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Introduction I

I This mini-course is about applications of model theory to
combinatorics, via passing to nonstandard models, and using
structural theorems (e.g. from stability theory).

I Let us first discuss the kind of combinatorics I am concerned
with. I am not an expert in combinatorics, so my descriptions
will be rather superficial.

I In general we are concerned with finite graphs, which we will
normally take to be bipartite, for technical reasons. Namely
(V,W,R) where V,W are finite sets and R ⊆ V ×W .

I One class of problems is what we call Erdös-Hajnal-type
problems.

I This means trying to find “large” V0 ⊆ V and W0 ⊆W such
that V0 ×W0 is homogeneous for R, namely V0 ×W0 ⊆ R, or
V0 ×W0 ⊆ Rc (the complement of R). (So Ramsey-type
theorems.)
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Introduction II

I The actual Erdös-Hajnal conjecture, restricts attention to the
class of finite graphs (V,W,R) omitting a given induced finite
subgraph H, and asks there to be δ > 0 (depending on H),
such that for all (V,W,R), there is homogeneous V0 ×W0

with |V0| ≥ |V |δ, and |W0| ≥ |W |δ.

I In this most general formulation, H is an arbitrary finite
graph. But we could restrict attention to specific H and aim
for better resuts (which we do later).

I The second class of problems concerns trying to decompose,
or partition, V and W into a “small” number of sets
V = V1 ∪ ..... ∪ Vn, W = W1 ∪ ... ∪Wm, such that each
induced subgraph (Vi,Wj , R|(Vi ×Wj)) is “regular”. Namely
sufficiently large induced subgraphs of (Vi,Wj , R|(Vi ×Wj))
have approximately the same density.
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Introduction III

I In this general context we have Szemeredi’s regularity
theorem, which says that given ε > 0, there is Nε such that
for all (V,W,R), we can partition V,W as above, with
n,m ≤ Nε, and such that outside an “ε-small” exceptional set
Σ of (i, j), each (Vi,Wj , R|(Vi ×Wj)) is ε-regular. “ε-small”
means that | ∪i,j∈Σ Vi ×Wj | ≤ ε|V ×W |.

I And ε-regularity of (Vi,Wj , R|(Vi ×Wj)) means that for any
induced subgraph (V ′,W ′, R|(V ′ ×W ′)) of
(Vi,Wj , R|(Vi ×Wj)), with |V ′| ≥ ε|Vi| and |W ′| ≥ ε|Wj |,
the densities of (Vi,Wj , R|(Vi ×Wj)) and
(V ′,W ′, R|(V ′ ×W ′)) differ by < ε.

I (The regularity lemma also includes a statement that the Vi’s
are roughly the same size. Also the Wj ’s.) Under additional
assumptions on the relation R we would like to obtain
stronger conclusions, with for example homogeneity replacing
regularity, and maybe with no exceptional set.
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Introduction IV

I A third theme or class of problems concerns finite groups G
with a distinguished subset X. What can we say about X?

I Note that we obtain from the data a bipartitite graph
(G,G,R) where R(x, y) iff x · y ∈ X. So Szemeredi’s
regularity theorem applies.

I But we would nevertheless like to see some version of
Szemeredi, which is compatible with the group structure.

I This problematic falls under the description of “arithmetic
regularity theorems”. An important paper of Ben Green deals
with the case where G is commutative, and X arbitrary.

I We will give some results where G is arbitrary (not necessarily
commutative), but under some restrictions on X (or on the
associated relation R).
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Introduction V

I A further (or fourth) topic concerns replacing the data by real
valued functions in place of sets (where we think of sets as
{0, 1}-valued functions)

I So in the case of bipartite graphs, we consider instead
“bipartite functions” (V,W,F ) where V,W are finite sets and
F : V ×W → [0, 1].

I And in the group case we consider, instead, finite groups G
equipped with a function F : G→ [0, 1].

I From the logic point of view, we have to pass from classical
first order logic to so-called continuous first order logic, where
formulas have values in R, or [0, 1], rather than just {0, 1}.

I This last topic is really “work in progress”, so I will not say so
much about it in these lectures.
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Introduction VI

I I should say that the use of nonstandard methods (essentially
nonstandard analysis) to obtain (asymptotic) results in finite
combinatorics, was already done by Tao for Szemeredi
regularity, where the Radon-Nikodym theorem came into play.

I What is kind of new in the recent applications of model
theory is that the nonstandard methods are combined with
applying nontrivial structural theorems in the nonstandard
(pseudofinite) model.

I This point of view was in a sense initiated when model
theorists found another proof (valid in all characteristics) of
Tao’s algebraic regularity theorem (Tao) for graphs defined in
finite fields (Pillay-Starchenko, Hrushovski).
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Introduction VII

I In fact Hrushovski’ work on approximate subgroups has the
same character, where the stabilizer theorem is applied to
Loeb measure.

I Actually among the themes of our recent work with Conant
and Terry (CPT1, CPT2) and my expository paper
“Domination and regularity”, is that certain “domination
statements” yield fairly directly, the relevant graph regularity
statements, in the infinite setting. Hopefully I will try to
explain some of this in these talks.

I However I should also mentioin that our methods do not, as a
rule, give optimal bounds, although the problem of good
bounds is an important aspect of the combinatorial
conjectures and results.
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Model theory I

I Here we give a review of the basic model theory behind this
course, mainly to fix notation. I am assuming that the
audience and participants have some familiarity with the
subject.

I The (popularly called) syntax, or grammar of a first order
theory, is some vocabulary L, consisting of sort symbols,
relation symbols, function symbols, and constant symbols.

I For simplicity I will assume we are in a 1-sorted situation
(namely just one sort), so the relation and function symbols
come with a finite “arity”. We also assume a distinguished
binary relation symbol = (for equality). The many-sorted
context is an easy generalization, and I may freely work in
such a context.

I From these symbols, together with the logical connectives
(¬,∨,∧,∃,∀ and parentheses) as well as a supply of variables
vi or xi or yi, we build L-formulas.
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Model theory II

I L-formulas are typically denoted φ, ψ, or φ(x̄), ψ(ȳ) to
witness the free variables. L-sentences, namely L-formulas
with no free variables, are typically denoted σ, τ, ....

I We have the notion of an L-structure M , a set equipped with
actual relations, functions, distinguished elements, interpreting
the symbols of L. We often notationally identify an
L-structure M with its underlying set or universe.

I For M an L-structure, φ(x̄) an L-formula, and ā a tuple of
the appropriate length from M , “M |= φ(ā)” means that the
formula is true in the structure M when x̄ is interpreted as ā.
If φ is a sentence we also say M is a model of φ.

I If φ(x̄, ȳ) is an L-formula, and b̄ a tuple from M then
X = {ā ∈M : M |= φ(ā, b̄)} is called a set definable in M
over b̄, or a b̄-definable set in M . If B is a subset of M
containing the tuple b̄ we may also say “B-definable in M”.
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I If φ(x̄, ȳ) is an L-formula, and b̄ a tuple from M then
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Model theory III

I Sometimes we see the expression “M -definable” used to mean
definable in a structure M (possibly over some parameters)
but I think it is wrong and will avoid it.

