x = \infty, \quad \lim_{x \to 0} \ln x = -\infty.
$$

(see notes for a proof) **Example** Find the limit $\lim_{x\to\infty} \ln(\frac{1}{x^2+1})$.

 \leftarrow

K 로)

э

Limits at ∞ and 0.

We can use the rules of logarithms given above to derive the following information about limits.

$$
\lim_{x \to \infty} \ln x = \infty, \quad \lim_{x \to 0} \ln x = -\infty.
$$

(see notes for a proof) **Example** Find the limit $\lim_{x\to\infty} \ln(\frac{1}{x^2+1})$.

$$
\triangleright \text{ As } x \to \infty, \text{ we have } \frac{1}{x^2+1} \to 0
$$

 \leftarrow

モミト

э

Limits at ∞ and 0.

We can use the rules of logarithms given above to derive the following information about limits.

$$
\lim_{x \to \infty} \ln x = \infty, \quad \lim_{x \to 0} \ln x = -\infty.
$$

(see notes for a proof) **Example** Find the limit $\lim_{x\to\infty} \ln(\frac{1}{x^2+1})$.

- As $x \to \infty$, we have $\frac{1}{x^2+1} \to 0$
- **►** Therfore as $x \to \infty$, $\ln(\frac{1}{x^2+1}) \to -\infty$ $[=\lim_{u\to 0} \ln(u)]$

 \leftarrow

モミト

$\ln |x|$

We can extend the applications of the natural logarithm function by composing it with the absolute value function. We have :

$$
\ln |x| = \begin{cases} \ln x & x > 0 \\ \ln(-x) & x < 0 \end{cases}
$$

This is an even function with graph

We have $ln|x|$ is also an antiderivative of $1/x$ with a larger domain than $ln(x)$.

$$
\boxed{\frac{d}{dx}(\ln |x|) = \frac{1}{x}} \text{ and } \boxed{\int \frac{1}{x} dx = \ln |x| + C}
$$
\nAnother Rinkington

\nNatural Logarithm and Natural Exponential Exponential.

 $2Q$

э

$$
\boxed{\frac{d}{dx}(\ln|x|) = \frac{1}{x}} \text{ and } \boxed{\frac{d}{dx}(\ln|g(x)|) = \frac{g'(x)}{g(x)}}
$$

Example Differentiate $\ln |\sin x|$.

Example Differentiate $\ln |\sqrt[3]{x-1}|$.

 $4.17 +$

- 세로 베

G

$$
\boxed{\frac{d}{dx}(\ln |x|) = \frac{1}{x}} \text{ and } \boxed{\frac{d}{dx}(\ln |g(x)|) = \frac{g'(x)}{g(x)}}
$$

Example Differentiate $\ln |\sin x|$.

 \triangleright Using the chain rule, we have

$$
\frac{d}{dx}\ln|\sin x| = \frac{1}{\sin x}\frac{d}{dx}\sin x
$$

Example Differentiate $\ln |\sqrt[3]{x-1}|$.

 \leftarrow

 $\leftarrow \Xi \rightarrow$

G

 \blacktriangleright

$$
\boxed{\frac{d}{dx}(\ln |x|) = \frac{1}{x}} \text{ and } \boxed{\frac{d}{dx}(\ln |g(x)|) = \frac{g'(x)}{g(x)}}
$$

Example Differentiate $\ln |\sin x|$.

 \triangleright Using the chain rule, we have

$$
\frac{d}{dx} \ln|\sin x| = \frac{1}{\sin x} \frac{d}{dx} \sin x
$$

$$
= \frac{\cos x}{\sin x}
$$

Example Differentiate $\ln |\sqrt[3]{x-1}|$.

 \leftarrow

∢ 重→

Þ

 \blacktriangleright

$$
\boxed{\frac{d}{dx}(\ln |x|) = \frac{1}{x}} \text{ and } \boxed{\frac{d}{dx}(\ln |g(x)|) = \frac{g'(x)}{g(x)}}
$$

Example Differentiate $\ln |\sin x|$.

 \triangleright Using the chain rule, we have

$$
\frac{d}{dx} \ln|\sin x| = \frac{1}{\sin x} \frac{d}{dx} \sin x
$$

$$
= \frac{\cos x}{\sin x}
$$

Example Differentiate $\ln |\sqrt[3]{x-1}|$.

