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Introduction I

A theme of this lecture is to give some justification for the thesis
that stable theories are the logically perfect (first order) theories,
or maybe rather the fundamental “tame” (first order) theories:

I This is a variant on Zilber’s “thesis” that categorical theories
are the logically perfect theories (but why one, why not
three?).

I It may seem like just a marketing or self-serving enterprise,
but ten years ago I would have said something different:

I for example that “tame” model theory is “multicultural” or
“multipolar” (stable, simple, o-minimal, c-minimal,...).

I Thirty years ago things looked even more different; stable
theories were considered an exception or singularity, with little
or no bearing on other examples around “tame” model theory
such as Henselian valued fields.



Introduction II

I Let us distinguish at the start “foundational” theories (ZFC,
PA, second order arithmetic, ...) which purport to encode all
of mathematics or large parts of mathematics, from

I “tame” theories which encode smaller chunks of (interesting)
mathematics and tend to be decidable.

I We will be mainly concerned with tame theories, but will at
the end consider also pseudofinite theories which can be
foundational.

I I would like to define or describe model theory as the study of
first order theories, although this is not only controversial but
empirically wrong, as a lot of what goes under the name of
model theory is outside the first order context.

I But let’s see where it goes.



First order? I

I By a first order theory I mean, to begin with, a consistent
collection T of Lω,ω sentences (where L is some finitary
language).

I Traditionally there is a basic distinction between syntax and
semantics, with mathematical structures entering the picture
at the semantic level (as models).

I However a first order theory T is already a mathematical
object. For example it can be identified with the category
Def(T ) (definable sets) whose objects are formulas
φ(x1, .., xn) up to equivalence mod T and with morphisms
“definable” (mod T ) functions.

I Replacing a formula φ by the space Sφ(T ) of complete types
containing φ, we can view T as a category S(T ) of (totally
disconnected) compact spaces with certain open continuous
maps as morphisms.



First order? II

I So compactness is not just a property that first order logic
happens to possess but is at the centre of the notion of a first
order theory.

I We could generalize or weaken this picture by for example
allowing arbitrary compact spaces as objects of S(T ), and a
coherent account of such a generalization goes under the
name of continuous logic or model theory (where formulas are
real-valued) and should also be considered as part of first
order logic.

I Returning to the “standard” context, there are various other
categories, invariants, etc., associated to a first order theory
T , one being its category Mod(T ) of models (with elementary
embeddings as morphisms). The attempt to recover T (i.e.
Def(T )) from Mod(T ) has been an influential enterprise,
both for categorical logic and model theory.



Applications

I Although my main aim here is to discuss logic, I should briefly
mention applications. I have often heard it said that model
theory is naturally concerned with applications so is closer to
current mathematics. But it is a result of the choices that we
make on what to think about/work on.

I Model theory could have easily become an appendage of set
theory and/or recursion theory, and this what was expected in
the 1970’s.

I In any case, for certain specific theories T , Def(T ) is a
familiar category in mathematics (e.g. T = ACF0, with
Def(T ) being essentially the category of complex algebraic
varieties defined over Q), and the tools/ideas developed by
model-theorists (including things discussed subsequently) turn
out to be meaningful in such concrete contexts.



Stable theories

I We now restrict ourselves to consideration of a complete
theory T in some language L, countable if you wish.

I A formula φ(x, y) ∈ L (where x, y are finite tuples of
variables) is stable (for T ) if there does not exist a model M
of T and tuples ai, bi in M for i < ω, such that
M |= φ(ai, bj) if and only if i < j.

I T is stable if every formula φ(x, y) ∈ L is stable for T .

I So stability of T means the non-interpretability in any model
of T of certain bipartite graphs.

I Examples are the theory of an infinite set in the empty
language, the theory of algebraically closed fields of some
fixed characteristic, the theory of differentially closed fields of
characteristic 0, the theory of any abelian group (in the
language of groups), as well as any theory T with < 2κ

models of cardinality κ for some uncountable κ.



Canonical ultrafilter I

I I will describe a (or the) characteristic feature of stable
theories, suppressing a few (important) details.

I Fix a κ-saturated and homogeneous model M of a stable
theory T (κ > 2ℵ0 say), and let X ⊆Mn be a definable set,
defined over a countable set A ⊂M of parameters.

I Then the main point is (with a few provisos), the existence of
a canonical ultrafilter qX on the Boolean algebra of definable
(in M with parameters from M) subsets of X.

