Multiple Choice

1.(2 pts.) Find the derivative of the function $f(x) = \log_{10}(e^x + 1)$.

(a)
$$\frac{1}{(\ln 10)(e^x + 1)}$$

(b) 0
(c) $\frac{e^x}{(\ln 10)(e^x + 1)}$
(d) $\frac{e^x}{10}$
(e) $\frac{1}{(\ln 10)(e^x)}$

Solution: Using the chain rule, and recalling that $\frac{d}{dx}\log_a(x) = \frac{1}{(\ln a)x}$, we have that: $f'(x) = \frac{1}{(\ln 10)(e^x + 1)}\frac{d}{dx}(e^x + 1) = \frac{e^x}{(\ln 10)(e^x + 1)}$

2.(2 pts.) If you put \$1000 in an account that pays 10% interest, compounded continuously, how long (in years) will it take for the balance to reach \$10000?

(a)
$$\frac{\ln(10)}{10}$$
 (b) $10\ln(10)$ (c) $\frac{1}{\ln(10)}$

(d)
$$\ln(10)$$
 (e) $\frac{1}{10\ln(10)}$

Name:

Section:

Solution:

Continuously compounded interest satisfies the exponential growth formula $A(t) = A(0)e^{rt}$, where A(t) is the amount of money after t years, and r is the decimal rate of interest per year. Putting this together, we see that $A(t) = 1000e^{t/10}$. To find when the balance reaches 10000, we need to find when:

 $10000 = 1000e^{t/10}$ $\frac{10}{t} = e^{t/10}$ $\frac{t}{10} = \ln(10)$

Giving us that $t = 10 \ln(10)$ years.