Learning Goals

Using a for () loop.
Using an if () statement.

Familiarity with the code for Colley and Massey rankings.

- W o=

Ability to adapt the code to find rankings for all NCAA I teams or teams in other
sports.

for() loops and if () statements.

A for () loop allows us to specify that an operation should be repeated a finite
number of times.

Syntax for (name in wvector){do}

Example To create a vector showing the first ten powers of 2, we first create
a vector of zeros of length 10 below, and then we replace each entry by the
corresponding power of two with a for () loop.

> Twopow<-mat.or.vec(10,1)
> Twopow

[1] 0000000000
> for(i in 1:10){
+ Twopow[i]<-271
+ }
> Twopow

[1] 2 4 8 16 32 64 128 256 512 1024

An if () statement allows us to control which statements are executed.

Syntax if (condition){commands to be carried out when the condition

is true}

or

if (conditionl){commands to be carried out when the conditionl is true}
else{commands to be carried out when the conditionl is false}

Example To create a vector of length 10 showing 2¢ if i < 5 and 3% if i > 5,
we first create a vector of zeros of length 10 below, and then we replace each
entry by the appropriate power of two or three with a for () loop and an if ()
statement.

> Mixedpow<-mat.or.vec(10,1)
> Mixedpow

[11 0000000000

> for(i in 1:10){

+ 1if(i>5){Mixedpow[i]<-3"1i}
+ else{Mixedpow[i]<-2"i}
+ }

> Mixedpow

[1] 2 4 8 16

32 729 2187 6561 19683 59049

A Nested Loop To fill up a matrix, we need to work with the values of two
variables, we can use a nested loop (a loop within a loop) in this case.

Example Create a 5 x 5 matrix with (4, j) entry equal to ¢ — j. (Think about
what this should look like first). We use our trick of first creating a 5 x 5 matrix
with 0’s everywhere. We let i denote the row and j denote the column below.
We need to specify a value for every ¢ and 7, with both variables running from
1 — 5. The idea is to run a loop through the j values for every row i.

> m<-mat.or.vec(5,5)
> m

(,11 [,2] [,3] [,4] [,8]

[1,] 0 0 0 0 0
[2,] 0 0 0 0 0
[3,] 0 0 0 0 0
4,] 0 0 0 0 0
[5,] 0 0 0 0 0

> for(i in 1:5)1{

+ for(j in 1:5){m[i,jl<-i - j}

+ }

> m

[,11 [,2]1 [,3] [,4] [,5]
[1,] 0 -1 -2 -3 -4

[2,] 1 o -1 -2 -3
[3,] 2 1 o -1 -2
[4,] 3 2 1 0o -1
[5,] 4 3 2 1 0

The above tools (along with the syntax for creating conditional statements
for if () statements) allow us to communicate with the computer and have it
perform long calculations much faster than we could ourselves. Below, we will
apply these tools to create the Colley and Massey matrices for the games played

already in the ACC tournament.
Code for Colley’s Method

Our goal here is to write a script file that will download and update our data
and our rankings for us each time we run it. We will use data for the ACC
tournament (You can substitute your own favorite tournament as soon as you
understand the script).

Colley Rankings for the teams in the ACC

Downloading The Data First we will download the tournament data into
our workspace from Massey’s website: http://masseyratings.com/

1. Click on Data on the lower right of the page to expand that section. This
opens a page with a list of sports by year. If you click on Format at the
top of the table, it gives you a guide to the format of the data. The details
we need are shown below:

« The data provided are intended for use with computer databases, spreadsheets, or other software

programs.

e Data are provided as-is, with no guarantees of accuracy.

« Please reference MasseyRatings.com if you use any of this data in your calculations or research.

