
Solutions to Exam 1, Math 10560

1. The function f(x) = e2x +x3 +x is one-to-one (there is no need to check
this). What is (f−1)′(2 + e2)?

Solution. Because f(x) is one-to-one, we know the inverse function exists.
Recall that (f−1)′(a) = 1

f ′(f−1(a))
. So our first step is to find f−1(2+e2). By

definition of the inverse functions f−1(2+e2) = x if and only if f(x) = 2+e2.
So we solve for x:

f(x) = 2 + e2

e2x + x3 + x = 2 + e2.

Comparing coefficients, we get x = 1.

The next step is to calculate f ′(x):

f(x) = e2x + x3 + x

⇒ f ′(x) = 2e2x + 3x2 + 1.

So f ′(f−1(2 + e2)) = f ′(1) = 2e2 + 3 + 1 = 2e2 + 4. Putting this into the
equation (f−1)′(a) = 1

f ′(f−1(a))
, we get:

(f−1)′(2 + e2) =
1

2e2 + 4
.

2. Use logarithmic differentiation to compute the derivative of the function

y =
2x(x3 + 2)√

x− 1
.

Solution. Taking the natural log of both sides of the equation, we get:

ln y = ln

(
2x(x3 + 2)√

x− 1

)
= ln(2x) + ln(x3 + 2)− ln((x− 1)1/2)

= x ln 2 + ln(x3 + 2)− 1

2
ln(x− 1).

1
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Differentiating both sides we obtain:

1

y
· dy
dx

= ln 2 +
3x2

x3 + 2
− 1

2(x− 1)

⇒ dy

dx
= y

(
ln 2 +

3x2

x3 + 2
− 1

2(x− 1)

)
.

Thus,

dy

dx
=

2x(x3 + 2)√
x− 1

(
ln 2 +

3x2

x3 + 2
− 1

2(x− 1)

)
.

3. Compute the integral ∫ 5

1

1

(1 + x2) tan−1(x)
dx.

Solution. We use u-substitution with u = tan−1(x) ⇒ du = dx
1+x2

. We
must also change the bounds of integration:

x = 5→ u = tan−1(5),

x = 1→ u = tan−1(1) = π/4.

Doing these substitutions, the integral changes to:

∫ tan−1(5)

π/4

1

u
du = ln |u|

∣∣∣∣∣
tan−1(5)

π/4

= ln | tan−1(5)| − ln(π/4).

Note that tan−1(5) will be positive because 5 > 0, so the absolute value sign
isn’t needed. So,∫ 5

1

1

(1 + x2) tan−1(x)
dx = ln(tan−1(5))− ln(π/4).
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4. Find the derivative of (x2 + 1)x
2+1.

Solution. Since there is a variable in both the base and the exponent, we

need logarithmic differentiation. Let y = (x2 + 1)x
2+1. Then

ln y = ln
(

(x2 + 1)x
2+1
)

= (x2 + 1) · ln (x2 + 1).

Differentiating,

1

y
y′ = 2x ln (x2 + 1) + (x2 + 1)

2x

x2 + 1

= 2x ln (x2 + 1) + 2x

= 2x
(
ln (x2 + 1) + 1

)
.

Multiplying both sides by y = (x2 + 1)x
2+1, we obtain

y′ = (x2 + 1)x
2+1 2x

(
ln (x2 + 1) + 1

)
.

5. Which of the following is true about y = f(x) = x ln(x), x > 0?

(a) The function is decreasing for 0 < x < 1
e , increasing for x > 1

e , and
concave up for all x > 0.

(b) The function is increasing for all x and concave up for all x > 0.
(c) The function is decreasing for 0 < x < e, increasing for x > e, and

concave up for all x > 0.
(d) The function is decreasing for 0 < x < 1, increasing for x > 1, and

concave up for all x > 0.
(e) The function is concave down for all x > 0.

Solution. Consider the first derivative

y′ = lnx+ 1.

We note that

lnx+ 1 < 0 ⇐⇒ lnx < −1 ⇐⇒ x < e−1 =
1

e
.

So the function y is decreasing on the interval 0 < x < 1
e . Similarly,

lnx+ 1 > 0 ⇐⇒ lnx > −1 ⇐⇒ x > e−1 =
1

e
,

so the function y is increasing on the interval x > 1
e . To determine concavity,

we look at the second derivative

y′′ =
1

x
.
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Since 1
x is positive for x > 0, the function y is concave up for all x > 0.

Answer:
The function is decreasing for 0 < x < 1

e ,

increasing for x > 1
e , and concave up for all

x > 0.

