Math 10560, Exam 3
April 29, 2015

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

<table>
<thead>
<tr>
<th>PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (a) (b) (c) (d) (e)</td>
</tr>
<tr>
<td>2. (a) (b) (c) (d) (e)</td>
</tr>
<tr>
<td>3. (a) (b) (c) (d) (e)</td>
</tr>
<tr>
<td>4. (a) (b) (c) (d) (e)</td>
</tr>
<tr>
<td>5. (a) (b) (c) (d) (e)</td>
</tr>
<tr>
<td>6. (a) (b) (c) (d) (e)</td>
</tr>
<tr>
<td>7. (a) (b) (c) (d) (e)</td>
</tr>
<tr>
<td>8. (a) (b) (c) (d) (e)</td>
</tr>
<tr>
<td>9. (a) (b) (c) (d) (e)</td>
</tr>
<tr>
<td>10. (a) (b) (c) (d) (e)</td>
</tr>
</tbody>
</table>

Please do NOT write in this box.

Multiple Choice _____________

11. _______________
12. _______________
13. _______________

Total _______________
Multiple Choice

1. (6 pts) Find

\[\lim_{n \to \infty} n \tan \left(\frac{1}{2n} \right) \]

(a) \(\frac{1}{2} \) (b) 2 (c) \(\infty \) (d) 0 (e) \(\frac{1}{4} \)

Sol. Let \(x = 1/(2n) \) so that the limit becomes

\[\lim_{n \to \infty} n \tan \left(\frac{1}{2n} \right) = \lim_{x \to 0} \frac{1}{2x} \tan \left(x \right) = \lim_{x \to 0} \frac{1}{2x} \frac{\sin(x)}{\cos(x)} = \frac{1}{2}. \]

2. (6 pts) Find the sum of the following series.

\[\sum_{k=0}^{\infty} \frac{(-1)^{k+1} + 3^k}{4^k} . \]

(a) \(\frac{3}{8} \) (b) \(\frac{16}{5} \) (c) \(\frac{24}{5} \) (d) \(\frac{8}{3} \) (e) 0

Sol. Splitting the series into two pieces, we have

\[\sum_{k=0}^{\infty} \frac{(-1)^{k+1} + 3^k}{4^k} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{4^k} + \sum_{k=0}^{\infty} \frac{3^k}{4^k} . \]

The second series is geometric, and equals \(1/(1 - 3/4) = 4 \). The first series is also geometric, after we write it as

\[\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{4^k} = -\sum_{k=0}^{\infty} (-1/4)^k , \]

and therefore sums to \(-4/5\). Adding the two parts, we obtain the series sums to \(\frac{16}{5} \).
3. (6 pts) Which of the following statement is TRUE?

(a) \[\sum_{n=1}^{\infty} \frac{(-1)^n(\sqrt{n} + 1)}{n} \] converges absolutely.

(b) \[\sum_{n=1}^{\infty} \frac{(-1)^n(\sqrt{n} + 1)}{n} \] diverges.

(c) \[\sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{5^n} \] diverges by divergence test.

(d) \[\sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{5^n} \] converges conditionally.

(e) \[\sum_{n=1}^{\infty} \frac{(-1)^n(\sqrt{n} + 1)}{n} \] converges conditionally.

Sol. We see that by the alternating series test, \[\sum_{n=1}^{\infty} \frac{(-1)^n(\sqrt{n} + 1)}{n} \] converges. However, it is not absolutely convergent, by the comparison test. Comparing \[\frac{(-1)^n(\sqrt{n} + 1)}{n} \] to \[\frac{\sqrt{n}}{n} \], we see that this series diverges. Thus, this is a conditionally convergent series.

4. (6 pts) Find the sum of the following series,

\[\sum_{n=1}^{\infty} \left[\frac{n}{e^{n-1}} - \frac{n+1}{e^n} \right] . \]

(a) 0 \hspace{1cm} (b) 1 \hspace{1cm} (c) \frac{2}{e} \hspace{1cm} (d) \frac{1}{e} \hspace{1cm} (e) the series diverges

Sol. This is a telescoping series where the individual terms tend towards zero as \(n \to \infty \). Therefore, it sums to the first term, which is 1.
5. (6 pts) Which one of the following statement is TRUE?

(a) \(\sum_{n=1}^{\infty} \frac{1}{((\sin n)^2 + 1)n} \) is absolutely convergent by root test.

(b) \(\sum_{n=1}^{\infty} \frac{1}{((\sin n)^2 + 1)n} \) is divergent by ratio test.

(c) \(\sum_{n=1}^{\infty} \frac{1}{((\sin n)^2 + 1)n} \) is absolutely convergent by ratio test.

(d) \(\sum_{n=1}^{\infty} \frac{1}{((\sin n)^2 + 1)n} \) is divergent by comparison test.