I We can also formalize “definability over B in M”, by adding
new constants to the language L for elements of B, to form a
language LB, and we just mean definable by an LB formula in
the tautological expansion of M to an LB-structure.

I If B ⊆M and ā an n-tuple, then tpM (ā/B) denotes the
collection of LB-formulas φ(x̄) true of ā in M (equivalently
the collection of B-definable sets X of n-tuples in M such
that ā ∈ X).

I A collection Σ(x̄) of LM -formulas (with free variables among
x̄ is said to be consistent (with M) if it is finitely satisfiable in
M , namely for each finite subset Σ′ of Σ there is ā in M such
that M |= ∧Σ′(ā).
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I If B ⊆M and ā an n-tuple, then tpM (ā/B) denotes the
collection of LB-formulas φ(x̄) true of ā in M (equivalently
the collection of B-definable sets X of n-tuples in M such
that ā ∈ X).

I A collection Σ(x̄) of LM -formulas (with free variables among
x̄ is said to be consistent (with M) if it is finitely satisfiable in
M , namely for each finite subset Σ′ of Σ there is ā in M such
that M |= ∧Σ′(ā).
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Model theory IV

I A key notion is “N is an elementary extension of M” (or M is
an elementary substructure of N): M ⊆ N in the obvious
sense, and M,N are models of the same LM -sentences.

I The compactness theorem says that a collection Σ of
L-sentences has a model if every finite subset of Σ has a
model. It implies that any L-structure M has an elementary
extension N with the property that for every consistent (with
M) collection Σ(x̄) of LM -formulas, there is a tuple ā from
N such that N |= Σ(ā) (where the latter notation means that
N |= φ(ā) for all φ(x̄) ∈ Σ, and we also say that ā realizes
Σ(x̄) in N .)

I We mention a couple of consequences. First modulo some set
theory, for any L-structure M and sufficiently large cardinal κ,
M has an elementary extension N which is κ-saturated and is
of cardinality κ.
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N |= φ(ā) for all φ(x̄) ∈ Σ, and we also say that ā realizes
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Model theory V

I κ-saturation of N means that whenever B is a subset of N of
cardinality < κ and Σ(x̄) is a consistent (with N) collection
of LB-formulas then Σ is realized in N .

I Such a κ-saturated model N of cardinality κ is unique up to
isomorphism, in the sense that its isomorphism type is
determined by its first order theory T = Th(N), the set of
L-sentences σ such that N |= σ.

I Secondly, fixing M , a subset B of M , an n < ω, the Stone
space (space of ultrafilters) of the Boolean algebra of formulas
φ(x̄) in LB up to equivalence in M , coincides with
{tpN (ā/B) : ā ∈ N} where N is some sufficiently saturated
elementary extension of M . We call the space Sn(B)
(although it depends on the LB-theory of M).
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Model theory VI

I We have been talking about structures or models so far, but
in fact the main objects of study of model theory, are first
order theories T , where an L-theory T is simply a collection of
L-sentences which has a model. T is often assumed to be
complete.

I Among the invariants of an L-theory T is Mod(T ), the
category of models of T with elementary embeddings.

I Another invariant of T is Def(T ), the category of definable
sets, which, when T is complete, identifies with the category
of sets which are definable without parameters in a given
model M of T .

I Given a (complete) theory T we can “complete” it by
adjoining new sorts for quotients of ∅-definable sets by
∅-definable equivalence relations, to form T eq.

I T identifies, up to bi-interpretability with the category
Def(T eq).
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Definable families I

I We fix a complete L-theory T and typically work in a
κ-saturated model M̄ of cardinality κ for some large κ. M,N
etc denote small elementary substructures, and A,B,.. small
subsets. It is also convenient to let x, y, .. range over finite
tuples of variables, rather than individual variables.

I Many model theoretic notions are concerned with L-formulas
of the form φ(x, y) where x, y is some fixed partition of the
free variables of φ.

I Such a formula φ(x, y) can be seen in at least three different
ways: (i) as defining a bipartite graph (in some/any) model of
T , (ii) as giving rise to a family of definable sets, namely the
sets defined in M̄ (or in a model M) by the formulas φ(x, b),
as b varies over tuples of the right length in M̄ (or M), (iii) as
a collection of continuous {0, 1}-valued functions on a
suitable compact space.

I Maybe the third point needs some comments.
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Definable families II

I Fix a model M . Then Sx(M) is a compact space. For each
b ∈M , we obtain a continuous function fb on Sx(M) where
f(p) = 1 if φ(x, b) ∈ p and = 0 otherwise. So we get a
(definable) family of functions fb, b ∈M .

I This makes a connection of model theory with functional
analysis, and in fact some of the basic theorems of stability
theory were proved by Grothendieck in his thesis (1951) in
this context. (First noticed by Ben-Yaacov).

Definition 0.1
The formula φ(x, y) is k-stable (for T ) if there do not exist
a1, .., ak, b1, .., bk in some/any model M of T such that
M |= φ(ai, bj) iff i ≤ j.
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Definable families III

Definition 0.2
The formula is k-NIP (for T ), if there do not exist a1, .., ak and bs
for s ⊆ {1, .., k} in some/any model M of T such that
M |= φ(ai, bs) iff i ∈ s.

I We make a few remarks.

I By compactness φ(x, y) is k-stable (in T ) for some k iff there
do not exist ai, bi ∈ M̄ for i = 1, 2, 3, ... such that
M̄ |= φ(ai, bj) iff i ≤ j. We just say that φ(x, y) is stable (for
T ).

I There is a similar statement for k-NIP. It is left to the reader.
We just say φ(x, y) is NIP for T .

I T is said to be stable if every formula φ(x, y) is stable (for T ).
Likewise T is said to be NIP if every formula φ(x, y) is NIP
for T . In both cases it is enough to consider formulas where x
is a single variable, rather than a tuple.



Definable families III

Definition 0.2
The formula is k-NIP (for T ), if there do not exist a1, .., ak and bs
for s ⊆ {1, .., k} in some/any model M of T such that
M |= φ(ai, bs) iff i ∈ s.

I We make a few remarks.

I By compactness φ(x, y) is k-stable (in T ) for some k iff there
do not exist ai, bi ∈ M̄ for i = 1, 2, 3, ... such that
M̄ |= φ(ai, bj) iff i ≤ j. We just say that φ(x, y) is stable (for
T ).

I There is a similar statement for k-NIP. It is left to the reader.
We just say φ(x, y) is NIP for T .

I T is said to be stable if every formula φ(x, y) is stable (for T ).
Likewise T is said to be NIP if every formula φ(x, y) is NIP
for T . In both cases it is enough to consider formulas where x
is a single variable, rather than a tuple.



Definable families III

Definition 0.2
The formula is k-NIP (for T ), if there do not exist a1, .., ak and bs
for s ⊆ {1, .., k} in some/any model M of T such that
M |= φ(ai, bs) iff i ∈ s.

I We make a few remarks.

I By compactness φ(x, y) is k-stable (in T ) for some k iff there
do not exist ai, bi ∈ M̄ for i = 1, 2, 3, ... such that
M̄ |= φ(ai, bj) iff i ≤ j. We just say that φ(x, y) is stable (for
T ).

I There is a similar statement for k-NIP. It is left to the reader.
We just say φ(x, y) is NIP for T .

