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1. Calcisfunium-127 decays exponentially with a half life of 40 years. Suppose we have a 100-mg sample.

(a) Find the mass that remains after t years.

Solution:
Exponential decay satisfies the formula m(t) = m0e

kt, where m(t) is the mass
in mg after t years. The half life means we have the equation:
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(b) How much of the sample remains after 100 years?

Solution:

We see that m(100) = 100
(
1
2

) 100
40 = 100

(
1
2

) 5
2 ≈ 17.67 mg.

(c) After how long will only 1 mg remain?

Solution:
We need to solve for m(t) = 1 mg, giving:
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And so t = 40
ln( 1

100)
ln( 1

2)
= 40 ln 100

ln 2
≈ 265.75 years.
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2. Given f(x) = (
√
x− 2)

log3 x, find the equation of the tangent line to f(x) at x = 9.

Solution:
To find the tangent line, we need to know the slope and find a point on the
line. At x = 9, we have that f(9) = 1log3 9 = 12 = 1, giving the point (9, 1) on the
line.

To find the slope, we need f ′(9), for which we use logarithmic differentiation.
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Substituting in x = 9, we see:
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So we have the equation of the tangent line is:
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3. Evaluate
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Solution:
Performing the substitution u = 1 + e2x, du = 2e2x, we have that:∫ 1
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4. Use implicit differentiation to find dy
dx

if x+ log2 y = 3x+y.

Solution:
Taking the derivative of both sides of the equation with respect to x gives:
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