 Intra - list games if both teams are members of the selected conference
o Inter - list games that involve a team outside the selected conference

» Matlab Games - CSV file with the following fields:
o days since 1-1-0000
o YYYYMMDD
team1 index (zero if a non-conference team)
homefield1 (1=home, -1=away, O=neutral)
scorel
team?2 index (zero if a non-conference team)
homefield2 (1=home, -1=away, O=neutral)
score2

e Matlab Teams - CSV file with the team index, name.

o O 0O O O

[e]

2. From the Data page, click on the 2019 next to College Basketball.

3. At the top of the page, click on NCAA and at the top of the next page,
click on NCAA DI.

4. Now click on Atlantic Coast at the top of the page.

http://masseyratings.com/

. Click on A11 at the top of the page. This shows all of the games the teams
have played in both the Pre-Season and during the Season.

. Click on Intra and Scheduled for Conference games.

. To download the Games data, click on Matlab Games and then click on
Go. This opens the page we want to download.

. We create a csv file in our workspace called Games . csv with the commands
below.
We create a named object with the url of the page:

> g<-"https://www.masseyratings.com/scores.php?s=305972&sub=10423&all=1&mode=2&sch=on&format=1
Then we download from that url:
> download.file(g, "Games.csv", "curl")

Note You may need to replace “curl” here by a different method for your
computer. Check the options for download.file under Help in lower
right panel in your R project.

Before we import the data to R, it is best to have a look at your data
with excel. Notice that at the end it lists the games that have not been
played already with scores of 0 for each team. This will make a difference
to our Colley matrix, so we need to erase that data. It is probably easiest
to erase this data in excel before you import to R. Note also there are no
headers in your csv file, so we will have to(ought to) add names to our
data frame when we create it.

> A<-read.csv("Games.csv", header=FALSE)
> head(A)
Vi V2 V3 v4 V5 V6 V7 V8
1 737425 20190101 14 1 81 10 -1 66
2 737427 20190103 8 -1 87 7 1 82
3 737429 20190105 14 1 77 1 -1 66
4 737429 20190105 9 -1 85 11 1 60
5 737429 20190105 12 -1 72 10 1 62
6 737429 20190105 3 1 87 2 -1 68

. The teams are indexed by number in our data set A, so we also need to
download the file containing the team indices. Go back to the previous
webpage and click on Intra, Scheduled and Matlab Teams at the top.
Then click on the Go button. This brings you to a page with the team
indices on it.

10. We create a csv file in our workspace called Teams.csv and a data frame

called my_teams in R with the commands below.

> t<-"https://www.masseyratings.com/scores.php?s=305972&sub=10423&all=1&mode=2&sch=on&format=:
> download.file(t, "Teams.csv", "curl")

> my_teams<-read.csv("Teams.csv", header=FALSE)

> head(my_teams)

Vi V2
1 Boston_College
2 Clemson
3 Duke
4 Florida_St
5 Georgia_Tech
6 Louisville

DO WN -

We now create vectors to name the columns of these data files(we see what is

in

the columns from the printout of the format information from Massey’s site

above) and assign names to the columns.

>

>
>

O WN -

vV Vv Vv

© 00N O WN -

=
= O

12
13
14
15

names<-c("days", "YYYYMMDD","teaml",'"homefieldl", "scorel", "team2", "homefield2", "score2")

colnames (A)<-names

head (4)

days YYYYMMDD teaml homefieldl scorel team2 homefield2 score2
737425 20190101 14 1 81 10 -1 66
737427 20190103 8 -1 87 7 1 82
737429 20190105 14 1 7 1 -1 66
737429 20190105 9 -1 85 11 1 60
737429 20190105 12 -1 72 10 1 62
737429 20190105 3 1 87 2 -1 68

namest<-c("teamindex", '"teamname')
colnames (my_teams)<-namest

my_teams
teamindex teamname
1 Boston_College
2 Clemson
3 Duke
4 Florida_St
5 Georgia_Tech
6 Louisville
7 Miami_FL
8 NC_State
9 North_Carolina
10 Notre_Dame
11 Pittsburgh
12 Syracuse
13 Virginia
14 Virginia_Tech
15 Wake_Forest

Example: The first line of information above tells us that on Jan. 01
2019, team 14 (Virginia Tech) played team 10 (Notre Dame) at Virginia Tech.
The score was : team 14: 81, Team 10 : 66.