6. Compute the following definite integral.∫ log5(6)

0

5x√
1 + 5x

dx.

Solution. We choose the substitution u = 5x+ 1. Then du = 5x ln 5 dx and∫ log5(6)

0

5x√
1 + 5x

dx =
1

ln 5

∫ 7

2

1√
u
du

=
2
√
u

ln 5

∣∣∣∣∣
7

2

=
2
(√

7−
√

2
)

ln 5
.
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7. Find the limit

lim
x→0

ln(1 + 2x)

sin(x)
.

Solution. Plugging x = 0 into the expression ln(1+2x)
sin(x) we see that the limit

is of indeterminate form 0
0 . We apply L’Hospital’s Rule:

lim
x→0

ln(1 + 2x)

sin(x)
= lim

x→0

d

dx
[ln(1 + 2x)]

d

dx
[sin(x)]

= lim
x→0

2
1+2x

cos(x)

= lim
x→0

2

(cos(x))(1 + 2x)

=
2

cos(0) · 1
= 2.

8. Find the integral ∫ 1

0
exx2 dx.

Solution. We need to use integration by parts, with u = x2, dv = ex dx.
Then du = 2xdx and v = ex. (We make this choice because we want to
decrease the power of x.) Now,∫ 1

0
exx2 dx = x2ex

∣∣∣1
0
− 2

∫ 1

0
xex dx

= (e1 − 0)− 2

∫ 1

0
xex dx

= e− 2

∫ 1

0
xex dx.
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To evaluate the integral
∫ 1
0 xe

x dx, we again need to use integration by parts.
This time we choose u = x, dv = ex dx. So du = dx and v = ex. Thus,∫ 1

0
xex dx = xex

∣∣∣1
0
−
∫ 1

0
ex dx

= (e− 0)− ex
∣∣∣1
0

= �e− (�e− 1)

= 1.

Substituting this back into the above we obtain∫ 1

0
exx2 dx = e− 2

∫ 1

0
xex dx

= e− 2 · 1

= e− 2 .

Remark: If you choose to drop the bounds and first evaluate the indef-
inite integral

∫
exx2 dx, this is fine as long as your solution is written in a

mathematically correct way (i.e. do not have a definite integral equal to
an indefinite integral). An example of how to do this would be as folllows.
Applying integration by parts twice (with the same choices for u and dv as
above) we obtain: ∫

exx2 dx = x2ex − 2

∫
xex dx

= x2ex − 2

[
xex −

∫
ex dx

]
= x2ex − 2 (xex − ex) + C

= x2ex − 2xex + 2ex + C.

Therefore, ∫ 1

0
exx2 = x2ex − 2xex + 2ex

∣∣∣1
0

= (e1 −�
�2e1 +�

�2e1)− (0− 0 + 2e0)

= e− 2.
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9. Compute the integral ∫ π/4

0
tan3(x) sec3(x) dx.

Solution. This is an integral of the form
∫

secm x tann x dx. Since both m
and n are odd, we use the u-substitution u = secx, du = secx tanx and use
the trigonometric identity 1 + tan2 x = sec2 x to rewrite tan2 x as sec2 x− 1.
Putting this all together, we obtain:

∫ π/4

0
tan3 x sec3 x dx =

∫ π/4

0
(tan2 x sec2 x)(secx tanx) dx

=

∫ π/4

0
(sec2 x− 1)(sec2 x)(secx tanx) dx

=

∫ sec(π/4)

sec(0)
(u2 − 1) · u2du

=

∫ √2
1

u4 − u2 du

=

[
u5

5
− u3

3

]√2
1

=

(
(
√

2)5

5
− (
√

2)3

3

)
−
(

1

5
− 1

3

)

=
25/2 − 1

5
− 23/2 − 1

3
.

10. Compute the integral ∫ 2

0

x

x2 + 3
√
x
dx.

Hint: a rationalizing substitution might help.

Solution. We can rewrite our integral as∫ 2

0

x

x2 + 3
√
x
dx =

∫ 2

0

x

x1/3(x5/3 + 1)
dx

=

∫ 2

0

x2/3

x5/3 + 1
dx.
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We now see that we can use the u-substitution u = x5/3 + 1, du = 5
3x

2/3 dx.
Next, we change the bounds of integration:

x = 0⇒ u = 05/3 + 1 = 1,

x = 2⇒ u = 25/3 + 1 =
3
√

32 + 1.

Putting this together, we obtain∫ 2

0

x

x2 + 3
√
x

=

∫ 2

0

x2/3

x5/3 + 1
dx

=
3

5

∫ 3√32+1

1

du

u

=
3

5
ln |u|

∣∣∣ 3√32+1

1

=
3 ln( 3
√

32 + 1)

5
.

