Derivatives, Instantaneous velocity.

Average and instantaneous rate of change of a function In the last section, we calculated the
average velocity for a position function s(t), which describes the position of an object ( traveling in
a straight line) at time ¢. We saw that the average velocity over the time interval [¢1,%5] is given by
v = % = ﬁ—i. This may be interpreted as the average rate of change of the position function s(t)
over the interval [ty,ts].

We can apply this general principle to any function given by an equation y = f(x). Note the names
of the independent and dependent variables have changed to x and y in place of ¢t and s above. We can
define the average rate of change of the function f(x) over the interval [z, z5] as
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This can also be interpreted geometrically as the slope of the secant line joining the points (x1, f(x1))
and (z2, f(z2)) on the graph of the function y = f(x) as shown on the left below.

Slope = average rate of change Slope = instantaneous rate of change
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Now if the graph of f(z) is smooth (no sharp points and continuos) at a point (x, f(x)), we can draw

a tangent to the graph at the point (z, f(x)) as shown in the picture on the right above. The slope of
this line, m,, is called the derivative of f at x and denoted by f'(x) or %. Note that we can find a
value for m, = f'(x) at any value of = in the domain of f where the graph of the function is smooth,
therefore f’(z) is a function of x and varies as x varies. The value of f'(z) gives us the instantaneous
rate of change of f at x.

Although the definition of the derivative is relatively simple, the details of when it exists and how
to calculate it are somewhat time consuming and require several lectures in a regular calculus course.
Since we are mainly interested in its application to motion, we will focus on the essential features of the
derivative below. From the tangent definition of the derivative, we can see the following relationship

between the shape of the graph of y = f(z) and the derivative function f’(z):

e If the graph of y = f(x) is smooth at = and increasing, then f’(z) is positive.

e If the graph of y = f(x) is smooth at = and decreasing, then f'(z) is negative.

e If the graph of y = f(x) is smooth at z and is at a turning point, then f’(z) has value 0.

e If the graph of y = f(x) has a sharp point or is not continuous at x, then the derivative is not

defined.



Example Sketch the graph of the function f’(x) using the graph of the function y = f(z) shown below
and the definition of the derivative as the slope of the tangent line.

y

y=f(x)

Approximating and calculating Derivatives We see that the slope of the tangent line to the graph
of y = f(x) at a value of & where the curve is smooth can be approximated by the slope of a secant.

f(x+ Ax) — [f(z)

The slope of the secant shown below, will give us a reasonable approximation to

T
the slope of the tangent at (x, f(x)), where Az represent a relatively small change in x.
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As the value of Az approaches 0 is the diagram the point () gets closer to the point P and the
approximation to f’(x) by the slope of the secant line shown gets more and more accurate and the

f(z+ Az) — f(z)
Az

In mathematical language, we say the limit as Az approaches 0 of

value of gets closer and closer to that of f’(z) (the slope of the tangent line at P).

f(z+Az) — f(z)
Ax

is f'(x) and we

use the following notation to express this:

(0.1)

In a more in depth study of derivatives, one would use this formula to give a more rigorous definition
of the derivative and to study existence and calculation of derivatives. In particular one would derive
formulas and algebraic rules for the calculation of derivatives from the formula for a function. Since it
takes a lot of time to develop the rules properly, we will restrict our algebraic exploration to a few simple
rules derived from the above definition and concern ourselves mainly with a graphical exploration of
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derivatives.

Some Rules of Differentiation We use the notation % to denote f’(z) below and we let f(z), g(z)

be functions of x and ¢ a constant. The following rules of differentiation can be derived from Equation
(0.1) above:
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Example Let f(z) = 23 + 222 + z + 1. Find a formula for the function f’(x).

Instantaneous Speed and Velocity We have already studied the concept of average speed and
velocity and now we turn our attention to measuring instantaneous speed and velocity. The speedometer
in a car gives us a measure of instantaneous speed. Our intuition tells us that a moving object has a
speed (an instantaneous speed) at a particular instant in time. However at an given instant in time
neither the position of the object nor the time changes, giving us something of a paradox to deal with.
Such paradoxes were heavily discussed by the ancient Greeks and finally resolved by Isaac Newton and
Gottfried Leibniz by introducing the concept of the derivative of a function.

In our discussion of the derivative above, we used the variables x and y. When dealing with position
functions in one dimensional kinematics we use t for the independent variable, time, and s or y for
the dependent variable, position. Let s(t) be the position function of an object moving in a straight
line. We saw that the average velocity over the time interval [tq,t5] was given by v = % which
corresponds to the slope of the secant shown on the graph below.