I T is said to be stable if every formula φ(x, y) is stable (for T ).
Likewise T is said to be NIP if every formula φ(x, y) is NIP
for T . In both cases it is enough to consider formulas where x
is a single variable, rather than a tuple.



Definable families III

Definition 0.2
The formula is k-NIP (for T ), if there do not exist a1, .., ak and bs
for s ⊆ {1, .., k} in some/any model M of T such that
M |= φ(ai, bs) iff i ∈ s.

I We make a few remarks.

I By compactness φ(x, y) is k-stable (in T ) for some k iff there
do not exist ai, bi ∈ M̄ for i = 1, 2, 3, ... such that
M̄ |= φ(ai, bj) iff i ≤ j. We just say that φ(x, y) is stable (for
T ).

I There is a similar statement for k-NIP. It is left to the reader.
We just say φ(x, y) is NIP for T .

I T is said to be stable if every formula φ(x, y) is stable (for T ).
Likewise T is said to be NIP if every formula φ(x, y) is NIP
for T . In both cases it is enough to consider formulas where x
is a single variable, rather than a tuple.



Definable families III

Definition 0.2
The formula is k-NIP (for T ), if there do not exist a1, .., ak and bs
for s ⊆ {1, .., k} in some/any model M of T such that
M |= φ(ai, bs) iff i ∈ s.

I We make a few remarks.

I By compactness φ(x, y) is k-stable (in T ) for some k iff there
do not exist ai, bi ∈ M̄ for i = 1, 2, 3, ... such that
M̄ |= φ(ai, bj) iff i ≤ j. We just say that φ(x, y) is stable (for
T ).

I There is a similar statement for k-NIP. It is left to the reader.
We just say φ(x, y) is NIP for T .

I T is said to be stable if every formula φ(x, y) is stable (for T ).
Likewise T is said to be NIP if every formula φ(x, y) is NIP
for T . In both cases it is enough to consider formulas where x
is a single variable, rather than a tuple.



Definable families IV

I We continue the remarks.

I First stability of φ(x, y) (for T ) implies NIP of φ(x, y) (for T ).

I The notions of k-stable and k-NIP make sense for arbitrary
bipartitite graphs (V,W,R)

I A connection with Erdös-Hajnal, is the following: Suppose H
is a fixed finite graph. Then there is k such that a graph
(V,W,R) is k-NIP, if it omits H (as an induced subgraph).

I So dealing with the class of k-NIP graphs is relevant to
studying graphs omitting a fixed finite subgraph H.
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Types I

I We are eventually interested in (Keisler) measures, but we will
first consider the classical case of complete types.

I As mentioned earlier we tend to work in a saturated model M̄
of a complete theory T , and by definition a model of T is a
small elementary substructure of M̄ , unless we say otherwise.

I So for a tuple a in M̄ , tp(a/M) for example means
tpM̄ (a/M) in previous notation. Likewise for small sets A of
parameters in place of M .

I For an L-formula φ(x, y), we also have the notion of a
complete φ-type over a set A or model M .

I This is precisely the restriction of a complete type p(x) over
M to the collection of Boolean combinations of formulas
φ(x, b) for b ∈M . It is “determined” (when M is a model) by
the collection of φ(x, b), ¬φ(x, b) for b ∈M , true of a given
a ∈ M̄ (realizing p).



Types I

I We are eventually interested in (Keisler) measures, but we will
first consider the classical case of complete types.

I As mentioned earlier we tend to work in a saturated model M̄
of a complete theory T , and by definition a model of T is a
small elementary substructure of M̄ , unless we say otherwise.

I So for a tuple a in M̄ , tp(a/M) for example means
tpM̄ (a/M) in previous notation. Likewise for small sets A of
parameters in place of M .

I For an L-formula φ(x, y), we also have the notion of a
complete φ-type over a set A or model M .

I This is precisely the restriction of a complete type p(x) over
M to the collection of Boolean combinations of formulas
φ(x, b) for b ∈M . It is “determined” (when M is a model) by
the collection of φ(x, b), ¬φ(x, b) for b ∈M , true of a given
a ∈ M̄ (realizing p).



Types I

I We are eventually interested in (Keisler) measures, but we will
first consider the classical case of complete types.

I As mentioned earlier we tend to work in a saturated model M̄
of a complete theory T , and by definition a model of T is a
small elementary substructure of M̄ , unless we say otherwise.

I So for a tuple a in M̄ , tp(a/M) for example means
tpM̄ (a/M) in previous notation. Likewise for small sets A of
parameters in place of M .

I For an L-formula φ(x, y), we also have the notion of a
complete φ-type over a set A or model M .

I This is precisely the restriction of a complete type p(x) over
M to the collection of Boolean combinations of formulas
φ(x, b) for b ∈M . It is “determined” (when M is a model) by
the collection of φ(x, b), ¬φ(x, b) for b ∈M , true of a given
a ∈ M̄ (realizing p).



Types I

I We are eventually interested in (Keisler) measures, but we will
first consider the classical case of complete types.

I As mentioned earlier we tend to work in a saturated model M̄
of a complete theory T , and by definition a model of T is a
small elementary substructure of M̄ , unless we say otherwise.

I So for a tuple a in M̄ , tp(a/M) for example means
tpM̄ (a/M) in previous notation. Likewise for small sets A of
parameters in place of M .

I For an L-formula φ(x, y), we also have the notion of a
complete φ-type over a set A or model M .

I This is precisely the restriction of a complete type p(x) over
M to the collection of Boolean combinations of formulas
φ(x, b) for b ∈M . It is “determined” (when M is a model) by
the collection of φ(x, b), ¬φ(x, b) for b ∈M , true of a given
a ∈ M̄ (realizing p).



Types I

I We are eventually interested in (Keisler) measures, but we will
first consider the classical case of complete types.

I As mentioned earlier we tend to work in a saturated model M̄
of a complete theory T , and by definition a model of T is a
small elementary substructure of M̄ , unless we say otherwise.

I So for a tuple a in M̄ , tp(a/M) for example means
tpM̄ (a/M) in previous notation. Likewise for small sets A of
parameters in place of M .

I For an L-formula φ(x, y), we also have the notion of a
complete φ-type over a set A or model M .

I This is precisely the restriction of a complete type p(x) over
M to the collection of Boolean combinations of formulas
φ(x, b) for b ∈M . It is “determined” (when M is a model) by
the collection of φ(x, b), ¬φ(x, b) for b ∈M , true of a given
a ∈ M̄ (realizing p).



Types II

I When φ(x, y) is stable, a complete φ-type p over M has
remarkable properties. First it is definable.

I This means that there is a formula ψ(y) with parameters from
M such that for any b ∈M , φ(x, b) ∈ p iff M |= ψ(b).

I In fact one can choose ψ(y) to be a positive Boolean
combination of formulas φ(a, y) for a ∈M . But never mind
for now.

I Secondly, if p′ is a complete φ-type over M̄ extending (or
containing p) and p′ is finitely satisfiable in M , then p is
precisely the φ-type over M̄ obtained from applying the
definition mentioned above; namely for b ∈ M̄ , φ(x, b) ∈ p′ iff
M̄ |= ψ(b).