► We can simplify this to finding
$$
\frac{d}{dx} \left(\frac{1}{3} \ln |x - 1| \right)
$$
, since $\ln |\sqrt[3]{x - 1}| = \ln |x - 1|^{1/3}$

 \leftarrow

∢ 重→

Þ

I

$$
\boxed{\frac{d}{dx}(\ln |x|) = \frac{1}{x}} \text{ and } \boxed{\frac{d}{dx}(\ln |g(x)|) = \frac{g'(x)}{g(x)}}
$$

Example Differentiate $\ln |\sin x|$.

 \triangleright Using the chain rule, we have

$$
\frac{d}{dx} \ln|\sin x| = \frac{1}{\sin x} \frac{d}{dx} \sin x
$$

$$
= \frac{\cos x}{\sin x}
$$

Example Differentiate $\ln |\sqrt[3]{x-1}|$.

• We can simplify this to finding
$$
\frac{d}{dx} \left(\frac{1}{3} \ln |x - 1| \right)
$$
, since
\n $\ln |\sqrt[3]{x - 1}| = \ln |x - 1|^{1/3}$
\n $\frac{d}{dx} \frac{1}{3} \ln |x - 1| = \frac{1}{3} \frac{1}{(x - 1)} \frac{d}{dx} (x - 1) = \frac{1}{3(x - 1)}$

 \Box

 $2Q$

∋ » ∍

$$
\int \frac{1}{x} dx = \ln |x| + C
$$
 and
$$
\int \frac{g'(x)}{g(x)} dx = \ln |g(x)| + C
$$

Example Find the integral

$$
\int \frac{x}{3-x^2} dx.
$$

4日)

一 星下

Ξ ×. 目

$$
\int \frac{1}{x} dx = \ln |x| + C
$$
 and
$$
\int \frac{g'(x)}{g(x)} dx = \ln |g(x)| + C
$$

Example Find the integral

$$
\int \frac{x}{3-x^2} dx.
$$

$$
\blacktriangleright
$$
 Using substitution, we let $u = 3 - x^2$.

$$
du = -2x \, dx, \qquad x \, dx = \frac{du}{-2},
$$

4日)

一 三 ト

 \mathbf{p} Ξ

目

I

$$
\int \frac{1}{x} dx = \ln |x| + C
$$
 and
$$
\int \frac{g'(x)}{g(x)} dx = \ln |g(x)| + C
$$

Example Find the integral

$$
\int \frac{x}{3-x^2} dx.
$$

$$
\blacktriangleright
$$
 Using substitution, we let $u = 3 - x^2$.

$$
du = -2x \, dx, \qquad x \, dx = \frac{du}{-2},
$$

$$
\int \frac{x}{3-x^2} dx = \int \frac{1}{-2(u)} du
$$

4日)

一 星下

Ξ ×. 目

I

I

$$
\int \frac{1}{x} dx = \ln |x| + C
$$
 and
$$
\int \frac{g'(x)}{g(x)} dx = \ln |g(x)| + C
$$

Example Find the integral

$$
\int \frac{x}{3-x^2} dx.
$$

$$
\blacktriangleright
$$
 Using substitution, we let $u = 3 - x^2$.

$$
du = -2x \, dx, \qquad x \, dx = \frac{du}{-2},
$$

$$
\int \frac{x}{3-x^2} dx = \int \frac{1}{-2(u)} du
$$

$$
= \frac{-1}{2} \ln |u| + C = \frac{-1}{2} \ln |3 - x^2| + C
$$

 \leftarrow \Box \rightarrow 3. 동 >

٠ × 目

 299

To differentiate $y = f(x)$, it is often easier to use logarithmic differentiation :

- 1. Take the natural logarithm of both sides to get $\ln y = \ln(f(x))$.
- 2. Differentiate with respect to x to get $\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} \ln(f(x))$
- 3. We get $\frac{dy}{dx} = y \frac{d}{dx} \ln(f(x)) = f(x) \frac{d}{dx} \ln(f(x)).$

 \rightarrow \equiv \rightarrow

 $2Q$

G.

Example Find the derivative of $y = \sqrt[4]{\frac{x^2+1}{x^2-1}}$.

 \leftarrow \Box

一 星下

G

Example Find the derivative of $y = \sqrt[4]{\frac{x^2+1}{x^2-1}}$.