Creating The Colley Matrix Now we need to create two matrices:

1. C will be the Colley matrix with 2+4-¢; in the (¢,) position on the diagonal
where ¢; is the number of games played by team i, and —n;; in the (i,j)
position (¢ # j) where n; ; is the number of times that team i played team
j. (This will be a T' x T' matrix where 7" is the number of teams.)

2. Bwill be an T" x 1 matrix with 1+ sz—lz in the ¢th position where w; and
l; denote wins and losses respectively for team i.

Intermediary Matrices: We start by creating two intermediary matrices.

e N will be a T" x T matrix where the (i,7),7 # j entry is the number of
times team i has played team j.

e WL will be a matrix with T rows and 2 columns where the 7th row has wins
for team 1 in the first column and losses for team i in the second column.

For ACC data we have imported: Here we have T' = Number of teams =
15.

N will be a 15 x 15 matrix where the (2, 3) entry will be the number of times
Team 2(Clemson) has played Team 3(Duke). The (2,2) entry will be 0 since
Clemson has not played Clemson.

WL will be a matrix with 15 rows and 2 columns. Row 10 will have the number
of wins for Notre Dame(Team 10) in the first column and the number of losses
for Notre Dame in the second.

To create the matrices N and WL, we first create a matrix of the correct
size with zeros everywhere and then using a for() loop to change the
entries to the desired ones.

Step 1 We create a T" by T" matrix called N, where T" is the number teams in
the tournament. We also create a T' x 2 matrix called WL with zeros everywhere.
Note that 7" is the number of rows in the my_teams data file.

> T<-nrow(my_teams)
> N<-mat.or.vec(T,T)
> WL<-mat.or.vec(T,2)

Step 2 The following for () loop goes through the data in A row by row and for
each row it adds a 1 to the (k,[) entry and the (I, k) entry in N where k is the
number of the team in column 3 and [is the number of the team in column 6.
Thus, it counts the games played between the teams as it goes. If the score in
column 5 is bigger than the score in column 8 we add a win to the first column
of WL for the team in column 3 and a loss to the second column of WL for the
team in column 6. Otherwise, do the opposite.

For example for line 1 (i = 1)

> Al1,]

days YYYYMMDD teaml homefieldl scorel team2 homefield2 score2
1 737425 20190101 14 1 81 10 -1 66

It will perform the actions:

1. N[A[1,3],A[1,6]]1<-N[A[1,3],A[1,6]]1+1 and
N[A[1,6],A[1,3]]1<-N[A[1,6],A[1,3]]+1.
That is, it sees that a game has been played between Team 14 and Team
10, so it will add 1 to the existing value of N[14,10] and the existing value
of N[10,14].

2. It will also check the scores, if A[1,5]>A[1,8] (which it is) then we add
1 (for a win) to team 14’s wins with WL[A[1,3],1]1<-WL[A[1,3],1]+1
and we add 1 (for a loss) to team 10’s losses with WL[A[1,6],2]<-
WL[A[1,6],2]+1. Otherwise, team 10 must have beaten team 14 and
we do the opposite. We are fortunate that there are no draws in College
Basketball, otherwise we would have to add a line of code to say what to
do with a Draw.

> for(i in 1:nrow(A)){
N[A[i,3],A[i,6]]<-N[A[i,3],A[i,6]]+1
N[A[i,6],A[i,3]]<-N[A[i,6],A[i,3]]+1
if(A[i,5]>A[i,8]1)1
WL[A[i,3],1]<-WL[A[i,3],1]+1
WL[A[i,6],2]<-WL[A[i,6],2]+1
}
elsed{
WL[A[i,6],1]<-WL[A[i,6],1]+1
WL[A[i,3],2]<-WL[A[i,3],2]+1
}
}

+ + + + + + + + + + 0+

Lets have a look at the matrices N and W L after we run the code:

> options(width=110)

> N

[1,]
[2,]
(3,]
[4,]
(5,]
(6,1]
(7,1
(8,]
(9,1
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]

> WL

[1,]
[2,]
[3,]
(4,1
[5,]
(6,1
[7,]
[8,]
[9,]
[10,]
[11,]
[12,1]
[13,]
[14,]
[15,]

How many times did Clemson play Notre Dame?