I We call this the local (i.e. formula by formula) theory in
stability. (References: GST for example, but also done in
Groithendieck’s thesis.)
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Types III

I p′ can also be characterized via the pervasive notion of
forking.

I A formula ψ(x, b) (where b witnesses the parameters) divides
over a set A of parameters if there is some infinite
A-indiscernible sequence (b = b0, b1, .....) such that the set
{φ(x, bi) : i < ω} is consistent

I Where (bi : i < ω) is A-indiscernible means that
tp(bi1 , ...bin/A) = tp(bj1 , .., bjn/A) for all i1 < .. < in and
j1 < ... < jn.

I And ψ(x, b) forks over A if it implies a finite disjunction of
formulas each of which divides over A.

I In any case, with the previous assumptions (stability of φ(x, y)
etc.) p′ can be characterzed also by: p ⊂ p′ and no formula in
p′ divides (forks) over A.
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Types IV

I When T is stable (namely every L-formula φ(x, y) is stable for
T ), then the local theories cohere to give a nice theory of
“independence”, the characteristic feature of which is
uniqueness of free extensions.

I Again fix a model M , and an arbitrary type p(x) ∈ Sx(M).
Then there is a unique p′(x) ∈ Sx(M̄) extending p(x) which
satisfies each of the following equivalent conditions:

I (i) p′ is finitely satisfiable in M .

I (ii) p′ is definable over M (that is for any L-formula φ(x, y)
there is ψ(y) ∈ LM such that for all b ∈ M̄ , φ(x, b) ∈ p′ iff
M̄ |= ψ(b)).

I (iii) no formula in p′ forks (divides) over M .

I Moreover we have essentially the same conclusions when M is
replaced by an algebraically closed set A (finite equivalence
relation theorem).
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Types V

I Even though the theory T may be unstable, there still may be
types p(x) over some model M which satisfy conditions (i),
(ii), (iii) above, and we call these generically stable types.
(We sometimes assumed the theory T to be NIP .)

I We give an example. The theory ACF0 of algebraically closed
fields of characteristic 0 in the ring language is the archetypal
example of an (interesting stable theory.

I Consider the theory of pairs (F < K) of algebraically closed
fields (with a predicate P for the bottom model F ) such that
there is moreover some additional structure on F , such as
adding an additional predicate for a real closed subfield F0 of
F such that F = F0(i)).

I Then the theory T of K equipped with all this structure is
NIP and unstable.
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Types VI

I Fix a model M of T . Consider the set of formulas Σ(x) over
N expressing that x is not in the (field-theoretic) algebraic
closure of M and P (M̄).

I Then Σ(x) determines a complete type p(x) ∈ S1(M).

I p(x) is generically stable, and can be considered to be the
“generic type” over M . It is also “regular” in the sense of
Pillay-Tanovic.

I Working out the details of all of this is left to the reader. i
mainly introduced generically stable types as a motivation for
the notion of generically stable measure that will come later.
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Types and graphs I

I The main thrust of this course is to study certain infinite
graphs, using structural results from model theory, then to use
the “pseudofinite yoga” (discussed later) to obtain
information about suitable families of finite graphs.

I As a very easy warm-up exercise for later results involving
measures, let us consider the impact of “weak orthogonality”
on Ramsey-type theorems.

I Fix again T and M̄ a monster model and M ≺ M̄ .

I Let p(x), q(y) be complete types over M (in variables x, y
respectively). p(x) and q(y) are said to be weakly orthogonal
if p(x) ∪ q(y) extends to a unique complete type r(x, y) over
M .

I Now let (V,W,R) be a (bipartitite graph) definable in M̄ with
parameters from M . So (V (M),W (M), R(M)) is a bi-partite
graph definabke in M (with parameters).
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Types and graphs II

I Now let p(x) ∈ SV (M) (i.e. p(x) is a complete type over M
containing the formula “x ∈ V ”). Likewise let
q(y) ∈ SW (M).

I We can think of p as defining a {0, 1} valued measure on the
Boolean algebra of definable subsets of V (M). (Namely a
definable set has measure 1 or is “large” if the formula
defining it is in p). Similarly for q(y) and W (M).

Theorem 0.3
In this context, suppose p(x) and q(y) are weakly orthogonal. Then
there are large definable subsets V0 of V (M) and W0 of W (M)
such that (V0,W0) is homogeneous for R(M). Namely either
(V0,W0, R|(V0 ×W0)) is a complete graph or an empty graph.
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Proof.
Let r(x, y) be the unique complete type over M extending
p(x) ∪ q(y).
Case (i) R(x, y) ∈ r(x, y).
So working in M̄ , p(x) ∪ q(y) |= R(x, y). By compactness (i.e.
saturation of M̄), there are formulas φ(x) ∈ p(x), ψ(y) ∈ q(y)
such that M̄ |= (∀x)(∀y)(φ(x) ∧ ψ(y)→ R(x, y)). So the
sentence (∀x)(∀y)(φ(x) ∧ ψ(y)→ R(x, y)) is also true in M . Let
V0 be the subset of V defined by φ(x) in M , Likewise for W0, and
we see that (V0,W0, R|(V0 ×W0) is a complete graph. Both V0,
W0 are large.
Case (ii), ¬R(x, y) ∈ r(x, y).
Similarly we obtain large V0,W0 such that (V0,W0, R(V0 ×W0)) is
the empty graph.



Types and graphs IV

I A stronger condition will yield the ultimate “regularity”
theorem for the graph (V,W,R) (or (V (M),W (M), R(M)).

I The proof, using compactness as above, is left as an exercise
for relative beginners in model theory who are attending the
course.

Theorem 0.4
Suppose that p(x) and q(y) are weakly orthogonal for all
p(x) ∈ SV (M) and q(y) ∈ SW (M). Then we can partition V (M)
into definable sets V0, .., Vn, and partition W (M) into definable
sets W0, ..,Wm such that each (Vi,Wj) is homogeneous for R.
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into definable sets V0, .., Vn, and partition W (M) into definable
sets W0, ..,Wm such that each (Vi,Wj) is homogeneous for R.
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Pseudofiniteness I

I At this point it is convenient to introduce pseudofiniteness in
a reasonably flexible form.

Definition 0.5
Let M be an L-structure, and A a subset of some sort X of M
(e.g. if M is 1-sorted then X could be the sort consisting on
n-tuples from M). We will say that “A is pseudofinite in M” if
whenever σ is a sentence in the language L together with an
additional predicate symbol for A, and (M,A) |= σ, then there is
an L-structure M ′ and subset A′ of X(M ′) such that
(M ′, A′) |= σ.

I Let’s make some remarks: Pseudofiniteness of A in M is a
property of Th(M,A) (in the language L(P ) = L ∪ {P}).

I If M is 1-sorted and A is M itself, we say that M is
pseudofinite.
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Pseudofiniteness II

I Suppose that A is definable in the L-structure M by a formula
φ(x, b). Then peudofiniteness of A in M is equivalent to : for
every L-formula ψ(y) in tpM (b), there is an L-structure M ′

and b′ ∈M ′ such that M |= ψ(b′) and φ(x, b′)(M ′) is finite.

I So if A is definable by a formula φ(x) of L (without
parameters), then pseudofiniteness of A in M means that for
every σ ∈ Th(M) there is a model M ′ of σ such that φ(M ′)
is finite.