We can estimate the instantaneous speed at time ¢ by taking the average speed in a small time interval
containing t. Three different possibilities giving 3 different estimates are shown in the diagrams below,
where At represents a small change in ¢ which is positive in this case and the symbol ~ means “is ap-
proximately equal to”. The picture at the right corresponds to ”the central distance method” discussed
in your book.
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The smaller the value of At in these estimates, the more accurate the estimate will be. It is natural to
define the instantaneous velocity of the object at time ¢ as the limiting value of these estimates as
At tends to zero (which corresponds to the derivative, s'(t), of the position function at time ¢ and the
slope of the tangent to the graph of y = s(t) at t), that is

o(t) = lim s(t + At) — s(t)
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where v(t) denotes the instantaneous velocity of the object at time ¢.

We see, as was the case for general derivatives, that instantaneous velocity changes as time changes
and thus is a function of time. In biomechanics one needs to interpret graphical output and observational
data in addition to motion which follows a formula as a result of the laws of physics. Therefore, we will
discuss how to derive an estimate of velocity from graphical output and observational data as well as
deriving the velocity function from a position function with a formula.

Instantaneous speed It is not hard to see that for movement of visible objects (where the position
function is continuous and smooth), at any given point in time , ¢, we can choose a At so small that
the distance travelled by the object on the time interval [t,¢ + At] is equal to the absolute value of
the displacement. Therefore when calculating instantaneous speed using the limiting process described
above for velocity, we get that instantaneous speed at time t is equal to the absolute value of the
instantaneous velocity:

|s(t + At) — s(t)]
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where s(t) denotes the position function of an object moving in a straight line.

Note: Some books on biomechanics use the term velocity to denote speed. One can tell which they
mean by how they define the function. Obviously a thorough understanding of the concepts helps you
sort out exactly which function they are using independently of how it is labelled.



Example (Given a formula for the position function) A ball is thrown straight upwards with an
initial velocity of vy = 30 m/s from a height of 1 meter above the ground. The height of the ball as a
function of time measured in seconds after it is thrown is given (roughly) by h(t) = 1 + 30t — 4.9¢2.

y = h

t
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(a) What is the velocity function v(t) showing the velocity of the ball at time ¢?

(b) What is the velocity of the ball after 1 second and after 2 seconds?

(c¢) when does the ball reach its maximum height?

(d) If the person who threw the ball catches it when it gets back to their hand height of 1 meter, how
long does the ball stay in the air?

(e) what is the speed of the ball when it gets back to the throwers hand?



Example (Velocity from the graph of the position function) An athlete doing agility training
starts at point A and runs to point B and then turns and runs back to point A and turns again and
runs back to point B. The position function for the athlete at time ¢ is given by s(t) = ¢> — 6¢* + 9t — 2.
A graph of the position function is shown below for 0 <t < 4.

S(t)

A 0 B

(a) Identify the time intervals on which the velocity is positive. In which direction is the athlete running
during these time intervals?

(b) Identify the time intervals on which the velocity is negative. In which direction is the athlete running
during these time intervals?

(c) Identify the points where the velocity is zero. Give an interpretation of the athletes movement at
these points.

(d) Sketch the velocity function.



Example (Using Data to estimate velocity) (Central distance method) The following is a set
of Position-Time data showing the vertical position of an object moving downwards in a straight line
collected from 11 video frames collected at 60 frames per second.

Frame | Time (s) | Vertical Position (m) | Approx. (inst.) velocity v m/s
1 0.000 0.00
2 0.0167 0.10 o2l 000 — 6.29 m/s
3| 0.0334 0.21 026010 _ 4 79 1y s
4 0.0501 0.26
5) 0.0668 0.32
6 0.0835 0.10
7 0.1002 0.00
8 0.1169 0.20
9 0.1336 0.26
10 0.1503 0.34
11 0.1670 0.04

Note that the frames are collected at 60 frames per second, so the time between frames is 1/60 =
0.0167 s. To estimate instantaneous velocity at a point using the central distance method, we take
the average velocity over two consecutive time intervals to estimate the instantaneous velocity at its
midpoint. For example if the positions for consecutive frames corresponding to times ¢, t5 and 3 are
given by s(t1), s(t2) and s(t3), the to estimate the instantaneous velocity at ¢y ( the midpoint of the
interval [t1,t3]), we use the average velocity on the interval [ty, ¢3]:

s(ts3) — 3(751).
ts — 1

v(ta) ~

Obviously we can only use this method for the times in the interior of our observational data.
We have filled in a few estimates for the instantaneous velocities in the table above, calculate the
rest.
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How Usain Bolt Gould
Break His World Record
with No Extra Effort