I We first define the ideal IX which should correspond to qX :
Y ∈ IX if for some indiscernible sequence (Yi : i < ω) of
Aut(M/A)-images of Y , ∩iYi = ∅. (Y divides/forks over A
or Y is “A-small”)

I For IX to be the ideal of an ultrafilter we need for example,
that for any Y at least one of Y , X \ Y is in IX .



Canonical ultrafilter II

I As any Y ⊆ X which is defined over A is not in IX , we
should at least work rather with X = pM the set of solutions
of a complete type p(x) over A.

I On the other hand, if X = pM is finite and of cardinality > 1,
then for a 6= b ∈ X, the ultrafilters q1, q2 concentrating on
a, b respectively will both have ideals containing IX .

I Hence nontriviality of the profinite group Aut(acl(A)/A) (of
cardinality ≤ 2ℵ0) is a potential obstruction to IX being the
ideal of an ultrafilter.

I In fact this is the only obstruction:

I Theorem 1. if A is “algebraically closed” and p(x) is a
complete type over A, then there is a unique complete type
(ultrafilter) q(x) over M which extends p and contains no
A-small formula (definable set).



Stable groups I

I When X = G is a definable group defined over A (rather than
the set of realizations of a complete type over A), there is a
somewhat simpler picture taking account of the group
structure/action.

I The ideal IG,ng of small or nongeneric definable subsets of G
is defined by Y ∈ IG,ng if some G-translate of Y is in IG (is
A-small).

I If G has a proper definable subgroup of finite index then each
of its translates is generic. Hence letting G0 be the
intersection of all definable subgroups of G of finite index,
nontriviality of the profinite group G/G0 is an obstruction to
IG,ng being the ideal of an ultrafilter.

I Again this is the ONLY obstruction: If G = G0 (G is
“connected”) then G has a unique “generic” type, i.e. unique
ultrafilter on definable subsets of G avoiding the nongeneric
definable sets.



Stable groups II

I For a possibly nonconnected definable group G, the “generic
types” of G are in 1− 1 correspondence with elements of
G/G0 (cosets of G0 in G) and in fact
Theorem 2. G0 can be recovered as the stabilizer of some
(any) generic type, in the obvious sense.

I For G = G0, the generic type is in fact the unique type
(ultrafilter on definable subsets of G) which is left (right)
G-invariant.

I Note the formal analogy with uniqueness of Haar measure on
compact groups (see later).



Stable theories: conclusion, example

I We have described above the key ingredients of both classical
and geometric stability theory (behind counting models as well
as applications). We have also seen the appearance of other
pervasive objects/notions/invariants in the study of first order
theories: Galois groups, and connected components of
definable groups.

I Theorem 1 sometimes goes under the name of uniqueness of
free 2-amalgamation over algebraically closed sets. Explain!

I Example for those familiar with naive algebraic geometry: for
X ⊆ Cn an (absolutely) irreducible complex algebraic variety,
the “canonical ultrafilter” material above (Theorem 1) gives
rise to the “generic point” of X viewed as a scheme.



Simple theories I

I I want now to consider unstable theories and to some extent
“tame” ones which include main the main examples of
applications, and try to describe the role of stability.

I I will start with “simple” theories (which include stable
theories). I will not give the combinatorial definition, but
roughly speaking these are theories of the form “stable theory
enriched by some random relations”, and include the theory of
the random graph, completions of the (common) theory of
finite fields, and the theory of algebraically closed fields
equipped with a “random” automorphism, all of which are
unstable.

I Theorem 1 in the stable case (uniqueness of free
2-amalgamation) is replaced by a free 3-amalgamation
theorem which I will not spell out. (But explain!)



Simple theories II

I A key technical observation is that given a base set A and
formulas φ(x, y), ψ(x, z), the relation R(y, z) which by
definition holds of (b, c) if φ(x, b) ∧ ψ(x, c) is A-small (divides
over A) is an Aut(M/A)-invariant stable relation in a suitable
sense, and a “local” version of the uniqueness theorem
Theorem 1 plays a crucial role in 3-amalgamation.

I The only obstruction to 3-amalgamation is a compact, not
necessarily profinite Galois group Aut(bdd(A)/A). (Explain!)

I If G is a definable group (over A), and p is a “generic” type
of G i.e. avoids the ideal IG,ng described earlier, then let
S(p) = {g ∈ G : p ∪ g · p avoids IG,ng}. Then using
3-amalgamation, one has the following generalization of
Theorem 2.

I Theorem 3. S(p) · S(p) = “Stab(p)” is the smallest
type-definable subgroup of G of “small” index, defined over
A, which we call G00. G/G00 is a compact group.