I Note also with our definition, finite implies pseudofinite.

I We now give some routine equivalences to pseudofiniteness.
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Pseudofiniteness III

Lemma 0.6
For M an L-structure and A a subset of a sort X in M , the
following are equivalent:

I (i) A is pseudofinite in M ,

I (ii) (M,A) |= Σ where Σ be the set of L(P )-sentences which
are true in every L(P )-structure (M ′, A′) where A′ is finite,

I (iii) (M,A) is elementarily equivalent to some ultraproduct of
L(P )-structures (M ′, A′) where A′ is finite.

Proof.
Let Σ be as in (ii). Then obviously (M,A) |= Σ iff (M,A) is
pseudofinite. On the other hand, assuming (M,A) to be
pseudofinite, let I be the collection of finite subsets of Th(M,A),
for each i ∈ I, Let (Mi, Ai) |= i with Ai finite. Then any
nonprincipal ultraproduct of the Ai is a model of Th(M,A).
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Nonstandard analysis I

I The main use of nonstandard models will be to have available
the “nonstandard normalized counting measure” (also called
the Loeb measure) on pseudofinite sets.

I In nonstandard analysis as developed by Robinson one usually
takes as the ground structure (V, ε) a certain fragment of the
universe of set theory, including the natural numbers and real
numbers, and closed under suitable iterations of power set.
Then pass to the nonstandard model (V ∗, ε∗).

I So as to avoid being precise about what exactly is included in
V , we will just take, notationally, the ground structure to be
the (standard) model (V, ε) of set theory, and (V∗, ε∗) to be a
“monster model”, i.e. saturated elementary extension.
(Although this doesn’t make such a lot of sense formally.)

I An object in V∗ is said to be internal if it is definable (with
parameters) in (V∗, ε∗).
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Nonstandard analysis II

I In V∗ we have the nonstandard versions N∗, R∗ of N and R,
(as well as of cardinals). Moreover any internal object which
is a ∗-set, has a (nonstandard) cardinality.

I It is natural to define a pseudofinite object as an internal
object of V∗ which is finite in the sense of V∗ (i.e. whose
cardinality is in N∗ (i.e. a nonstandard finite object).

I Let us reconcile this with the earlier definition and account of
pseudofiniteness.

I First the easy direction: Suppose that (M,A) is an
L(P )-structure in V ∗ and A is finite in the sense of V∗, and
let σ be an L(P )-sentence true in (M,A).

I This is expressed by the satisfaction of some formula χ(x, y, z)
of set theory by (M,A, σ) in V∗. So as V ≺ V∗ we can find
(M ′, A′) in V such that A′ is finite and (M ′, A′) |= σ.
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Nonstandard analysis III

I The converse will be stated more precisely.

Lemma 0.7
Suppose M is an L-structure, A a subset of a sort of M and A is
pseudofinite in M (in the sense of Definition 0.5). Then there is
some appropriate (M∗, A∗) in V∗ such that

I (i) (M∗, A∗) is an L(P )-structure elementarily equivalent to
(M,A),

I (ii) A∗ is finite in the sense of V∗,
I (iii) whenever χ(y, z) is a formula of set theory true of

(M∗, A∗) in V∗ then there is (M,A) ∈ V such that A is finite
and χ(y, z) is true of (M,A) (in V).
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Nonstandard analysis IV

Proof.
I This is a brief outline of the compactness proof.

I Consider the collection of formulas χ(y, z) of set theory which
are true of every (M,A) ∈ V with A finite, together with
formulas expressing that (y, z) is elementarily equivalent in
L(P ) to (M,A).

I This collection of formulas is finitely satisfiable in V, so
realized in a saturated elementary extension V∗, as required.
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Nonstandard analysis V

I The following addition to Lemma 0.7 will be useful. The proof
is left to the audience.

Lemma 0.8
Suppose in addition that (M,A) is a model of the common theory
of (Mn, An) (n < ω) where An is finite and of increasing size with
n, and A is infinite. Then (M∗, A∗) can be chosen to also satisfy:
(iii)’ Whenever χ(y, z) is a formula of set theory true of (M∗, A∗)
in V∗, then χ(y, z) is true of infinitely many (Mn, An) (in V).

I Here are some remarks on the constructions.
I If V∗ is κ-saturated, of cardinality κ, then so is (M∗, A∗) (as

an L(P )-structure).
I So if (M,A) was already κ-saturated of cardinality κ, then it

will be isomorphic to (M∗, A∗), so can be assumed to live in
the nonstandard model with A∗ finite in the sense of the
model.

I So in this sense the 2 notions of pseudofinite cohere, when
(M,A) is “saturated”.
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will be isomorphic to (M∗, A∗), so can be assumed to live in
the nonstandard model with A∗ finite in the sense of the
model.

I So in this sense the 2 notions of pseudofinite cohere, when
(M,A) is “saturated”.
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Nonstandard analysis VI

I Suppose A is an internal object in V∗ which is finite in the
sense of V∗. (In particular A is a set in V ∗). So for each
internal Z ⊆ A we have |Z| ∈ N∗, and we define µ∗(Z) to be
|Z|/|A| ∈ [0, 1]∗.

I This is the nonstandard counting measure on internal subsets
of A, with value in the nonstandard unit interval.

I Each element of [0, 1]∗ has a unique “standard part”.
st(µ∗(Z)) gives us a “measure” on internal subsets of A with
values in [0, 1].

I The end result is that if A is pseudofinite in the L-structure
M , and the pair (M,A) is saturated then we have in
particular constructed a certain [0, 1]-valued “measure” µ on
LM -definable subsets of the ambient sort X:
µ(Z) = st(µ∗(Z ∩A)).

I Our rather roundabout way of constructing this “pseudofinite
Keisler measure” is partly to avoid an appeal to ultraproducts,
which I am allergic to.
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Keisler measures I

I We referred above to Keisler measures, so let us be more
precise.

I We are back in the context of a complete first order theory T ,
monster model M̄ etc.

I The notion of a (Keisler) measure generalizes the notion of
complete type. It is surprising that it took so long for the
notion to be seriously studied in model theory.

Definition 0.9
Fix a sort X over which variables x range. (So X could be the sort
of n-tuples.) By a Keisler measure µ(x) on X over M , we mean a
finitely additive probability measure on M -definable subsets of X.

I This means that µ has values in [0, 1], µ(x = x) = 1,
µ(x 6= x) = 0 and for disjoint M -definable Y,Z,
µ(Y ∪ Z) = µ(Y ) + µ(Z).
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Keisler measures II

I As with types we can fix an L-formula φ(x, y) and consider
the Boolean algebra generated by sets defined by φ(x, b), for
b ∈M , and by a Keisler φ-measure over M , we mean a
finitely additive probability measure on this Boolean algebra.

I Sometimes we consider the case where M = M̄ and we talk
about a global Keisler (φ) measure.

I Note that a Keisler measure on X over M coincides with the
identically defined finitely additive probability measure on the
Boolean algebra of definable (with parameters) subsets of
X(M) (i.e. without talking about the monster model M̄ .

