
Derivatives, Instantaneous velocity.

Average and instantaneous rate of change of a function In the last section, we calculated the
average velocity for a position function s(t), which describes the position of an object ( traveling in
a straight line) at time t. We saw that the average velocity over the time interval [t1, t2] is given by

v̄ = s(t2)−s(t1)
t2−t1

= ∆s
∆t

. This may be interpreted as the average rate of change of the position function s(t)
over the interval [t1, t2].

We can apply this general principle to any function given by an equation y = f(x). Note the names
of the independent and dependent variables have changed to x and y in place of t and s above. We can
define the average rate of change of the function f(x) over the interval [x1, x2] as

∆y

∆x
=

f(x2)− f(x1)

x2 − x1

.

This can also be interpreted geometrically as the slope of the secant line joining the points (x1, f(x1))
and (x2, f(x2)) on the graph of the function y = f(x) as shown on the left below.

y=fHxL

Hx1 ,fHx1LL
Hx2 ,fHx2LL
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fHxL
Slope = average rate of change

y=fHxL

Hx,fHxLL

x

mx=f'HxL

x

y
Slope = instantaneous rate of change

Now if the graph of f(x) is smooth (no sharp points and continuos) at a point (x, f(x)), we can draw
a tangent to the graph at the point (x, f(x)) as shown in the picture on the right above. The slope of

this line, mx is called the derivative of f at x and denoted by f ′(x) or df(x)
dx

. Note that we can find a
value for mx = f ′(x) at any value of x in the domain of f where the graph of the function is smooth,
therefore f ′(x) is a function of x and varies as x varies. The value of f ′(x) gives us the instantaneous
rate of change of f at x.

Although the definition of the derivative is relatively simple, the details of when it exists and how
to calculate it are somewhat time consuming and require several lectures in a regular calculus course.
Since we are mainly interested in its application to motion, we will focus on the essential features of the
derivative below. From the tangent definition of the derivative, we can see the following relationship
between the shape of the graph of y = f(x) and the derivative function f ′(x):

• If the graph of y = f(x) is smooth at x and increasing, then f ′(x) is positive.

• If the graph of y = f(x) is smooth at x and decreasing, then f ′(x) is negative.

• If the graph of y = f(x) is smooth at x and is at a turning point, then f ′(x) has value 0.

• If the graph of y = f(x) has a sharp point or is not continuous at x, then the derivative is not
defined.
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Example Sketch the graph of the function f ′(x) using the graph of the function y = f(x) shown below
and the definition of the derivative as the slope of the tangent line.

y=fHxL

x

y

Approximating and calculating Derivatives We see that the slope of the tangent line to the graph
of y = f(x) at a value of x where the curve is smooth can be approximated by the slope of a secant.

The slope of the secant shown below,
f(x + ∆x)− f(x)

∆x
will give us a reasonable approximation to

the slope of the tangent at (x, f(x)), where ∆x represent a relatively small change in x.

P=Hx,fHxLL Q=Hx+Dx,fHx+DxLL

x

mx=f'HxL

x+Dx
x

f Ix + DxM - f HxL
Dx

» f'HxL

As the value of ∆x approaches 0 is the diagram the point Q gets closer to the point P and the
approximation to f ′(x) by the slope of the secant line shown gets more and more accurate and the

value of
f(x + ∆x)− f(x)

∆x
gets closer and closer to that of f ′(x) (the slope of the tangent line at P ).

In mathematical language, we say the limit as ∆x approaches 0 of
f(x + ∆x)− f(x)

∆x
is f ′(x) and we

use the following notation to express this:

f ′(x) = lim
∆x→0

f(x + ∆x)− f(x)

∆x
. (0.1)

In a more in depth study of derivatives, one would use this formula to give a more rigorous definition
of the derivative and to study existence and calculation of derivatives. In particular one would derive
formulas and algebraic rules for the calculation of derivatives from the formula for a function. Since it
takes a lot of time to develop the rules properly, we will restrict our algebraic exploration to a few simple
rules derived from the above definition and concern ourselves mainly with a graphical exploration of
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derivatives.

Some Rules of Differentiation We use the notation df(x)
dx

to denote f ′(x) below and we let f(x), g(x)
be functions of x and c a constant. The following rules of differentiation can be derived from Equation
(0.1) above:

• d(f(x) + g(x))

dx
=

df(x)

dx
+

dg(x)

dx
.

• d cf(x)

dx
= c

df(x)

dx
.

• dxn

dx
= nxn−1, where n is any real number.

• d c

dx
= 0.

Example Let f(x) = x3 + 2x2 + x + 1. Find a formula for the function f ′(x).

Instantaneous Speed and Velocity We have already studied the concept of average speed and
velocity and now we turn our attention to measuring instantaneous speed and velocity. The speedometer
in a car gives us a measure of instantaneous speed. Our intuition tells us that a moving object has a
speed (an instantaneous speed) at a particular instant in time. However at an given instant in time
neither the position of the object nor the time changes, giving us something of a paradox to deal with.
Such paradoxes were heavily discussed by the ancient Greeks and finally resolved by Isaac Newton and
Gottfried Leibniz by introducing the concept of the derivative of a function.