Since the (i,j) element of N is the number of times the row team (team i) has
played team j, we can calculate the number of games that team i has
played by summing row i of the matrix N. Conveniently, there is an
inbuilt function in R which sums the rows of a matrix called rowSums ().

(,1]1 [,2] [,3]

0

P R R NRNORRLRNRE B B -

[,1]

1

P P PERPNOR P ELEFELNNDREO

[,2]
11

12

12

13
14

N

12

PP NNRPRPRPRRPRRPRPRPR RO R

(.41 (.81 [,e] [,71 [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15]

1

P OFRrRFPRFPFPEPFELPNRFPLNORFRLN

> total<-rowSums (N)
> total

1

P NP, RPRPRPNMNR,OR,RFP,ONRPLN

2

B R R R NNRNDNR RO B B

1

NP, R, RP,PORPNRFRORRELNRRE

1

NP, PP NNFPLPNORFR, P, OB -

0

P PR R R, RP,RONNMNRE P P -

2

P NN, OO, P, EFEPEPEPLNRFRRPRO

1

P PP NOOFRLRNONERKEREFRELN

2

P PP ONRPRREPRPLPRRPLRNRE

1

P NOFRPRRFPNRFRFRFRPREFEPRFPLEFEEFEDNDPRE

1

P ONFRPRRFRLRNRRFELRPLRERNOKRRE

OFRr P P P FEPFPLPNNDNRPR,RPRRPR P B -

[1] 16 16 16 16 17 17 16 16 16 16 16 17 17 16 16

We have created a vector called total which gives us the total number of games
played by each team. We now have all of the pieces we need to create the Colley
matric C' and the matrix B in the Colley equation. We start by creating matrices
of zeros of the correct dimensions.

> C<-mat.or.vec(T,T)
> B<-mat.or.vec(T,1)
> B

[1] 000000000000000

> dim(B)<-c(T,1)
> B

[,1]

[1,]
[2,]
[3,]
[4,]
[5,]
(6,]
[7,]
[8,]
[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]

O O O O O O O OO OO OO oo

Note we used the dim() function to convert the row matrix B to a column
matrix. We now use a for loop to fill up the matrices with the correct entries:

for(i in 1:T){
Bli,1]<-1+(WL[i,1]-WL[i,2])/2
Cli,i]<-2+totalli]

for(j in 1:T){
if(jl=i)1{
Cli,jl<- -N[i,j]

}

+ + + + + + + +V

(P

We are now ready to solve for the colley ratings. the order of the entries in the
matrix vector is the same as the order of the teams in our data frame my_teams
so we create a new data frame showing the team name alongside their rating.
We then then present them in decreasing order which shows the ranking.

> r<-solve(C,B)

> head(r)
[,1]
[1,] 0.3197776
[2,] 0.4421466
[3,] 0.7842296
(4,1 0.6282029
[5,]1 0.3239907
[6,] 0.5674618
> ri<-cbind (my_teams,r)
> head(r1)
teamindex teamname T
1 1 Boston_College 0.3197776
2 2 Clemson 0.4421466
3 3 Duke 0.7842296
4 4 Florida_St 0.6282029
5 5 Georgia_Tech 0.3239907
6 6 Louisville 0.5674618
> r2<-ri1f[order(-r),]
> r2
teamindex teamname T
13 13 Virginia 0.8346459
9 9 North_Carolina 0.8191359
3 3 Duke 0.7842296
14 14 Virginia_Tech 0.6469561
4 4 Florida_St 0.6282029
6 6 Louisville 0.5674618
12 12 Syracuse 0.5657165
8 8 NC_State 0.4992238
2 2 Clemson 0.4421466
5 5 Georgia_Tech 0.3239907
1 1 Boston_College 0.3197776
7 7 Miami_FL 0.3166737