I A Keisler measure on X over M is the same thing as a regular
Borel probability measure on the Stone space SX(M). (To be
explained.)
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Keisler measures III

Example 0.10

A complete type p(x) ∈ Sx(M) is a {0, 1}-valued Keisler measure
on X over M . From the point of view of the last bullet point, it is
a “Dirac”.

Example 0.11

I Let T be the theory of an equivalence relation E with two
classes, both infinite. T is ω-categorical with quantifier
elimination.

I Let M be the unique countable model of T . Let µ be the
Keisler measure on the universe, over M say, determined by
assigning 0 to each formula x = a and assigning 1/2 to each
equivalence class.

I The µ is the average of the two nonrealized 1-types p(x), q(x)
over M .

I Note that µ is Aut(M)-invariant.
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Keisler measures IV

Example 0.12

Let A be a finite subset of X(M), and for Z an M -definable
subset of X let µA(Z) = |Z ∩A|/|A|. µA is a “counting” Keisler
measure (on X over M).

Example 0.13

Likewise let M be an L-structure living in a nonstandard model V∗
of set theory, and let A be a finite, in the sense of V∗, subset of a
sort X(M). For Z a definable subset of M , let µA(Z) be as
defined earlier (st(|Z ∩A|/|A|). µA is a “pseudofinite counting”
Keisler measure on X over M .
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Keisler measures V

Example 0.14

I Here the theory will be RCF (real closed fields in the
language of rings with a symbol for the ordering if you wish).

I Let M be the standard model (R,+,×,−, <, 0, 1). Let
I = [0, 1] be the unit interval and let λI be the usual
Lebesgue measure on I.

I As definable subsets of the real line R are finite unions of
points and intervals, they are measurable, so clearly λI
induces a Keisler measure µ on x = x over R.

I Let M̄ be the saturated elementary extension of R, another
real closed ordered field.
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Keisler measures VI

I Our observation is that µ has a unique extension to a global
Keisler measure on x = x. Because if µ′ extends µ it is forced
to assign 0 to infinitesimal intervals.

I The property of unique extension to a larger model is called
smoothness and shows the difference with types where the
only smooth types over a model are realized ones (tp(a/M)
for a ∈M).

I Such measures as well as generically stable measures
(generalizing generically stable types) will appear later.
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Stable regularity lemma I

I We now start to prove or give accounts of the main results of
the lectures.

I Beginning with the stable regularity lemma (in a suitable
form).

I Remember that a graph (V,W,R) is called k-stable if it omits
the k-half graph (which has vertex sets {a1, .., ak} and
{b1, .., bk} with R(ai, bj) iff i ≤ j)

Theorem 0.15
For every ε > 0 there is Nε such that for every k-stable finite graph
(V,W,R), there are partitions V = V1 ∪ .. ∪ Vn,
W = W1 ∪ .. ∪Wm with m,n ≤ Nε, and such that for every i, j,
(Vi,Wj , R|(Vi ×Wj)) is ε-homogeneous, namely either almost
complete (|(Vi ×Wj) \R| ≤ ε|Vi ×Wj |) or almost empty
(|(Vi ×Wj) ∩R| ≤ ε|Vi ×Wj |)
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Stable regularity lemma II

I So the conclusion improves that of the the general Szemeredi
regularity lemma, by getting rid of the exceptional pairs (the
error) and replacing ε-regularity by the much stronger
ε-homogeneity.

I The original proof by Malliaris-Shelah of (a version of)
Theorem 0.15, was not a pseudofinite proof, and gave good
bounds (on Nε). I will follow my treatment in “Domination
and regularity” which is close to the Malliaris-Pillay account.
(See subsequent references.)

I The general idea is simply to study graphs (V,W,R) definable
in a an arbitrary structure such that the relation R is defined
by a stable formula φ(x, y), and where the V -sort is equipped
with a Keisler φ-measure µ, and then apply Lemmas 0.7 and
0.8 where µ is taken to be the pseudofinite counting measure.
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Stable measures I

I The first key observation is that if φ(x, y) is stable then any
Keisler φ-measure over a model M say, is a weighted average
of complete φ-types over M .

I This is actually a basic fact about Borel probability measures
on “scattered spaces”; that they are averages of Diracs. But
anyway, we give a sketch of what is going on. We work in the
usual model-theoretic context.

Lemma 0.16
Suppose that φ(x, y) is a stable formula, and µ is a Keisler
φ-measure over M . Then there are pi(x) ∈ Sφ(M), and αi ∈ (0, 1]
for i = 1, 2, ... (maybe finite) such that

∑
i αi = 1 and

µ =
∑

i αipi.
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Lemma 0.16
Suppose that φ(x, y) is a stable formula, and µ is a Keisler
φ-measure over M . Then there are pi(x) ∈ Sφ(M), and αi ∈ (0, 1]
for i = 1, 2, ... (maybe finite) such that

∑
i αi = 1 and

µ =
∑

i αipi.
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Stable measures II

I Proof.

I It is convenient to assume L (language of T ) countable, and
to define a φ-formula over M to be a Boolean combination of
formulas φ(x, b) for b ∈M and x = a for a ∈M .

I So the relevant type space Sφ(M) is the collection of complete
φ-types over M , i.e. which decide every such φ-formula.

I We have seen in the section on types that from stability of
φ(x, y) every p(x) ∈ Sφ(M) is definable. In particular for any
countable M0 ≺M , Sφ(M0) is countable.spsace

I It follows that the space Sφ(M) is scattered, in the sense that
it is exhausted by the Cantor-Bendixon analysis.

I Where recall that for given a topological space S, the CB
analysis is as follows: the points p ∈ S of CB-rank 0 are the
isolated points.
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Stable measures III

I The points of CB rank α+ 1 are the ones that are isolated
after throwing away from S the (open set of) points of
CB-rank ≤ α etc.

I Then every p ∈ Sφ(M) gets a CB-rank, and there is a
nonempty finite set of points of maximal CB-rank γ say.

I In fact by stability of φ(x, y), one can deduce that γ is finite,
although we will not need this here.

I We will also freely use that the φ-measure µ can be identified
with a (regular) Borel probability measure on the space
Sφ(M).

I Now let p1, .., pk be the elements in Sφ(M) of CB-rank γ.

I Without loss of generality p1, .., pr have positive µ-measure
(say α1, .., αr) and pr+1, .., pk have µ-measure 0. (Maybe
r = 0).
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Stable measures IV

I Let U be the complement of {p1, .., pk} in Sφ(M), so U is
open and has µ-measure β = 1− (α1 + ...+ αr).

I We can assume β > 0, otherwise already
µ = α1p1 + ..+ αrpr.

I Now we can find clopens U1 ⊂ U2 ⊂ ... ⊂ U , and positive
reals β1 < β2 < ..... such that limi→∞βi = β and µ(Ui) = βi
(using regularity of µ).

I Now U1 and each Ui+1 \ Ui correspond to φ-definable sets
(over M), each of which has positive µ-measure, as well as
CB-rank < γ (explain).

I So we can apply induction to write each of µ|U1 and
µ|(Ui+1 \ Ui) as a suitable

∑
j δjqj , and put them together

with α1p1 + ..+ αrpr to find the required expression for µ.

I End of proof sketch.
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Stable graphs I

I The next step towards the proof of Theorem 0.15 is to prove a
“strong regularity theorem” for a single definable (possibly
infinite) graph (V,W,R), assuming the edge relation to be
stable.