 \triangleright We take the natural logarithm of both sides to get

$$
\ln y = \ln \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}}
$$

 $2Q$

∍.

∍

Example Find the derivative of $y = \sqrt[4]{\frac{x^2+1}{x^2-1}}$.

 \triangleright We take the natural logarithm of both sides to get

$$
\ln y = \ln \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}}
$$

 \triangleright Using the rules of logarithms to expand the R.H.S. we get

$$
\ln y = \frac{1}{4} \ln \frac{x^2 + 1}{x^2 - 1} = \frac{1}{4} \Big[\ln(x^2 + 1) - \ln(x^2 - 1) \Big] = \frac{1}{4} \ln(x^2 + 1) - \frac{1}{4} \ln(x^2 - 1)
$$

œ

Example Find the derivative of $y = \sqrt[4]{\frac{x^2+1}{x^2-1}}$.

 \triangleright We take the natural logarithm of both sides to get

$$
\ln y = \ln \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}}
$$

 \triangleright Using the rules of logarithms to expand the R.H.S. we get

$$
\ln y = \frac{1}{4} \ln \frac{x^2 + 1}{x^2 - 1} = \frac{1}{4} \Big[\ln(x^2 + 1) - \ln(x^2 - 1) \Big] = \frac{1}{4} \ln(x^2 + 1) - \frac{1}{4} \ln(x^2 - 1)
$$

 \triangleright Differentiating both sides with respect to x, we get

$$
\frac{1}{y}\frac{dy}{dx} = \frac{1}{4} \cdot \frac{2x}{(x^2+1)} - \frac{1}{4} \cdot \frac{2x}{(x^2-1)} = \frac{x}{2(x^2+1)} - \frac{x}{2(x^2-1)}
$$

 $2Q$

Э×

Example Find the derivative of $y = \sqrt[4]{\frac{x^2+1}{x^2-1}}$.

 \triangleright We take the natural logarithm of both sides to get

$$
\ln y = \ln \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}}
$$

 \triangleright Using the rules of logarithms to expand the R.H.S. we get

$$
\ln y = \frac{1}{4} \ln \frac{x^2 + 1}{x^2 - 1} = \frac{1}{4} \Big[\ln(x^2 + 1) - \ln(x^2 - 1) \Big] = \frac{1}{4} \ln(x^2 + 1) - \frac{1}{4} \ln(x^2 - 1)
$$

 \triangleright Differentiating both sides with respect to x, we get

$$
\frac{1}{y}\frac{dy}{dx} = \frac{1}{4} \cdot \frac{2x}{(x^2+1)} - \frac{1}{4} \cdot \frac{2x}{(x^2-1)} = \frac{x}{2(x^2+1)} - \frac{x}{2(x^2-1)}
$$

 \blacktriangleright Multiplying both sides by y, we get

$$
\frac{dy}{dx} = y \left[\frac{x}{2(x^2+1)} - \frac{x}{2(x^2-1)} \right]
$$

 $2Q$

Э×

Example Find the derivative of $y = \sqrt[4]{\frac{x^2+1}{x^2-1}}$.

 \triangleright We take the natural logarithm of both sides to get

$$
\ln y = \ln \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}}
$$

 \triangleright Using the rules of logarithms to expand the R.H.S. we get

$$
\ln y = \frac{1}{4} \ln \frac{x^2 + 1}{x^2 - 1} = \frac{1}{4} \Big[\ln(x^2 + 1) - \ln(x^2 - 1) \Big] = \frac{1}{4} \ln(x^2 + 1) - \frac{1}{4} \ln(x^2 - 1)
$$

 \triangleright Differentiating both sides with respect to x, we get

$$
\frac{1}{y}\frac{dy}{dx} = \frac{1}{4} \cdot \frac{2x}{(x^2+1)} - \frac{1}{4} \cdot \frac{2x}{(x^2-1)} = \frac{x}{2(x^2+1)} - \frac{x}{2(x^2-1)}
$$

 \blacktriangleright Multiplying both sides by y, we get

$$
\frac{dy}{dx} = y \left[\frac{x}{2(x^2+1)} - \frac{x}{2(x^2-1)} \right]
$$

 \triangleright Converting y to a function of x, we get

$$
\frac{dy}{dx} = \sqrt[4]{\frac{x^2+1}{x^2-1}} \left[\frac{x}{2(x^2+1)} - \frac{x}{2(x^2-1)} \right]
$$