In our discussion of the derivative above, we used the variables x and y. When dealing with position
functions in one dimensional kinematics we use t for the independent variable, time, and s or y for
the dependent variable, position. Let s(t) be the position function of an object moving in a straight

line. We saw that the average velocity over the time interval [t1, t2] was given by v̄ = s(t2)−s(t1)
t2−t1

which
corresponds to the slope of the secant shown on the graph below.

t1 t2
1 2 3 4

t

-2

-1

1

2

sHtL
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We can estimate the instantaneous speed at time t by taking the average speed in a small time interval
containing t. Three different possibilities giving 3 different estimates are shown in the diagrams below,
where ∆t represents a small change in t which is positive in this case and the symbol ≈ means “is ap-
proximately equal to”. The picture at the right corresponds to ”the central distance method” discussed
in your book.

tt-Dt
t

sHtL

s Ht - DtL - s HtL
Dt

» instantaneous rate of change

t t+Dt
t

sHtL

s Ht + DtL - s HtL
Dt

» instantaneous rate of change

t t+Dtt-Dt
t

sHtL

s Ht + DtL - s Ht - DtL
Dt

» instantaneous rate of change

The smaller the value of ∆t in these estimates, the more accurate the estimate will be. It is natural to
define the instantaneous velocity of the object at time t as the limiting value of these estimates as
∆t tends to zero (which corresponds to the derivative, s′(t), of the position function at time t and the
slope of the tangent to the graph of y = s(t) at t), that is

v(t) = lim
∆t→0

s(t + ∆t)− s(t)

∆t
= s′(t),

where v(t) denotes the instantaneous velocity of the object at time t.
We see, as was the case for general derivatives, that instantaneous velocity changes as time changes

and thus is a function of time. In biomechanics one needs to interpret graphical output and observational
data in addition to motion which follows a formula as a result of the laws of physics. Therefore, we will
discuss how to derive an estimate of velocity from graphical output and observational data as well as
deriving the velocity function from a position function with a formula.

Instantaneous speed It is not hard to see that for movement of visible objects (where the position
function is continuous and smooth), at any given point in time , t, we can choose a ∆t so small that
the distance travelled by the object on the time interval [t, t + ∆t] is equal to the absolute value of
the displacement. Therefore when calculating instantaneous speed using the limiting process described
above for velocity, we get that instantaneous speed at time t is equal to the absolute value of the
instantaneous velocity:

speed at time t = lim
∆t→0

|s(t + ∆t)− s(t)|
∆t

= |s′(t)| = |v(t)|,

where s(t) denotes the position function of an object moving in a straight line.

Note: Some books on biomechanics use the term velocity to denote speed. One can tell which they
mean by how they define the function. Obviously a thorough understanding of the concepts helps you
sort out exactly which function they are using independently of how it is labelled.
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Example (Given a formula for the position function) A ball is thrown straight upwards with an
initial velocity of v0 = 30 m/s from a height of 1 meter above the ground. The height of the ball as a
function of time measured in seconds after it is thrown is given (roughly) by h(t) = 1 + 30t− 4.9t2.

? ?

t

1

y

y = hHtL

(a) What is the velocity function v(t) showing the velocity of the ball at time t?

(b) What is the velocity of the ball after 1 second and after 2 seconds?

(c) when does the ball reach its maximum height?

(d) If the person who threw the ball catches it when it gets back to their hand height of 1 meter, how
long does the ball stay in the air?

(e) what is the speed of the ball when it gets back to the throwers hand?
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Example (Velocity from the graph of the position function) An athlete doing agility training
starts at point A and runs to point B and then turns and runs back to point A and turns again and
runs back to point B. The position function for the athlete at time t is given by s(t) = t3− 6t2 + 9t− 2.
A graph of the position function is shown below for 0 ≤ t ≤ 4.

0 BA

1 2 3 4
t

-2

-1

1

2

sHtL

(a) Identify the time intervals on which the velocity is positive. In which direction is the athlete running
during these time intervals?

(b) Identify the time intervals on which the velocity is negative. In which direction is the athlete running
during these time intervals?

(c) Identify the points where the velocity is zero. Give an interpretation of the athletes movement at
these points.

(d) Sketch the velocity function.
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Example (Using Data to estimate velocity) (Central distance method) The following is a set
of Position-Time data showing the vertical position of an object moving downwards in a straight line
collected from 11 video frames collected at 60 frames per second.

Frame Time (s) Vertical Position (m) Approx. (inst.) velocity v m/s
1 0.000 0.00

2 0.0167 0.10 0.21−0.00
0.0334−0.000

= 6.29 m/s

3 0.0334 0.21 0.26−0.10
0.0501−0.0167

= 4.79 m/s

4 0.0501 0.26

5 0.0668 0.32

6 0.0835 0.10

7 0.1002 0.00

8 0.1169 0.20

9 0.1336 0.26

10 0.1503 0.34

11 0.1670 0.04

Note that the frames are collected at 60 frames per second, so the time between frames is 1/60 =
0.0167 s. To estimate instantaneous velocity at a point using the central distance method, we take
the average velocity over two consecutive time intervals to estimate the instantaneous velocity at its
midpoint. For example if the positions for consecutive frames corresponding to times t1, t2 and t3 are
given by s(t1), s(t2) and s(t3), the to estimate the instantaneous velocity at t2 ( the midpoint of the
interval [t1, t3]), we use the average velocity on the interval [t1, t3]:

v(t2) ≈ s(t3)− s(t1)

t3 − t1

.

Obviously we can only use this method for the times in the interior of our observational data.
We have filled in a few estimates for the instantaneous velocities in the table above, calculate the

rest.
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