Math 10560, Worksheet 8 March 28th, 2023

Total: 20 pts.

1. Determine whether the following series are convergent or divergent, and explain why.

(a) (2 pts)
$$\sum_{n=1}^{\infty} \frac{n^3 + 2n^2 + 10}{n^5 + n^3 + \ln n}$$

Solution: We have $\frac{n^3 + 2n^2 + 10}{n^5 + n^3 + \ln n} \le \frac{n^3 + 2n^2 + 10}{n^5}$. Hence,
 $\frac{n^3 + 2n^2 + 10}{n^5 + n^3 + \ln n} \le \frac{n^3 + 2n^2 + 10}{n^5} = \frac{n^3}{n^5} + \frac{2n^2}{n^5} + \frac{10}{n^5} = \frac{1}{n^2} + 2\frac{1}{n^3} + 10\frac{1}{n^5}$.
Recall the *p*-series test: $\sum_{n=1}^{\infty} \frac{1}{n^p} < \infty$ for all $p > 1$.
Therefore, it follows from the comparison test.
Rubric: 1 pt for the inequality $\frac{n^3 + 2n^2 + 10}{n^5 + n^3 + \ln n} \le \frac{n^3 + 2n^2 + 10}{n^5}$ and 1 pt for the conclusion.

(b) (2 pts)
$$\sum_{n=1}^{\infty} \frac{1}{n^e} + \frac{2 \cdot 4^n}{11^n}$$

Solution: First,
$$\sum_{n=1}^{\infty} \frac{1}{n^e} + \frac{2 \cdot 4^n}{11^n} = \sum_{n=1}^{\infty} \frac{1}{n^e} + 2 \sum_{n=1}^{\infty} \frac{4^n}{11^n}$$
.
Notice that $e > 1$, so
$$\sum_{n=1}^{\infty} \frac{1}{n^e} < \infty$$
. On the other hand,
$$\sum_{n=1}^{\infty} \frac{4^n}{11^n} = \sum_{n=1}^{\infty} \left(\frac{4}{11}\right)^n$$
 is a geometric series, so it converges. Therefore,
$$\sum_{n=1}^{\infty} \frac{1}{n^e} + \frac{2 \cdot 4^n}{11^n} < \infty$$
.
Rubric: 1 pt for
$$\sum_{n=1}^{\infty} \frac{1}{n^e} < \infty$$
 and 1 pt for
$$\sum_{n=1}^{\infty} \frac{2 \cdot 4^n}{11^n} < \infty$$
.

(c) (2 pts)
$$\sum_{n=1}^{\infty} \frac{n^{1/2}}{n^{1/2} - n^{1/4}}$$

Solution: Since $\lim_{n\to\infty} \frac{n^{1/2}}{n^{1/2}-n^{1/4}} = 1$, the series diverges. Rubirc: 1 pt for computing the limit $\lim_{n\to\infty} \frac{n^{1/2}}{n^{1/2}-n^{1/4}} = 1$ and 1 pt for the conclusion.

(d) (2 pts)
$$\sum_{n=1}^{\infty} \frac{\sin^2(2023 \cdot n)}{n^2}$$

Solution: Since $\sin^2 x \leq 1$, $\frac{\sin^2(2023 \cdot n)}{n^2} \leq \frac{1}{n^2}$, and it follows from comparison test. Rubirc: 1 pt for the inequality $\frac{\sin^2(2023 \cdot n)}{n^2} \leq \frac{1}{n^2}$ and 1 pt for the conclusion.

2. (4 pts) Show that
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$$
 converges. (*Hint:* Show that $\ln n < n$ for n large.)

Solution: First, $\lim_{n\to\infty} \frac{\ln n}{n} = 0$, so for n very large, $\frac{\ln n}{n}$ is a very small number, in particular, $\ln n < n$ for n large. Another way to see this is to consider the function $f(x) = \ln x - x$, $x \in [1, \infty)$. $f'(x) = 1/x - 1 \le 0$ for $x \ge 1$, and f(1) = -1 < 0, so f is negative on $[1, \infty)$, that is, $\ln x < x$ for all $x \ge 1$. Now, $\frac{\ln n}{n^3} \le \frac{n}{n^3} = \frac{1}{n^2}$, and it follows from comparison test. Rubric: 3 pts for showing that $\ln n \le n$, and 1 pt for the comparison test.

3. (4 pts) Consider the following sequences:

(I)
$$\left\{ (-1)^n \frac{n^3 + 1}{5n^3 + n^2 + 2} \right\}_{n=1}^{\infty}$$
 (II) $\left\{ \frac{\ln n}{2^n} \right\}_{n=1}^{\infty}$ (III) $\left\{ \sin(1/n) \right\}_{n=1}^{\infty}$

Determine which ones converge and find the limit if the sequence converges.

Solution: (I) diverges for $\lim_{n\to\infty} \frac{n^3+1}{5n^3+n^2+2} = \frac{1}{5}$. For (II), we use L'Hopital's rule:

$$\lim_{n \to \infty} \frac{\ln n}{2^n} = \lim_{n \to \infty} \frac{1/n}{2^n \ln 2} = \lim_{n \to \infty} \frac{1}{\ln 2 \cdot n \cdot 2^n} = 0.$$

Finally, (III) converges to 0 since sin is a continuous function. Rubric: 1 pt for computing $\lim_{n\to\infty} \frac{n^3+1}{5n^3+n^2+2} = \frac{1}{5}$, 1 pt for the conclusion of (I), 1 pt for (II) and 1 pt for (III).

4. (4 pts) Consider the following improper integrals:

(I)
$$\int_{1}^{\infty} \frac{1}{x^5} dx$$
 (II) $\int_{0}^{1} \frac{1}{x} dx$ (III) $\int_{0}^{\infty} \frac{1}{x^2} dx$

Determine which ones converge and find the value if the integral converges.

Solution: (I) converges and the integral is equal to 1/4. Both of (II) and (III) diverges. For (III), we write $\int_0^\infty \frac{1}{x^2} dx = \int_0^1 \frac{1}{x^2} dx + \int_1^\infty \frac{1}{x^2} dx,$ and $\int_0^1 \frac{1}{x^2} dx$ diverges. Rubric: 1 pt for (I), 1 pt for (II). For (III), 1 pt for beaking the integral into 2 parts and 1 pt for the conclusion.