つひへ

$exp(x) =$ inverse of $ln(x)$

Last day, we saw that the function $f(x) = \ln x$ is one-to-one, with domain $(0, \infty)$ and range $(-\infty, \infty)$. We can conclude that $f(x)$ has an inverse function which we call the natural exponential function and denote (temorarily) by $f^{-1}(x) = \exp(x)$, The definition of inverse functions gives us the following:

$$
y = f^{-1}(x)
$$
 if and only if $x = f(y)$

$$
y = \exp(x)
$$
 if and only if $x = \ln(y)$

The cancellation laws give us:

$$
f^{-1}(f(x)) = x \text{ and } f(f^{-1}(x)) = x
$$

exp(ln x) = x and ln(exp(x)) = x.

モミト

つひへ

Graph of $exp(x)$

We can draw the graph of $y = exp(x)$ by reflecting the graph of $y = ln(x)$ in the line $y = x$.

Annette Pilkington [Natural Logarithm and Natural Exponential](#page-0-0)

Definition of e^x .

Definition When x is rational or irrational, we define e^x to be $exp(x)$.

$$
e^x = \exp(x)
$$

Note: This agrees with definitions of e^x given elsewhere (as limits), since the definition is the same when x is a rational number and the exponential function is continuous.

Restating the above properties given above in light of this new interpretation of the exponential function, we get: When $f(x) = \ln(x)$, $f^{-1}(x) = e^x$ and

$$
e^x = y \text{ if and only if } \ln y
$$

$$
e^{\ln x} = x \quad \text{and} \quad \ln e^x = x
$$

 $= x$

ス ヨ ト

э

We can use the formula below to solve equations involving logarithms and exponentials.

$$
e^{\ln x} = x \quad \text{and} \quad \ln e^x = x
$$

Example Solve for x if $ln(x + 1) = 5$

Example Solve for x if $e^{x-4} = 10$

 \leftarrow

 $2Q$

э

モミト

We can use the formula below to solve equations involving logarithms and exponentials.

$$
e^{\ln x} = x \quad \text{and} \quad \ln e^x = x
$$

Example Solve for x if $ln(x + 1) = 5$

 \triangleright Applying the exponential function to both sides of the equation $ln(x + 1) = 5$, we get

$$
e^{\ln(x+1)}=e^5
$$

Example Solve for x if $e^{x-4} = 10$

œ

We can use the formula below to solve equations involving logarithms and exponentials.

$$
e^{\ln x} = x \quad \text{and} \quad \ln e^x = x
$$

Example Solve for x if $ln(x + 1) = 5$

 \triangleright Applying the exponential function to both sides of the equation $ln(x + 1) = 5$, we get

$$
e^{\ln(x+1)}=e^5
$$

In Using the fact that $e^{\ln u} = u$, (with $u = x + 1$), we get

$$
x + 1 = e^5
$$
, or $x = e^5 - 1$.

Example Solve for x if $e^{x-4} = 10$

∢∄⇒

We can use the formula below to solve equations involving logarithms and exponentials.

$$
e^{\ln x} = x \quad \text{and} \quad \ln e^x = x
$$

Example Solve for x if $ln(x + 1) = 5$

 \triangleright Applying the exponential function to both sides of the equation $ln(x + 1) = 5$, we get

$$
e^{\ln(x+1)}=e^5
$$

In Using the fact that $e^{\ln u} = u$, (with $u = x + 1$), we get

$$
x + 1 = e^5
$$
, or $x = e^5 - 1$.

Example Solve for x if $e^{x-4} = 10$

 \triangleright Applying the natural logarithm function to both sides of the equation $e^{x-4} = 10$, we get

$$
\ln(e^{x-4}) = \ln(10)
$$

→ 重 ト

We can use the formula below to solve equations involving logarithms and exponentials.

$$
e^{\ln x} = x \quad \text{and} \quad \ln e^x = x
$$

Example Solve for x if $ln(x + 1) = 5$

 \triangleright Applying the exponential function to both sides of the equation $ln(x + 1) = 5$, we get

$$
e^{\ln(x+1)}=e^5
$$

In Using the fact that $e^{\ln u} = u$, (with $u = x + 1$), we get

$$
x + 1 = e^5
$$
, or $x = e^5 - 1$.

