Math 10560, Worksheet 6 March 7, 2023

1. Evaluate the integral or show that it is divergent

$$\int_{-\infty}^{2} (2x+1)e^x dx$$

Solution: This is an improper integral of type 1(b), so we have that

$$\int_{-\infty}^{2} (2x+1)e^{x} dx = \lim_{t \to -\infty} \int_{t}^{2} (2x+1)e^{x} dx$$

We use integration by parts with u = 2x + 1 and $dv = e^x dx$, giving du = 2dx and $v = e^x$:

$$\int_{t}^{2} (2x+1)e^{x} dx = (2x+1)e^{x}|_{t}^{2} - \int_{t}^{2} 2e^{x} dx$$
$$= 5e^{2} - (2t+1)e^{t} - 2(e^{2} - e^{t})$$
$$= 3e^{2} - 2te^{t} + e^{t}$$

We know that $e^t \to 0$ as $t \to -\infty$ and by L'Hopital's Rule we have

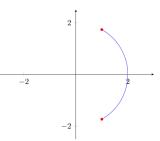
$$\lim_{t \to -\infty} 2te^t = 2\lim_{t \to -\infty} \frac{t}{e^{-t}} = 2\lim_{t \to -\infty} \frac{1}{-e^{-t}} = 2\lim_{t \to -\infty} -e^t = 0$$

Therefore

$$\int_{-\infty}^{2} (2x+1)e^{x} dx = \lim_{t \to -\infty} \left(3e^{2} - 2te^{t} + e^{t} \right)$$
$$= 3e^{2} - 0 + 0 = \boxed{3e^{2}}$$

2. Find the arc length of the minor arc of the curve $y^2 + x^2 = 4$ between the points $(1, -\sqrt{3})$ and $(1, \sqrt{3})$, using the arc length formula.

Solution: The portion of the circle we are interested in is given in the following graph:



We can solve the equation for x to get the function $x = \sqrt{4 - y^2}$ (taking the positive square root because x is positive on the portion we are interested in).

Then by the arc length formula we have

$$L = \int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy = 2 \int_0^{\sqrt{3}} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$$

where the last equality comes from symmetry of the problem. Taking the derivative we obtain

$$\frac{dx}{dy} = \frac{-2y}{2\sqrt{4-y^2}} = \frac{-y}{\sqrt{4-y^2}}$$

Thus,

$$L = 2 \int_0^{\sqrt{3}} \sqrt{1 + \left(\frac{-y}{\sqrt{4 - y^2}}\right)^2} dy$$
$$= 2 \int_0^{\sqrt{3}} \sqrt{1 + \frac{y^2}{4 - y^2}} dy$$
$$= 2 \int_0^{\sqrt{3}} \sqrt{\frac{4}{4 - y^2}} dy$$
$$= 4 \int_0^{\sqrt{3}} \frac{1}{\sqrt{4 - y^2}} dy$$
$$= 4 \arcsin\left(\frac{y}{2}\right)\Big|_0^{\sqrt{3}}$$
$$= 4 \left(\arcsin\left(\frac{\sqrt{3}}{2}\right) - \arcsin(0)\right)$$
$$= 4 \arcsin\left(\frac{\sqrt{3}}{2}\right) = \left[\frac{4\pi}{3}\right]$$

3. Complete the following sentences using the words *converges* and *diverges* :

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \quad \underline{converges} \quad \text{if } p > 1 \text{ and } \underline{diverges} \quad \text{if } p \le 1.$$

$$\int_{0}^{1} \frac{1}{x^{p}} dx \quad \underline{diverges} \quad \text{if } p \ge 1 \text{ and } \underline{converges} \quad \text{if } p < 1.$$

Decide whether the following improper integrals converge or diverge by comparing them to a known integral. In each case, state which integral you are comparing the given integral to and state clearly why you can conclude convergence or divergence.

(a) $\int_{1}^{\infty} \frac{1}{x^2 + 2x + 3} dx$

Solution: Note that $\frac{1}{x^2 + 3x + 3} \leq \frac{1}{x^2}$ for all $x \geq 1$. Using the first statement above with p = 2 we have that $\int_1^{\infty} \frac{1}{x^2} dx$ converges, so by the comparison test $\int_1^{\infty} \frac{1}{x^2 + 2x + 3} dx$ also converges.