10

15 15 Wake_Forest 0.2797841

10 10 Notre_Dame 0.2617316
11 11 Pittsburgh 0.2103233
> r3<-data.frame(r2[,2],r2[,3])
> head(r3)
r2...2. r2...3.
1 Virginia 0.8346459
2 North_Carolina 0.8191359
3 Duke 0.7842296
4 Virginia_Tech 0.6469561
5 Florida_St 0.6282029
6 Louisville 0.5674618

To show the Colley rankings(data up to Mar. 05, 2019 for 2018/2019 season)
we could use

> rank<-1:15
> colley<-data.frame(r3[,1],rank)

> colley

r3...1. rank
1 Virginia 1
2 North_Carolina 2
3 Duke 3
4 Virginia_Tech 4
5 Florida_St 5
6 Louisville 6
7 Syracuse 7
8 NC_State 8
9 Clemson 9
10 Georgia_Tech 10
11 Boston_College 11
12 Miami_FL 12
13 Wake_Forest 13
14 Notre_Dame 14
15 Pittsburgh 15

Code For Massey’s Rankings
Our goal is now to set up the matrix equation for Massey’s method using
the data. We need to create two matrices:

11

1. M will be the Massey matrix with ¢; in the (4,4) position on the diagonal
where t; is the number of games played by team i, and —n;; in the (i,j)
position (¢ # j) where n; ; is the number of times that team i played team
j. (This will be a T" x T" matrix where 7T is the number of teams.)

2. P will be an T" x 1 matrix with the point differential for team i in the ith
position when ¢ < T" and a 0 in the last position.

Intermediary Matrices: As with Colley, we create two intermediary matri-
ces.

e N will be a 7" x T matrix where the (i,7),7 # j entry is the number of
times team i has played team j. (already created for Colley’s Method)

e PD will be a matrix with 7" rows and 1 column showing the point differential
for all teams.

For ACC data we have imported: Here we have T' = Number of teams =
15. (Note that T is already defined in R above and N has already been created,
in the process of finding Colley’s rankings.)

PD will be a matrix with 15 rows and 1 column. Row 10 will have the point
differential for Notre Dame (total points for minus points against).

To create the matrix PD, we use our usual trick in R of creating a
matrix of the correct size with zeros everywhere, and then using a
for loop to change the entries to the desired ones. We create a T' x 1
matrix called PD with zeros everywhere. data file.

> PD<-mat.or.vec(T,1)

The following for loop goes through the data in A row by row and for each row.
It will calculate the point differential for the game for both teams and add it to
their current point differential;

> for(i in 1:nrow(4)){

+ PD[A[i,3]]<-PD[A[i,3]]+(A[i,5]-A[i,8])
+ PD[A[i,6]]<-PD[A[i,6]]+(A[i,8]-A[1i,5])
+ }

We have a look at the matrix PD after we run the code:

> PD

[1] -89 32 163 78 -157 90 -90 -17 175 -124 -144 11 243 64 -235

12

We have already stored the number of games that each team has played thus far
in a vector called total. We use these numbers to create the diaginal entries
for the first T'— 1 rows of the Massey matrix.

We now create the matrices M and P in the equation we must solve to get the
Massey ratings: Mr = P. We use our usual trick of first creating a matrix of
0’s and then filling in the entries with a function and a loop. We create M with
two loops, the first fills in the rows from 1 to T - 1 and the second fills in the
last row with 1’s. Note: The condition j!=i means j is not equal to i.

> M<-mat.or.vec(T,T)
> for(i in 1:(T-1)){
+ M[i,i]<-total[i]

+ for(j in 1:T){

+ if(Gl=i){

+ M[i,jl<- -N[i,j]
+ }

+ }

+ }

> for(i in 1:T){

+ M[T,i]<-1

+

Now we create a matrix of 0’s for P, note we need to specify the dimensions for
a matrix of 0’s with a single column because R treats it as a vector.