.’ Usain Bolt is the best human sprinter therc has ever been. Yet,
few would have guessed that he would run so fast over 100 m
after he started out running the 460m and 260m races when in
his mid tcens. His coach decided to shift him down to running
the 100m one season so as to improve his basic sprinting speed.
No one expected him to shine there. Surely he is too big to be a
100m sprinter? How wrong they were. Instead of shaving the
occasional hundredth of a second off the world record, he took
.. big chunks out of it, first reducing Asafa Powell’s time of 9.74 s
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'f:.,;;l down to 9.72 in New York in May 2008, and then down to 9.69
f (actually 9.683) at the Bcijing Olympics later that year, belore
% - dramatically reducing it again to 9.58 (actually 9.578) at the 2009
I - Berlin World Championships. His progression in the 200m was
' even more astounding: reducing Michael Johnson’s 1996 record
-' of 19.32 s to 19.30 (actually 19.296) in Beijing and then to 19.19
E‘:f in Berlin. These jumps are so big that people have started to

- calculate what Bolt’'s maximum possible speced might be.
Unfortunately, all the commentators have missed the twn key
" factors that would permit Bolt to run significantly faster without
any cxtra effort or improvement in physical conditioning. "How
©  could that be?”’ I hear you ask.

The recorded time of a 180m sprinter is the sum of two parts:
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2 Mathialics

the reaction time to the starrer’s gun and the subsequent running
time over the 100 m distance. An athlete is judged to have false-
starred if he reacts by applying foot pressure to the starting blocks
within 0.10 s of the start gun firing, Remarkably, Bolt has one of
the longest rcaction times of leading sprinters—he was the second
slowest of all the finalists to react in Beijing and third slowest in
Berlin when he ran 9.58. Allowing for all this, Bolt’s average
running speed in Beijing was 10.50 m/s and in Berlin (where he
reacted faster) it was 10.60 m/s. Bolt is already running faster than
the ultimate maximum speed of 10.55 m/s that a team of Stanford
human biclogists recently predicted for him.'
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Bolt  0.146 + 2.434 = 9,58 Thompsuon 0.119 + 9.811 = 9.93
Gay  0.144 + 9.566 = 9.71 Chambers 0.123 + 9.877 — 10.00
Powell 0.134 + 9.706 = 9.34 Burns 0.165 + $.835 = 10.00
Bailey 0.129 +9.801 = 5.93 Patton 0.149 +10.191 = 10.34



Row Usain Boll Could Break His World Record with No Extra Effort 3

In the Beijing Olympic final, where Bolt’s reaction time was 0.165 s
for his 9.69 run, the other seven finalists reacted in 0,133, 0.134,
0.142, 0.145, 0.147, 0.165 and 0.169 s.
From these stats it is clear what Bolt’s weakesl point is: he has
a very slow reaction to the gun. This is not guite the same as
having a slow start. A very tall athlete, with longer limbs and larger
inertia, has got more maoving to do in order to rise upright from
the starting blocks.” If Bolt could get his reaction time down 1o
0.13, which is very good but not exceptional, then he would reduce
" his9.58 record run to 9.56. If he could get it down to an cutstanding
0.12 he is louking at 9.55 and if he responded as quickly as the
rules allow, with 0.1, then 9.53 is the result. And he hasn’t had to
run any [aster!
 This is the first key factor that has been misscd in assessing
“Bolt’s future potential. What are the others? Sprinters are allowed
* to receive the assistance of a following wind that must not exceed
- 2m/sin speed. Many world records have taken advantage of
that, and the most suspicious set ol world records in sprints and
»'- jumnps were those set at the Mexico Olympics in 1968, where the
" wind gauge often seemed to record 2 m/s when a world record
- “was broken. But this is certainly not the case in Bolt’s record runs.
“In Berlin his 9.58 s time benefited from only a modest ¢.9 m/s tail-
3 ‘wind and in Beijing there was no wind, so he has a lot more still
~ to gain from advantageous wind conditions. Many years ago, 1
" worked out how the best 100m times are changed by wind.” A
- 2'm/s tailwind is worth about 0.11 s comparcd to a no-wind
performance, and a 0.9 m/s tailwind 0.06 s, at a low-altitude site.
:So, with the best possible legal wind assistance and reaction time.
Bolt’s Betlin time is down from 9.53 s to 9.47 s and his Beifing
time becomes 9.51 5. And finally, it he were to run ar a high-
*'. altitude site like Mexico City, then he could go faster still and
effortlessly shave off another 0.07 5.* So he could improve his
* 100m time to an amazing 9.4 s without needing to run any faster.’
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