I Let is fix an L-structure M , and a graph (V,W,R) definable
in M . We will assume that R is defined by the L-formula
φ(x, y). So V is considered as the sort over which the variable
x ranges, and likewise for W and y.

I As before a φ-formula over M means a Boolean combination
of formulas φ(x, b) and x = a for a, b ∈M . And Sφ(M) is
the corresponding type space.

I It is convenient, but not essential for the applications, to
defne a φ∗-formula over M as a Boolan combination of
formulas φ(c, y) and y = d for c, d in M .

I We will only be working with a Keisler measure µ on V over
M (without worrying about W ).
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Stable graphs II

I With this notation, here is the result:

Lemma 0.17
So (V,W,R) is definable in M , µ is a Keisler measure on V over
M , and we assume that the L-formula φ(x, y) defining the edge
relation R is stable (with respect to T = Th(M). Then for any
ε > 0, there are partitions V1 ∪ .. ∪ Vn of V and W1 ∪ .. ∪Wm of
W , such that for each i, j, either for all b ∈Wj ,
µ(Vi \R(x, b)) ≤ εµ(Vi), or for all b ∈Wj ,
µ(Vi ∩R(x, b)) ≤ εµ(Vi).
Moreover, each Vi can be defined by a φ-formula (over M), and
each Wj by a φ∗-formula (over M).
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Stable graphs III

I Proof.

I We will only have to consider the restriction of the measure µ
to the Boolean algebra of φ-formulas over M , equivalently to
the space Sφ(M), so we let µ denote this restriction.

I By Lemma 0.16, µ =
∑

i∈I αipi for some pi ∈ Sφ(M) and
αi ∈ (0, 1] where

∑
i αi = 1 and where we assume I to be

either ω or a finite initial segment of ω.

I Note that µ(pi) = αi for i ∈ I.

I Fix small ε > 0.

I For each i ∈ I, let Vi be a formula in pi (equivalently a clopen
containing pi) such that µ(Vi) < αi/(1− ε).

I Let B = Sφ(M) \ {pi : i ∈ I}. So B is Borel and µ(B) = 0.
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Stable graphs IV

I Let δ = (α0/1− ε)− µ(V0), so δ > 0, and we can find open
U ⊇ B such that µ(U) < δ.

I So U together with the Vi form an open cover of the compact
space Sφ(M).

I So, let U, V0, ..., Vn form a finite subcover. It is not hard to
refine the Vj so that they are disjoint and we still have
Vj ∈ pj and µ(Vj) < αj/(1− ε) (for j = 0, .., n).

I Let V ′0 be the complement of V1 ∪ .. ∪ Vn in Sφ(M).

I So V ′0 is clopen, and p0 ∈ V ′0 ⊆ U ∪ V0.

I Moreover by the choice of U we have that
µ(V ′0) < α0/(1− ε).

I Let us now replace V0 by V ′0 (i.e. V ′0 is the new V0).
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Stable graphs V

I The aim and end result of the manipulations so far is to
obtain clopen sets V0, .., Vn partitioning Sφ(M) (equivalently
φ-formulas V0, .., Vn which partition V ) such that Vi ∈ pi and
µ(Vi \ pi) < εµ(Vi), for i = 0, .., n

I The rest just uses definability of the pi.

I For each i = 0, .., n let ψi(y) be the definition of pi(x).
Namely ψ(y) is a φ∗-formula over M such that for all b ∈M ,
φ(x, b) ∈ pi iff M |= ψi(y).

I For each subset J of {0, .., n}, let Wj be the subset of W
defined by ∧i∈Jψi(y) ∧ ∧i/∈J¬ψi(y).

I So the WJ partition W (ignoring those that are empty) into
sets defined by φ∗-formulas.

I V = V0 ∪ ..∪ Vn and W = ∪WJ will be the desired partitions.
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Stable graphs VI

I We have to check that the conclusions hold.

I Note that for each i ∈ {0, .., n} and J ⊆ {0, ..., n}, we have
either

I (a) φ(x, b) ∈ pi for all b ∈WJ , or

I (b) ¬φ(x, b) ∈ pi for all b ∈WJ .

I In case (a) µ(Vi \R(x, b)) ≤ µ(Vi \ pi) < εµ(Vi) for all
b ∈WJ .

I In case (b) µ(Vi ∩R(x, b)) ≤ µ(Vi \ pi) < εµ(Vi), for all
b ∈WJ .

I End of proof of Lemma 0.17 (which one sees is almost
tautological).



Stable graphs VI

I We have to check that the conclusions hold.

I Note that for each i ∈ {0, .., n} and J ⊆ {0, ..., n}, we have
either

I (a) φ(x, b) ∈ pi for all b ∈WJ , or

I (b) ¬φ(x, b) ∈ pi for all b ∈WJ .

I In case (a) µ(Vi \R(x, b)) ≤ µ(Vi \ pi) < εµ(Vi) for all
b ∈WJ .

I In case (b) µ(Vi ∩R(x, b)) ≤ µ(Vi \ pi) < εµ(Vi), for all
b ∈WJ .

I End of proof of Lemma 0.17 (which one sees is almost
tautological).



Stable graphs VI

I We have to check that the conclusions hold.

I Note that for each i ∈ {0, .., n} and J ⊆ {0, ..., n}, we have
either

I (a) φ(x, b) ∈ pi for all b ∈WJ , or

I (b) ¬φ(x, b) ∈ pi for all b ∈WJ .

I In case (a) µ(Vi \R(x, b)) ≤ µ(Vi \ pi) < εµ(Vi) for all
b ∈WJ .

I In case (b) µ(Vi ∩R(x, b)) ≤ µ(Vi \ pi) < εµ(Vi), for all
b ∈WJ .

I End of proof of Lemma 0.17 (which one sees is almost
tautological).



Stable graphs VI

I We have to check that the conclusions hold.

I Note that for each i ∈ {0, .., n} and J ⊆ {0, ..., n}, we have
either

I (a) φ(x, b) ∈ pi for all b ∈WJ , or

I (b) ¬φ(x, b) ∈ pi for all b ∈WJ .

I In case (a) µ(Vi \R(x, b)) ≤ µ(Vi \ pi) < εµ(Vi) for all
b ∈WJ .

I In case (b) µ(Vi ∩R(x, b)) ≤ µ(Vi \ pi) < εµ(Vi), for all
b ∈WJ .

I End of proof of Lemma 0.17 (which one sees is almost
tautological).



Stable graphs VI

I We have to check that the conclusions hold.

I Note that for each i ∈ {0, .., n} and J ⊆ {0, ..., n}, we have
either

I (a) φ(x, b) ∈ pi for all b ∈WJ , or

I (b) ¬φ(x, b) ∈ pi for all b ∈WJ .

I In case (a) µ(Vi \R(x, b)) ≤ µ(Vi \ pi) < εµ(Vi) for all
b ∈WJ .

I In case (b) µ(Vi ∩R(x, b)) ≤ µ(Vi \ pi) < εµ(Vi), for all
b ∈WJ .

I End of proof of Lemma 0.17 (which one sees is almost
tautological).



Stable graphs VI

I We have to check that the conclusions hold.