Example Solve for x if $e^{x-4} = 10$

 \triangleright Applying the natural logarithm function to both sides of the equation $e^{x-4} = 10$, we get

$$
\ln(e^{x-4}) = \ln(10)
$$

 \triangleright Using the fact that $ln(e^u) = u$, (with $u = x - 4$), we get

$$
x-4=\ln(10), \text{ or } x=\ln(10)+4.
$$

From the graph we see that

$$
\lim_{x \to -\infty} e^x = 0, \qquad \lim_{x \to \infty} e^x = \infty.
$$

Example Find the limit $\lim_{x\to\infty} \frac{e^x}{10e^x}$ $\frac{e^x}{10e^x-1}$.

4日)

3. 동 >

Ξ

目

From the graph we see that

$$
\lim_{x \to -\infty} e^x = 0, \qquad \lim_{x \to \infty} e^x = \infty.
$$

Example Find the limit $\lim_{x\to\infty} \frac{e^x}{10e^x}$ $\frac{e^x}{10e^x-1}$.

 \triangleright As it stands, this limit has an indeterminate form since both numerator and denominator approach infinity as $x \to \infty$

 \leftarrow

œ

From the graph we see that

$$
\lim_{x \to -\infty} e^x = 0, \qquad \lim_{x \to \infty} e^x = \infty.
$$

Example Find the limit $\lim_{x\to\infty} \frac{e^x}{10e^x}$ $\frac{e^x}{10e^x-1}$.

- \triangleright As it stands, this limit has an indeterminate form since both numerator and denominator approach infinity as $x \to \infty$
- ▶ We modify a trick from Calculus 1 and divide (both Numertor and denominator) by the highest power of e^x in the denominator.

$$
\lim_{x \to \infty} \frac{e^x}{10e^x - 1} = \lim_{x \to \infty} \frac{e^x/e^x}{(10e^x - 1)/e^x}
$$

つひへ

i.

From the graph we see that

$$
\lim_{x \to -\infty} e^x = 0, \qquad \lim_{x \to \infty} e^x = \infty.
$$

Example Find the limit $\lim_{x\to\infty} \frac{e^x}{10e^x}$ $\frac{e^x}{10e^x-1}$.

- \triangleright As it stands, this limit has an indeterminate form since both numerator and denominator approach infinity as $x \to \infty$
- ▶ We modify a trick from Calculus 1 and divide (both Numertor and denominator) by the highest power of e^x in the denominator.

$$
\lim_{x \to \infty} \frac{e^x}{10e^x - 1} = \lim_{x \to \infty} \frac{e^x/e^x}{(10e^x - 1)/e^x}
$$

$$
= \lim_{x \to \infty} \frac{1}{10 - (1/e^x)} = \frac{1}{10}
$$

つひへ

Rules of exponentials

The following rules of exponents follow from the rules of logarithms:

$$
e^{x+y} = e^x e^y
$$
, $e^{x-y} = \frac{e^x}{e^y}$, $(e^x)^y = e^{xy}$.

Proof see notes for details

Example Simplify $\frac{e^{x^2}e^{2x+1}}{(e^x)^2}$ $\frac{e^{-x+2}}{(e^x)^2}$.

 -10.5

ミメメミメ

G

Rules of exponentials

The following rules of exponents follow from the rules of logarithms:

$$
e^{x+y} = e^x e^y
$$
, $e^{x-y} = \frac{e^x}{e^y}$, $(e^x)^y = e^{xy}$.

Proof see notes for details

Example Simplify $\frac{e^{x^2}e^{2x+1}}{(e^x)^2}$ $\frac{e^{-x+2}}{(e^x)^2}$. I $e^{x^2}e^{2x+1}$ $\frac{x^2 e^{2x+1}}{(e^x)^2} = \frac{e^{x^2+2x+1}}{e^{2x}}$ e^{2x}

 -10.5

(日) (日) -

G

Rules of exponentials

The following rules of exponents follow from the rules of logarithms:

$$
e^{x+y} = e^x e^y
$$
, $e^{x-y} = \frac{e^x}{e^y}$, $(e^x)^y = e^{xy}$.