(b)
$$\int_{1}^{\infty} \frac{1}{x - e^{-x}} dx$$

Solution: Note that $\frac{1}{x} \leq \frac{1}{x - e^{-x}}$ for all $x \geq 1$. Using the first statement above with p = 1 we have that $\int_{1}^{\infty} \frac{1}{x} dx$ diverges, so by the comparison test $\int_{1}^{\infty} \frac{1}{x - e^{-x}} dx$ also diverges.

(c)
$$\int_0^\infty \frac{1}{x^2 + \sqrt{x}} dx$$

Solution: We first decompose the integral into two parts:

$$\int_0^\infty \frac{1}{x^2 + \sqrt{x}} dx = \int_0^1 \frac{1}{x^2 + \sqrt{x}} dx + \int_1^\infty \frac{1}{x^2 + \sqrt{x}} dx$$

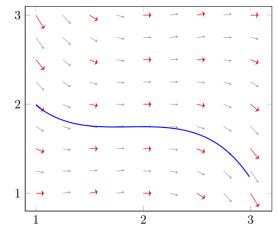
For non-negative numbers, we always have $x^2 + \sqrt{x}$ is greater than both x^2 and \sqrt{x} , so $\frac{1}{x^2 + \sqrt{x}} \leq \frac{1}{x^2}$ and $\leq \frac{1}{\sqrt{x}}$. By the second statement above with $p = \frac{1}{2}$ and the first with p = 2 we have $\int_0^1 \frac{1}{\sqrt{x}} dx$ and $\int_1^\infty \frac{1}{x^2} dx$ both converge. Then by the comparison test, both pieces of the decomposition converge, so $\int_0^\infty \frac{1}{x^2 + \sqrt{x}} dx$ converges.

- 4. Let y' = (x y)(2 x) with y(1) = 2.
 - (a) Draw a 5×5 direction field (x = 1, 1.5, 2, 2.5, 3, y = 1, 1.5, 2, 2.5, 3), and approximate solution curve.

Solution: We compute y' = F(x, y) = (x - y)(2 - x) at the points (x, y) for x = 1, 2, 3, y = 1, 2, 3.

x	1	1		1 1		1	1.5	1.5	1.5	1.5	5 1.	5	2	2	2	2	2
У	1	1.5		2 2.5		5 3	1	1.5	2	2.5	5 3	3	1	1.5	2	2.5	3
у'	0	-0.5		-1	-1.5	5 -2	0.25	0	-0.25	-0.	5 -0.	-0.75		0	0	0	0
			\mathbf{X}	2	.5	2.5	2.5	2.5	2.5	3	3	3		3	3		
			У	1		1.5	2	2.5	3	1	1.5	2	2	2.5			
		Γ	у'	-0	.75	-0.5	-0.25	0	0.25	-2	-1.5	-1	-().5	0		

Using this data we can sketch the direction field and an approximate solution to the equation with y(1) = 2.



(b) Use Euler's method with $\Delta x = 0.5$ to estimate y(3). How close is Euler's method to the solution curve you drew by hand above?

Solution:

We use Euler's Method with step size $\Delta x = 0.5$. Our first point is $(x_0, y_0) = (1, 2)$. $x_1 = x_0 + \Delta x = 1.5 \Rightarrow y_1 = y_0 + \Delta x * F(x_0, y_0) = 2 + 0.5(-1) = 1.5$ $x_2 = x_1 + \Delta x = 2 \Rightarrow y_2 = y_1 + \Delta x * F(x_1, y_1) = 1.5 + 0.5(0) = 1.5$ $x_3 = x_2 + \Delta x = 2.5 \Rightarrow y_3 = y_2 + \Delta x * F(x_2, y_2) = 1.5 + 0.5(0) = 1.5$ $x_4 = x_3 + \Delta x = 3 \Rightarrow y_4 = y_3 + \Delta x * F(x_3, y_3) = 1.5 + 0.5(-0.5) = 1.25$ So $y(3) \approx 1.25$. The solution drawn in part a gives an estimate of $y(3) \approx 1.2$.