NIP theories I

I T is (or has) NIP if it is NOT the case that there is a model
M |= T , formula φ(x, y) ∈ L and {ai : i < ω} from M , and
{bs : s ⊆ ω} from M such that M |= φ(ai, bs) iff i ∈ s (for all
i, s).

I Stable theories have NIP and key unstable examples include
RCF (and more generally o-minimal theories), Presburger,
theory of the p-adic field, theory of algebraically closed
nontrivially valued fields (of a given characteristic).

I The main point I want to make is that stability is present (in
an NIP theory) at the level of measures rather than types,
namely in a probabilistic fashion.

I Fix a tuple x of variables and A a set of parameters. A
(Keisler) measure µ over A is a finitely additive probability
measure on formulas φ(x) with parameters from A
(A-definable sets).



NIP theories II

I I will not give the definition of when µ is a stable measure,
but a key property (analogous to Theorem 1) is that µ has a
unique extension to a measure µ′ on formulas with parameters
from M (ambient saturated model) such that the A-small
formulas (those which divide over A) get µ′ measure 0.

I There is also an appropriate notion of a “measure-stable”
definable group (G,µ′) and a key feature is that µ′ is the
unique left (right) G-invariant measure on definable subsets of
G. This is the common generalization of uniqueness of Haar
measure on compact groups and uniqueness of invariant types
in connected stable groups, which I still find fascinating.

I In a sense which has not yet been worked out properly, stable
measures control the structure in NIP theories (and likewise
measure-stable groups control the structure of definable
groups).



NIP theories III

I But the ubiquity of stable measures in NIP theories is
exemplified in the following.

I If I = (ai : i ∈ [0, 1]) is an indiscernible sequence (indexed by
the real unit interval), and we fix a parameter set A
containing the ai, then let the measure µI on formulas φ(x)
over A be defined by: µI(φ(x)) = Lebesgue measure of
{i ∈ [0, 1] :M |= φ(ai)}. Then µI is stable.

I Let T = RCF and let A = R the standard model. Let
X ⊆ Rn be a semialgebraic set and µ a Borel probability
measure on (the topological space) X. Then the induced
measure (on R definable sets) is stable.



Pseudofinite theories and definable sets I

I The L-theory T is pseudofinite if T = Th(M) where M is an
ultraproduct of finite L-structures. Likewise we can speak of
an L-formula φ(x) being pseudofinite for a theory T if
T = Th(M) where M is an ultraproduct of structures Mi and
the interpretation of φ(x) in each Mi is a finite set.

I Pseudofinite theories can be foundational: for example let M
be a nonstandard model of true arithmetic, n ∈M
nonstandard, and let T be the theory of [0, n] with induced
structure from M .

I (T arbitrary.) If M is a saturated model of T and X = φM a
(∅)-definable pseudofinite set, the counting measures on the
finite approximations to X give rise to a measure µ on the
Boolean algebra of definable subsets of X, which, via some
expansion of the language, can be assumed to be
Aut(M)-invariant.



Pseudofinite theories and definable sets II

I One can conclude (just by virtue of µ being an invariant
measure) that if ψ(x, y), χ(x, y) are L-formulas implying
φ(x), then the relation R(y, z) which is defined to hold of
(b, c) if µ(ψ(x, b) ∧ χ(x, c)) = 0, is an Aut(M)-invariant
stable relation.

I This allows the results in the case of simple theories
(3-amalgamation, Theorem 3) to go through in suitable
forms. In particular:

I Let G be a ∅-definable group in M and X an (infinite)
pseudofinite ∅-definable subset of G. Call X an approximate
subgroup of G if |X ·X−1 ·X| ≤ k|X| for some finite k
(makes sense). Let G̃ be the subgroup of G generated by X
(which is in general

∨
-definable rather than definable).



Pseudofinite theories and definable sets III

I Under these assumptions, Hrushovski proves, following
Theorem 3, and using Stab(p) for suitable p (concentrating
on X), that G̃ has a normal type-definable subgroup G̃00 of
bounded (at most continuum) index (and G̃/G̃00 is locally
compact under the “logic topology”).

I I just want to finish by saying that this result, together with
the structure of locally compact groups, introduces new
methods and ideas into the asymptotic study of finite
approximate subgroups of arbitrary groups (“additive
combinatorics”) and has, I understand, led to solutions of
outstanding problems in the subject (Breuillard, Green, Tao,
2011, building on Hrushovski, 2009).
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