Proof see notes for details

Example Simplify $\frac{e^{x^2}e^{2x+1}}{(e^x)^2}$ $\frac{e^{-x+2}}{(e^x)^2}$. I $e^{x^2}e^{2x+1}$ $\frac{x^2 e^{2x+1}}{(e^x)^2} = \frac{e^{x^2+2x+1}}{e^{2x}}$ e^{2x} I $= e^{x^2+2x+1-2x} = e^{x^2+1}$

 -10.5

(日) (日) -

G

$$
\frac{d}{dx}e^{x}=e^{x}
$$
\n
$$
\frac{d}{dx}e^{g(x)}=g'(x)e^{g(x)}
$$

Proof We use logarithmic differentiation. If $y = e^x$, we have $\ln y = x$ and differentiating, we get $\frac{1}{y}\frac{dy}{dx}=1$ or $\frac{dy}{dx}=y=e^{\times}.$ The derivative on the right follows from the chain rule.

Example Find $\frac{d}{dx}e^{\sin^2 x}$

 \leftarrow

∢∄⇒

$$
\frac{d}{dx}e^{x}=e^{x}
$$
\n
$$
\frac{d}{dx}e^{g(x)}=g'(x)e^{g(x)}
$$

Proof We use logarithmic differentiation. If $y = e^x$, we have $\ln y = x$ and differentiating, we get $\frac{1}{y}\frac{dy}{dx}=1$ or $\frac{dy}{dx}=y=e^{\times}.$ The derivative on the right follows from the chain rule.

Example Find $\frac{d}{dx}e^{\sin^2 x}$

 \triangleright Using the chain rule, we get

$$
\frac{d}{dx}e^{\sin^2 x} = e^{\sin^2 x} \cdot \frac{d}{dx}\sin^2 x
$$

つひへ

i.

$$
\frac{d}{dx}e^{x}=e^{x}
$$
\n
$$
\frac{d}{dx}e^{g(x)}=g'(x)e^{g(x)}
$$

Proof We use logarithmic differentiation. If $y = e^x$, we have $\ln y = x$ and differentiating, we get $\frac{1}{y}\frac{dy}{dx}=1$ or $\frac{dy}{dx}=y=e^{\times}.$ The derivative on the right follows from the chain rule.

Example Find $\frac{d}{dx}e^{\sin^2 x}$

 \triangleright Using the chain rule, we get

$$
\frac{d}{dx}e^{\sin^2 x} = e^{\sin^2 x} \cdot \frac{d}{dx}\sin^2 x
$$

$$
= e^{\sin^2 x} 2(\sin x)(\cos x) = 2(\sin x)(\cos x)e^{\sin^2 x}
$$

ヨト

つひへ

$$
\frac{d}{dx}e^{x}=e^{x}
$$
\n
$$
\frac{d}{dx}e^{g(x)}=g'(x)e^{g(x)}
$$

Example Find $\frac{d}{dx}$ sin²(e^{x^2})

 \leftarrow \Box \rightarrow

 \mathcal{A} . 高 **D** 重き メ唐き

目

 299

$$
\frac{d}{dx}e^{x}=e^{x}
$$
\n
$$
\frac{d}{dx}e^{g(x)}=g'(x)e^{g(x)}
$$

Example Find $\frac{d}{dx}$ sin²(e^{x^2})

 \triangleright Using the chain rule, we get

$$
\frac{d}{dx}\sin^2(e^{x^2}) = 2\sin(e^{x^2}) \cdot \frac{d}{dx}\sin(e^{x^2})
$$

 \leftarrow \rightarrow 3. 동 >

٠

Ε

I

$$
\frac{d}{dx}e^{x}=e^{x}
$$
\n
$$
\frac{d}{dx}e^{g(x)}=g'(x)e^{g(x)}
$$

Example Find $\frac{d}{dx}$ sin²(e^{x^2})

 \triangleright Using the chain rule, we get

$$
\frac{d}{dx}\sin^2(e^{x^2}) = 2\sin(e^{x^2}) \cdot \frac{d}{dx}\sin(e^{x^2})
$$

$$
=2\sin(e^{x^2})\cos(e^{x^2})\cdot\frac{d}{dx}e^{x^2}
$$

 \leftarrow \Box \rightarrow 一 星下

Ξ ×. 目

 299

I

i.