(e) none of the above

Solution (d)
(a) It does not make sense to use the roots test here.
(b) The \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1 \), so the ratio test is inconclusive.
(c) See (b)
(d) \(\sum_{n=1}^{\infty} \frac{1}{((\sin n)^2 + 1)n} > \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} \), so the series diverges by the comparison test.

6. (6 pts) For what values of \(p \) is the following series convergent?

\[\sum_{n=2}^{\infty} \frac{(-1)^{n-1} \ln n}{n^p}. \]

(a) for all \(p \) \hspace{1cm} (b) \(p > 1 \) \hspace{1cm} (c) \(p > 0 \)

(d) \(p < 0 \) \hspace{1cm} (e) for any \(p \) such that \(p \neq 0 \)

Solution
Since this is an alternating series, we only need to apply the alternating series test. If \(p > 0 \) then \(|b_{n+1}| < |b_n| \), and \(\lim_{n \to \infty} \frac{\ln n}{n^p} = 0 \) if \(p > 0 \) and = \(\infty \) if \(p < 0 \), so the answer is (c).
7. (6 pts) Expand \(\frac{1}{2x-x^2} \) as a power series centered around \(a = 1 \).

Hint: Complete squares in the denominator, and use a well known power series.

(a) \(\sum_{n=0}^{\infty} (-1)^n (x - 1)^{2n} \)
(b) \(\sum_{n=0}^{\infty} (x - 2)^n \)
(c) \(\sum_{n=0}^{\infty} \frac{(x - 1)^n}{2^n} \)
(d) \(\sum_{n=0}^{\infty} (x - 1)^{2n} \)
(e) \(\sum_{n=0}^{\infty} (-1)^n (x - 1)^n \)

Solution (d)

If you use the hint, this problem is very fast.

\[
\frac{1}{2x-x^2} = \frac{1}{1 - (x-1)^2} = \sum_{n=0}^{\infty} (x - 1)^{2n}
\]

8. (6 pts) Use the MacLaurin series to find \(\lim_{x \to 0} \frac{e^{-x^2} - 1 + x^2}{x^4} \).

(a) \(-\frac{1}{6}\)
(b) \(-1\)
(c) \(\frac{1}{2}\)
(d) 0
(e) \(\frac{1}{3}\)

Sol. We have \(e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \). Then

\[
e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-x^2)^n}{n!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{n!}
\]

Therefore

\[
\lim_{x \to 0} \frac{e^{-x^2} - 1 + x^2}{x^4} = \lim_{x \to 0} \frac{1 - x^2 + \frac{x^4}{2} + O(x^6) - 1 + x^2}{x^4} = \lim_{x \to 0} \frac{x^4}{x^4} = \frac{1}{2}
\]
9. (6 pts) Find the radius of convergence of the following power series

\[\sum_{n=1}^{\infty} \frac{n^n}{n!} x^n \]

Hint: \(\lim_{n \to \infty} (1 + \frac{1}{n})^n = e \).

(a) 0 (b) \(\infty \) (c) \(e \) (d) 1 (e) \(e^{-1} \)

Sol. Let \(a_n = \frac{n^n}{n!} \). We have radius of convergence

\[R = \lim_{n \to \infty} \frac{|a_n|}{a_{n+1}} = \lim_{n \to \infty} \frac{n^n}{n!} \frac{n!}{(n+1)^{n+1}} \]

\[= \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n \]

\[= \lim_{n \to \infty} \left(\frac{1}{1 + \frac{1}{n}} \right)^n = \frac{1}{e} \]
10. (6 pts) Consider the function

\[F(x) = \sum_{n=1}^{\infty} \frac{x^n}{n2^n} \]

What is \(F^{(3)}(0) \)? Here \(F^{(3)} \) represents the third derivative.

(a) \(\frac{1}{4} \) (b) 0 (c) 2 (d) \(\frac{1}{3} \) (e) 6

Sol. We have

\[F(x) = \sum_{n=0}^{\infty} \frac{F^{(n)}(0)}{n!} x^n = \sum_{n=1}^{\infty} \frac{x^n}{n2^n} \]

By equating the coefficient of \(x^3 \) we obtain

\[\frac{F^{(3)}(0)}{6} = \frac{1}{24} \]

Thus

\[F^{(3)}(0) = \frac{1}{4} \]
11. (12 pts.) Observe that \[\int \frac{dx}{1-x^2} = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) + C. \]

(a) Using this, find the Taylor series for \(\ln \left(\frac{1+x}{1-x} \right) \).

(b) Find the value of \[\sum_{n=0}^{\infty} \frac{4^{-n}}{2n+1}. \]

Solution

(a) Using the observation:

\[\int \frac{dx}{1-x^2} = \int \sum_{n=0}^{\infty} x^{2n} \, dx = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} + C = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right). \]

Setting \(x = 0 \) gives \(C = 0 \), so that

\[2 \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1} \]

is the Taylor series expansion for \(\ln \left(\frac{1+x}{1-x} \right) \) about \(a = 0 \).

