
Worksheet

• The purpose of this worksheet is

1. To understand how the differential equation describing simple harmonic motion is derived.

2. To explore how to predict what the solution to this differential equation might be using
Euler’s method and to examine the difficulties of using Euler’s method in this case, namely
we need a very small step size for the method to work. (There are other methods of finding
numerical solutions which are more accurate in this situation which take more computing
time. You will learn about these methods in Numerical Analysis. )

3. To compare the solution derived from Euler’s method with the actual solution, which can be
derived by some guesswork and a little calculation here.

4. To comapre what happens in reality, when we actually attach a mass to a spring and set it
in motion, to our prediction with Euler’s method and the theoretical results. Results of the
experiment are attached. (Springs and masses and a motion sensor will also be available at
the extra help session on Tue April 12 6:30- 7:30 p.m. Location Hayes-Healy 125).

• You may work in groups on this worksheet. Up to 5 people per group. These groups do not have
to be the same as the tutorial groups and the students in a group do not have to be from the
same tutorial. You may of course work independently. A group should hand in just one completed
worksheet. Please make sure that everybody in the group understands the content before handing
in the worksheet. If somebody in the group does no work, their name should not appear on top
of the worksheet.

• You should download the accompanying Maple worksheet HM.mv from concourse, make a backup
copy and check that you can open it using the application Maple14 at one of the labs on campus
as soon as possible.

• If you are experiencing difficulty or wish to check out what really happens with springs and masses,
you should attend the (walk in ) help session on Tuesday April 12, 6:30-7:30 p.m. Location Hayes-
Healy 125.

• The completed worksheet should be handed to a tutor on Tuesday April 19 at a tutorial session.

• These will be no tutorials for Math 10560 on Tuesday April 26.
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Simple Harmonic Motion

Lets assume we have an object with mass m attached to a spring with spring constant k. Recall that
Hooke’s Law says that the force required to stretch the spring x1 meters beyond its natural length is
kx1. This means that a spring stretched x1 meters from its natural length is exerting a force of −kx1

Newtons (using SI units, Newtons, kilograms, meters, seconds.).

Gravity, on the other hand is exerting a downward force on the object, of mg where g = 9.81 meters/s2.

Problem 1 We will use a spring that is stretched 2 cm = 0.02 meters by a force of 1 Newton. What is
the spring constant k?
(Recall this is a Calculus 1 problem: from Section 6.4)

k =

Equating forces, we have
.02k = 1, hence k = 1/(.02) = 50

Problem 2 If we attach a mass of m = 100 g = 0.1 kg to the end of the spring discussed in problem
1, what is the equilibrium position for the spring with this weight attached?

Equilibrium Position at x1 = E (meters) =

(Note that 100g exerts a force of approx 1N, so the value of E should be close to 2 cm = .02 meters.)

Equating forces again, we have

.1× 9.81 = Ek = 50E, hence E =
.1× 9.81

50
= .0196 (meters)

Hence
E = .0196 (meters)
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Problem 3 Let us assume that we have attached an object with a mass of 100g = 0.1 kg to the
above spring and we stretch the spring to 10 cm = 0.1 meters beyond its equilibrium position.

We let go of the spring, starting the clock as we do so and measuring time, t, in seconds.

Let x(t) be the distance in meters of the object from the equilibrium position at time t.

From experience you probably know that the object will bob up and down. What do you expect the
function x(t) to look like? A wave function

We would like to restrict our attention to the idealized situation where the ONLY forces acting on the
spring are the ones mentioned above, gravity and the spring force. Our question is:
What path will the spring follow in this idealized situation? or What is the function x(t)?

Setting up a differential equation to describe the motion

From our definition of x(t) above, we have the initial condition x(0) = .1 meter.

Let us consider the forces acting on the spring when the spring is at x meters from its equilibrium
position as shown in the diagram above. The force of gravity is exerting a force of mg = (.1)9.81N in a
downward direction (positive direction on the axis). Let E denote the distance the spring is stretched
from its natural length by the object in equilibrium position. (This is the number you found in Problem
2). The spring force is acting in the opposite direction to the force of gravity exerting a force of
−k(x + E)N on the object. Hence the total force on the object, when the object is x meters from
its equilibrium position is = −k(x + E) + (.1)(9.81) N. Now kE = mg = (.1)(9.81) (Why?), hence
the total force force on on the object, when the object is x meters from its equilibrium position is
−kx− (.1)(9.81) + (.1)(9.81) = −kx N.

The sum of the forces acting on the spring at any given value of x are equal to
the mass times the acceleration of the spring at that point. Hence for any value of x = x(t):

ma = −kx or (.1)
d2x(t)

dt2
= −kx(t).

This is a second order differential equation. We do not have a method for finding the solution in this
course, however we can apply Euler’s method to find a numerical solution.
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Using Euler’s Method to find a Numerical solution We cannot use Euler’s method directly as we
did in class to find a solution to this differential equation since it is a second order differential equation.
However, we can split the equation into two first order differential equations and apply Euler’s method
simultaneously to both to find an approximate velocity and position at each step.

Let v(t) = x′(t) denote the velocity of the object at time t
and

let a(t) = v′(t) = d2x(t)
dt denote the acceleration of the object at time t.

From the differential equation given above, we get the following differential equations:

dv(t)

dt
= a(t) =

d2x(t)

dt
= −10kx(t), or a(t) =

dv(t)

dt
= −10kx(t) and

dx

dt
= v(t)

Recall that our problem is to predict the path of the object (weighing 100g = 0.1 kg) when we
stretch the spring to 10 cm = .1 meters beyond its equilibrium position. This gives us initial values of

x(0) = 0.1 v(0) = 0 a(0) = −10kx(0) = −10k(.1) = −k.