$$
\frac{d}{dx}e^{x}=e^{x}
$$
\n
$$
\frac{d}{dx}e^{g(x)}=g'(x)e^{g(x)}
$$

Example Find $\frac{d}{dx}$ sin²(e^{x^2})

 \triangleright Using the chain rule, we get

$$
\frac{d}{dx}\sin^2(e^{x^2}) = 2\sin(e^{x^2}) \cdot \frac{d}{dx}\sin(e^{x^2})
$$

$$
= 2\sin(e^{x^2})\cos(e^{x^2}) \cdot \frac{d}{dx}e^{x^2}
$$

$$
= 2\sin(e^{x^2})\cos(e^{x^2})e^{x^2} \cdot \frac{d}{dx}x^2 = 4xe^{x^2}\sin(e^{x^2})\cos(e^{x^2})
$$

 \leftarrow \Box

3. 동 >

Ε

 299

$$
\int e^{x} dx = e^{x} + C \int \int g'(x) e^{g(x)} dx = e^{g(x)} + C
$$

Example Find $\int xe^{x^2+1} dx$.

K ロ ▶ K 伊 ▶

澄々 メ唐ヶ

 \mathcal{A} .

 299

目

$$
\int e^{x} dx = e^{x} + C \int \int g'(x) e^{g(x)} dx = e^{g(x)} + C
$$

Example Find $\int xe^{x^2+1} dx$.

Using substitution, we let $u = x^2 + 1$.

$$
du = 2x \, dx, \qquad \frac{du}{2} = x \, dx
$$

 $4.17 +$

- 세로 베

Ξ. \sim 目

I

$$
\int e^{x} dx = e^{x} + C \int \int g'(x) e^{g(x)} dx = e^{g(x)} + C
$$

Example Find $\int xe^{x^2+1} dx$.

Using substitution, we let $u = x^2 + 1$.

$$
du = 2x \, dx, \qquad \frac{du}{2} = x \, dx
$$

$$
\int xe^{x^2+1} dx = \int e^u \frac{du}{2} = \frac{1}{2} \int e^u du = \frac{1}{2}
$$

 \leftarrow \Box

 $\frac{1}{2}e^{u} + C$

 \rightarrow \equiv \rightarrow

G

$$
\int e^{x} dx = e^{x} + C \int \int g'(x) e^{g(x)} dx = e^{g(x)} + C
$$

Example Find $\int xe^{x^2+1} dx$.

Using substitution, we let $u = x^2 + 1$.

$$
du = 2x \, dx, \qquad \frac{du}{2} = x \, dx
$$

$$
\blacktriangleright
$$

$$
\int xe^{x^2+1} dx = \int e^u \frac{du}{2} = \frac{1}{2} \int e^u du = \frac{1}{2} e^u + C
$$

 \triangleright Switching back to x, we get

$$
=\frac{1}{2}e^{x^2+1}+C
$$

 \leftarrow \Box

一 三 ト

G

Summary of formulas

$$
\ln(ab) = \ln a + \ln b, \ \ln\left(\frac{a}{b}\right) = \ln a - \ln b \qquad \ln e^{x} = x \text{ and } e^{\ln(x)} = x
$$
\n
$$
\ln a^{x} = x \ln a
$$
\n
$$
\lim_{x \to \infty} \ln x = \infty, \ \lim_{x \to 0} \ln x = -\infty
$$
\n
$$
\frac{d}{dx} \ln |x| = \frac{1}{x}, \ \frac{d}{dx} \ln |g(x)| = \frac{g'(x)}{g(x)} \qquad \frac{d}{dx} e^{x} = e^{x}, \ \frac{d}{dx} e^{g(x)} = g'(x) e^{g(x)}
$$
\n
$$
\int \frac{1}{x} dx = \ln |x| + C \qquad \int e^{x} dx = e^{x} + C
$$
\n
$$
\int \frac{g'(x)}{g(x)} dx = \ln |g(x)| + C. \qquad \int g'(x) e^{g(x)} dx = e^{g(x)} + C
$$

4日下 → 伊 **B** 검 시 시 검 시

重

 299

Summary of methods

Logarithmic Differentiation Solving equations (Finding formulas for inverse functions) Finding slopes of inverse functions (using formula from lecture 1). Calculating Limits Calculating Derivatives Calculating Integrals (including definite integrals)

モミト

э