(b) \[\sum_{n=0}^{\infty} \frac{4^{-n}}{2n+1} = \sum_{n=0}^{\infty} \left(\frac{1}{2} \right)^{2n} \frac{1}{2n+1} = 2 \sum_{n=0}^{\infty} \left(\frac{1}{2} \right)^{2n+1} \frac{1}{2n+1}. \]

The last equality here shows that we are plugging in \(x = 1/2 \) to the series obtained in part (a). Since the series in part (a) was the Taylor series for \(\ln \left(\frac{1+x}{1-x} \right) \), it follows that

\[\sum_{n=0}^{\infty} \frac{4^{-n}}{2n+1} = \ln \left(\frac{1 + \frac{1}{2}}{1 - \frac{1}{2}} \right) = \ln 3. \]
12. (14 pts.) Test the following series for convergence. Specify the exact test being used, and check that all the required hypothesis are satisfied.

(a) \[\sum_{n=1}^{\infty} \frac{1}{n - \sqrt{n} + 1} . \]

Sol. (a) We take \(a_n = \frac{1}{n - \sqrt{n} + 1} \) and \(b_n = \frac{1}{n} \).

\[
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{n - \sqrt{n} + 1} = 1
\]

This combined with the fact that \(\sum_{n=1}^{\infty} \frac{1}{n} \) is divergent shows that the series in question is divergent.

(b) \[\sum_{n=1}^{\infty} \frac{(-1)^n}{n - \sqrt{n} + 1} . \]

Sol. (b) We note first

\[
\lim_{n \to \infty} \frac{1}{n - \sqrt{n} + 1} = 0
\]

and clearly \(\frac{1}{n - \sqrt{n} + 1} > 0 \).

Now let \(f(x) = \frac{1}{x - \sqrt{x} + 1} \).

\[
f'(x) = -\frac{1 - \frac{1}{2\sqrt{x}}}{(x - \sqrt{x} + 1)^2}
\]

When \(x > \frac{1}{4} \), \(f'(x) < 0 \). So \(f(x) \) is decreasing when \(x > \frac{1}{4} \).

So by alternating series test the series in question is convergent.
13. (14 pts.) Find the radius and interval of convergence of the following power series.

\[\sum_{n=0}^{\infty} \frac{2^n(x - 1)^n}{n} \]

Be sure to discuss the convergence at the two end points.

Sol. Using the ratio test, we have

\[
L = \lim_{n \to \infty} \left| \frac{2^{n+1}(x - 1)^{n+1}}{n + 1} \cdot \frac{n}{2^n(x - 1)^n} \right| = \lim_{n \to \infty} \left| \frac{2n(x - 1)}{n + 1} \right| = 2|x - 1|.
\]

So we get that if \(2|x - 1| < 1 \implies |x - 1| < 1/2\) the series converges, and if \(|x - 1| > 1/2\) the series diverges. Thus the radius of convergence is \(R = 1/2\).

Now lets find the interval of convergence. We have that

\[-1/2 < x - 1 < 1/2 \implies 1/2 < x < 3/2.\]

Now lets check the endpoints. When \(x = 1/2\) we have

\[\sum_{n=0}^{\infty} \frac{(-1)^n}{n}, \]

which converges by the alternating series test.

When \(x = 3/2\) we have

\[\sum_{n=0}^{\infty} \frac{1}{n}, \]

which is a harmonic series and diverges.

Thus the interval is

\[1/2 \leq x < 3/2. \]
The following is the list of useful trigonometric formulas:

\[
\sin^2 x + \cos^2 x = 1
\]

\[
1 + \tan^2 x = \sec^2 x
\]

\[
\sin^2 x = \frac{1}{2} (1 - \cos 2x)
\]

\[
\cos^2 x = \frac{1}{2} (1 + \cos 2x)
\]

\[
\sin 2x = 2 \sin x \cos x
\]

\[
\sin x \cos y = \frac{1}{2} \left(\sin(x - y) + \sin(x + y) \right)
\]

\[
\sin x \sin y = \frac{1}{2} \left(\cos(x - y) - \cos(x + y) \right)
\]

\[
\cos x \cos y = \frac{1}{2} \left(\cos(x - y) + \cos(x + y) \right)
\]

\[
\int \sec \theta = \ln | \sec \theta + \tan \theta | + C
\]
The Honor Code is in effect for this examination. All work is to be your own.
No calculators.
The exam lasts for 1 hour and 15 min.
Be sure that your name is on every page in case pages become detached.
Be sure that you have all 11 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (●) (b) (c) (d) (e)
2. (a) (●) (c) (d) (e)
3. (a) (b) (c) (d) (●)
4. (a) (●) (c) (d) (e)
5. (a) (b) (c) (●) (e)
6. (a) (b) (●) (d) (e)
7. (a) (b) (c) (●) (e)
8. (a) (b) (●) (d) (e)
9. (a) (b) (c) (d) (●)
10. (●) (b) (c) (d) (e)

Please do NOT write in this box.
Multiple Choice

11.
12.
13.
Total

Total