Note you should have found a value for k in problem 1.

We will use Euler’s method applied to both equations above simultaneously to make a discrete model
predicting the path of the object on the spring over a 5 second period. We will make our predictions
using a discrete sequence of points with the time interval changing by h = ∆t = .001 seconds.

At each value of t,
t0 = 0, t1 = .001, t2 = .002, . . . , t5000 = 5

we will estimate the position, x(ti), velocity, v(ti), and acceleration, a(ti), of the object at time ti. We
will accomplish this using the state equations :

x(ti+1)− x(ti)

∆t
≈ v(ti) or x(ti+1) ≈ x(ti) + v(ti)∆t

and
v(ti+1)− v(ti)

∆t
≈ a(ti) ≈ −10kx(ti) or v(ti+i) ≈ v(ti) + a(ti)∆t

Fill in some values on the table on below, using the value of k that you have calculated in problem
1 above.

ti x(ti) = x(ti−1) + v(ti−1)∆t v(ti) = v(ti−1) + a(ti−1)∆t a(ti) = −10kx(ti)
t0 = 0 0.1 0 −k = −50
0.001 0.1 + 0(.001) = 0.1 0 + (−50)(.001) = −.05 −500(.1) = −50
0.002 0.1− .05(.001) = .0999 −0.5− 50(.001) = −.1 −500(.0999) = −49.95
0.003 .0998 −.149 −49.9
0.004 .0996 −.199 −49.8
0.005 .0994 −.2398 −49.7
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Using Maple to graph the solution In concourse you will find a maple worksheet entitled HM.mv.
You should download this file and take it to a computer in a computer lab on campus. You can open
the file with the application MAPLE. You should make a copy of this file before you work through it. You
should activate each piece of code (in red) in turn by placing the cursor at the end of a line of code and
hitting return. When running the for loop, you can place the cursor at the end of any line of code in
that section and hit return. Generate a graph of your numerical solution by activating the last piece of
code and print your completed worksheet to turn in with this worksheet.

After you have backed up the file, change the value of h to h = 0.01 in the definitions and rerun the
worksheet to get a graph of the approximation with the new value of h. You will see the numerical
instability in the solution with this new value of h. Print out this completed worksheet and also attach
it to you worksheet to turn in.

The graph you generate should look like this:
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The Real Solution
In our calculus course we do not have a systematic method of solving this type of differential equation.
You will learn such systematic methods later. However we can actually guess the solution to this
equation.

d2x(t)

dt2
= −10kx(t),

with initial conditions:
x(0) = 0.1, v(0) = 0.

Problem 4 Using the value of k that you derived on the first page, find the solution to our initial value
problem above by finding the parameters of a function of the form

x(t) = A sin(αt + β) + C

which give a solution.

using the equation d2x(t)
dt2 = −500x(t), we get

−α2A sin(αt + β) = −500A sin(αt + β)− 500C

The value of A cannot be 0, since the solution cannot be constant. Divide across by A $= 0 to get

−α2 sin(αt + β) = −500 sin(αt + β)− 500C/A

t can take any value, so we let t = −β/α (since α $= 0 because the solution cannot be constant). This
gives

−α2 sin(0) = −500 sin(0)− 500C/A

or
0 = −500C/A

this can only happen if C = 0 . Therefore our solution looks like

x(t) = A sin(αt + β) and − α2 sin(αt + β) = −500 sin(αt + β)

Now we must have sin(αt1 + β) $= 0 for some t1, and since

−α2 sin(αt1 + β) = −500 sin(αt1 + β),

we can divide both sides by sin(αt1 + β) to get

−α2 = −500 and α = 10
√
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Now we know our solution looks like

x(t) = A sin(10
√

5t + β)

using the initial condition v(0) = 0, we get

10
√

5A cos(10
√

5(0) + β) = 0 giving 10
√

5A cos(β) = 0
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since A $= 0, we must have cos(β) = 0, which gives that β =
π

2
or

3π

2
. Thus

x(t) = A sin(10
√

5t +
π

2
) or x(t) = A sin(10

√
5t +

3π

2
).

Using the initial condition x(0) = 0.1, we get

A = 0.1 or A = −(0.1) respectively

Hence

x(t) = 0.1 sin(10
√

5t +
π

2
) or x(t) = −0.1 sin(10

√
5t +

3π

2
)

These are the same function.
Here is a graph of the real solution:

How is this solution different from curve that you generated by Euler’s method with h = .001?
The wave in the solution predicted by Euler’s method gets amplified as time increases. Here the
amplitude of the wave is constant. Euler’s method does not give us a good model here.
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Back To Reality
The following data was collected using a Go-Motion Sensor. The sensor was placed 25 centimeters

below the equilibrium point (the spring was hanging above the sensor), therefore the curve is upsidedown
and shifted.Also as you can see from the graph the spring was not released immediately. We see that
the harmonic motion gets disrupted after about 3.5 seconds because of the friction between the top of
the spring and the rod on which it was hanging.
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Note that the differential equations describing the motion of the spring, depend only on the distance the
spring is stretched beyond the equilibrium point. Therefore if we stretch a slinky with no mass attached
and let it go, we should see harmonic motion. The graph below shows the motion of a stretched slinky
with no mass hanging from it. Obviously the harmonic motion gets dampened in this case and the
motion eventually comes to a halt.
What are some of the forces that might cause the motion of the slinky to stop?
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Air resistance, friction etc...
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