> P<-mat.or.vec(T,1)
> dim(P)<-c(T,1)

> for(i in 1:(T-1)){
+ P[i]<-PD[i]

+

-1

-1

}
> options (width=110)
> M
[,11 [,2] [,3] [,41 [,8] [,61 [,71 [,8] [,91 [,101 [,111 [,12] [,13] [,14] [,15]
t,] 16 -1 -1 -1 -1 -2 -1 -1 0 -2 -1 -2 -1
2,] -1 16 -1 -2 -2 -1 -1 -1 -1 0 -2 -1 -1
3,] -1+ -1+ 16 -1 -1 -1 -1 -1 -1 -1 -1 -2 -2
4,] -1 -2 -1 16 -2 -1 -2 -1 -1 -1 -1 -1 -1
5,1 -1 -2 -1 -2 17 -1 -1 0 -1 -2 -1 -1 -1
6,J] -2 -1t -1 -1 -1 17 -1 -1 =2 -1 -2 -1 -1
7z, -+ -1+ -1 -2 -1 -1 16 -1 -2 -1 0 -1 -1
,J] -1 -1 -1 -1 0 -1 -1 16 -2 -1 -2 -1 -1
[9,] o -1 -1 -1 -1 -2 -2 -2 16 -1 -1 -1 -1
[(10,] -2 o -1 -1 -2 -1 -1 -1 -1 16 0 -1 -2
(11,1 -1 -2 -1 -1 -1 -2 0o -2 -1 0 16 -2 -1

[12,1 -2 -1
[13,1 -1 -1
(14,1 -1 -1

[15,] 1 1
> P
[,1]
[1,] -89
[2,] 32
[3,] 163
[4,] 78
[5,]1 -157
[6,] 90
[7,] -90
[s8,] -17
[9,] 175
[10,] -124
[11,] -144
(12,1 11
[13,] 243
[14,] 64
[15,] 0

-2 -1 -1
-2 -1 -1
-1 0 -2

1 1 1

-1 -1
-1 -1
-1 -1

1 1

Now we are all set to find our Massey ratings and rankings:

> r<-solve(M,P)

> head(r)

[,1]
[1,] -5.945011
[2,] 1.556715
[3,] 10.431869
[4,] 3.687725
[5,] -8.551340
[6,] 4.843315

> ri<-cbind (my_teams,r)

> head(ri1)

teamindex

1
2
3
4
5
6

o Ok W N -

teamname

Boston_College

Clemson

Duke
Florida_St
Georgia_Tech
Louisville

r

.945011
.566715
.431869
.687725
.551340
.843315

14

17
-1

1

-1
17
-2

1

-1

16
1

> r2<-ri[order(-r),]

> r2
teamindex teamname

13 13 Virginia 13.
9 9 North_Carolina 10.
3 3 Duke 10
6 6 Louisville 4
4 4 Florida_St 3
14 14 Virginia_Tech 3
2 2 Clemson 1
12 12 Syracuse O
8 8 NC_State -1
7 7 Miami_FL -4
1 1 Boston_College -5
10 10 Notre_Dame -6
11 11 Pittsburgh -7
5 5 Georgia_Tech -8
15 15 Wake_Forest -14.

> r3<-data.frame(r2[,2],r2[,3])

> head(r3)

r2...2.
Virginia
North_Carolina
Duke
Louisville
Florida_St
Virginia_Tech

o Ok W N -

To show the Massey rankings(data up to Mar.

season) we could use

> rank<-1:15

r2...3.
13.895346
10.575916
10.431869
4.843315
3.687725
3.463369

r
8953462
5759161
.4318688
.8433152
.6877254
.4633690
.5667153
.4464237
.1470773
.8506744
.9450108
.7790070
.4512319
.5513400
1763383

> massey<-data.frame (r3[,1],rank)

> massey

r3...1.
1 Virginia
2 North_Carolina
3 Duke
4 Louisville

rank
1

2
3
4

15

05, 2019 for 2018/2019

© 00 N O ;O

10
11
12
13
14
15

Florida_St
Virginia_Tech
Clemson
Syracuse
NC_State
Miami_FL
Boston_College
Notre_Dame
Pittsburgh
Georgia_Tech
Wake_Forest

©O© 0 N O O

10

12
13
14
15

16