11. The population (in thousands (= th.)) of UNCland had an initial
value of 100 th. at time t = 0 days. The population of UNCland has been
decreasing since then at a rate proportional to its size. The population of
UNCland was 60 th. at time t = 20 days. Let P (t) denote the size of the
population of UNCland t days after t = 0.

(a) Find an expression for P (t) in the form

P (t) = Cekt,

where C and k are constants. (You should NOT attempt to approximate
numbers such as ln(2) etc.. in decimal or fractional form. )

Solution. At t = 0, we have: P (0) = 100 = Cek·0 = Ce0 = C, so C = 100.
At t = 20, we have:

P (20) = Ce20k

60 = 100e20k

60

100
=

3

5
= e20k,
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Taking the natural logarithm of both sides:

ln
(3

5

)
= ln(e20k)

ln(3)− ln(5) = 20k

ln(3)− ln(5)

20
= k.

Answer: C = 100th., k =
ln 3− ln 5

20

(b) When will the population of UNCland equal 10 th. ?
(You may write your answer in terms of logarithms. )

Solution. We want to know for which t we get P (t) = 10:

P (t) = 100ekt = 10

⇒ e
ln 3−ln 5

20
·t =

10

100
=

1

10

Take the natural logarithm of both sides:

ln 3− ln 5

20
· t = ln(1/10) = − ln 10

t =
−20 ln(10)

ln(3)− ln(5)
=

20 ln(10)

ln(5)− ln(3)

So the population of UNCland is 10 th. when

t =
20 ln(10)

ln(5)− ln(3)
days.

Equivalent Answers: 20 ln(1/10)
ln(3/5) days, 20 ln(10)

ln(5/3) days.

12. Compute the integral ∫
x2 + 1

x3 + x2
dx.

Solution. We proceed using partial fraction decomposition. First, we factor
the denominator

x3 + x2 = x2(x+ 1).
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Since the linear factor x occurs twice, the partial fraction decomposition is

x2 + 1

x2(x+ 1)
=
A

x
+
B

x2
+

C

x+ 1
.

Multiplying both sides by x2(x+ 1), we get

x2 + 1 = Ax(x+ 1) +B(x+ 1) + Cx2

= (A+ C)x2 + (A+B)x+B.

Equating coefficients

1 = B

0 = A+B

1 = A+ C

we obtain A = −1, B = 1, and C = 2. Now, returning to the integral,∫
x2 + 1

x2(x+ 1)
dx =

∫
−1

x
+

1

x2
+

2

x+ 1
dx

= − ln |x| − 1

x
+ 2 ln |x+ 1|+ C.

13. Compute ∫
1√

x2 − 2x+ 2
dx

Present your answer as a function of the variable x. Note the formula sheet
at the back of the exam may be helpful in working out your final answer.

Solution. Completing the square we see that x2 − 2x+ 2 = x2 − 2x+ 12 −
12 + 2 = (x− 1)2 + 1. Thus we can rewrite our integral as

∫
1√

x2 − 2x+ 2
dx =

∫
1√

(x− 1)2 + 1
dx

=

∫
1√

u2 + 1
du (Substitution: u = x− 1, du = dx)

Next, we want to make a trigonometric substitution. Because our expression
is of the form u2 + a2, we use the substitution u = tan θ, −π

2 ≤ θ ≤ π
2 . So

du = sec2 θ dθ, and our integral becomes
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∫
1√

x2 − 2x+ 2
dx =

∫
1√

u2 + 1
du

=

∫
1√

tan2 θ + 1
· sec2 θ dθ

=

∫
sec2 θ√
sec2 θ

dθ

=

∫
sec θdθ

= ln | sec θ + tan θ|+ C.

Next we need to substitute back in for θ. We had u = tan θ, where −π
2 ≤

θ ≤ π
2 . Further, since −π

2 ≤ θ ≤
π
2 , we have sec θ = 1

cos θ > 0. Now, sec2 θ =

1 + tan2 θ = 1 + u2, so taking the positive square root, sec θ =
√
u2 + 1.

Now, ∫
1√

x2 − 2x+ 2
= ln | sec θ + tan θ|+ C

= ln |
√
u2 + 1 + u|+ C

Finally, we had u = x− 1 and
√
u2 + 1 =

√
x2 − 2x+ 2, so substituting this

back in we obtain

∫
1√

x2 − 2x+ 2
dx = ln |

√
x2 − 2x+ 2 + x− 1|+C.