I Note that for each i ∈ {0, .., n} and J ⊆ {0, ..., n}, we have
either

I (a) φ(x, b) ∈ pi for all b ∈WJ , or

I (b) ¬φ(x, b) ∈ pi for all b ∈WJ .

I In case (a) µ(Vi \R(x, b)) ≤ µ(Vi \ pi) < εµ(Vi) for all
b ∈WJ .

I In case (b) µ(Vi ∩R(x, b)) ≤ µ(Vi \ pi) < εµ(Vi), for all
b ∈WJ .

I End of proof of Lemma 0.17 (which one sees is almost
tautological).



Stable graphs VI

I We have to check that the conclusions hold.

I Note that for each i ∈ {0, .., n} and J ⊆ {0, ..., n}, we have
either

I (a) φ(x, b) ∈ pi for all b ∈WJ , or

I (b) ¬φ(x, b) ∈ pi for all b ∈WJ .

I In case (a) µ(Vi \R(x, b)) ≤ µ(Vi \ pi) < εµ(Vi) for all
b ∈WJ .

I In case (b) µ(Vi ∩R(x, b)) ≤ µ(Vi \ pi) < εµ(Vi), for all
b ∈WJ .

I End of proof of Lemma 0.17 (which one sees is almost
tautological).



Proof of stable regularity lemma I

I We put things together to prove Theorem 0.15.

I The proof, using Lemma 0.17 (as well as Lemmas 07 and 0.8),
is a model for all later proofs deducing facts about all suitable
finite graphs from results about single suitable infinite graphs.

I So suppose for a contradiction that Theorem 0.15 fails.

I So there is an ε > 0, such that for any N there is a finite
k-stable graph (VN ,WN , RN ) such that there is no partition
of each of the vertex sets into at most N subsets, such that
for each V ′, W ′ in the partition, (V ′,W ′, R|(V ′ ×W ′)) is
ε-homogeneous.

I The sizes of the VN can be assumed to be growing (by
thinning the sequence).

I So we can find a saturated model (V,W,R) of the common
theory of the (VN ,WN , R) such that V is infinite, and clearly
pseudofinite in the structure (V,W,R).
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Proof of stable regularity lemma II

I By Lemmas 0.7 and 0.8, and the Remarks following it, we
may assume (V,W,R) to be in V∗, with V finite in the sense
of V∗, equipping V with the nonstandard Keisler counting
measure µ.

I Moreover clause (iii)’ in Lemma 0.8, holds, namely any
formula of set theory true of (V,W,R) in V∗ is true of
infinitely many (VN ,WN , RN ) in V.

I As k-stability is expressed by a sentence (in the language of
bipartite graphs), it follows that (V,W,R) is k-stable, in
particular stable.

I So Lemma 0.17 can be applied, for ε/2, yielding some
partitions V = V1 ∪ .. ∪ Vn, and W = W1 ∪ ... ∪Wm (into
definable sets, so sets internal in V∗) such that for each i, j,
either for all b ∈Wj , µ(Vi \R(x, b)) ≤ (ε/2)µ(Vi), or
µ(Vi ∩R(x, b)) ≤ (ε/2)µ(Vi).
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Proof of stable regularity lemma III

I Remember that µ(Z) for Z any definable subset of V , is the
standard part of |Z|/|V | (where cardinality is computed in
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I All this (the partitions, and the property (*) in the last item)
is expressed by a formula of set theory, true in V∗ of the data
(V,W,R).

I By clause (iii)’ of Lemma 0.8, mentioned above, the formula
is true of infinitely many of the (VN ,WN , RN ) in V.

I Now choose N ≥ n,m. So there are partitions VN,1 ∪ ..∪VN,n
of VN and WN,1 ∪ .. ∪WN,m of WN with the property (*).
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Proof of stable regularity lemma IV

I Now given VN,i and WN,j ,

I if the analogue of (a) holds, then we compute that
|(VN,i ×WN,j) \R| ≤ ε|VNi ||WN,j |, and

I if the analogue of (b) holds, we see that
|(VN,i ×WN,j) ∩R| ≤ ε|VNi ||WN,j |

I So in fact we have decompositions of the vertices of
(VN ,WN , RN ) into ≤ N pieces such that each of the induced
subgraphs is ε-homogeneous, which is a contradiction to our
assumption about (VN ,WN , RN ).

I This contradiction ends the proof of Theorem 0.15. The proof
can also modified slightly to yield that in Theorem 0.15 the Vi
can be defined by φ-formulas and the Wj by φ∗-formulas.
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Distal regularity I

I We introduce and discuss the so-called distal regularity
theorem (of Chernikov-Starchenko), although our subsequent
proof is in the spirit of translating domination statements into
graph regularity statements, and then applying the
pseudofinite yoga.

I Among the motivations was to place existing results of
combinatoricists (Jacob Fox et al ...) in a general model
theoretic context, so not exactly a really new contribution to
combinatorics.

I We still focus on the bipartitite case although a lot of work
goes on in the unipartitite case. The context studied by
combinatorics people was semialgebraic graphs, namely graphs
G = (V,W,R) definable in the structure (R,+,×).

I For such a fixed such semialgebraic graph G, one can consider
the family of finite graphs (V ′,W ′, R|(V ′ ×W ′)) as V ′, W ′

range over finite subsets of V,W respectively.
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Distal regularity II

I Strong Erdös-Hajnal (which is a theorem in this situation) says
that there is δ depending on G such that for each such finite
V ′,W ′ there are V0 ⊆ V ′ and W0 ⊆W ′, with |V0| ≥ δ|V ′|
and |W0| ≥ δ|W ′|, such that V0,W0 is homogeneous for R.

I The closely related strong regularity theorem, provides, given
ε > 0 some Nε such that for every finite V ′,W ′ there is a
decomposition V ′ = V1 ∪ .. ∪ Vn, W ′ = W1 ∪ .. ∪Wm with
m,n < N such that outside a small exceptional set Σ of pairs
(i, j), each Vi,Wj is outright homogeneous for R.

I The distal theorems give the same results but replacing the
structure (R,+,×) by any first order structure M such that
Th(M) is distal (and our pseudofiniite formalism adapts well
to this set-up).

I Distality was introduced by Simon in his thesis and is supposed
to capture the idea of a “purely unstable” NIP theory.



Distal regularity II

I Strong Erdös-Hajnal (which is a theorem in this situation) says
that there is δ depending on G such that for each such finite
V ′,W ′ there are V0 ⊆ V ′ and W0 ⊆W ′, with |V0| ≥ δ|V ′|
and |W0| ≥ δ|W ′|, such that V0,W0 is homogeneous for R.

I The closely related strong regularity theorem, provides, given
ε > 0 some Nε such that for every finite V ′,W ′ there is a
decomposition V ′ = V1 ∪ .. ∪ Vn, W ′ = W1 ∪ .. ∪Wm with
m,n < N such that outside a small exceptional set Σ of pairs
(i, j), each Vi,Wj is outright homogeneous for R.

I The distal theorems give the same results but replacing the
structure (R,+,×) by any first order structure M such that
Th(M) is distal (and our pseudofiniite formalism adapts well
to this set-up).

I Distality was introduced by Simon in his thesis and is supposed
to capture the idea of a “purely unstable” NIP theory.



Distal regularity II

I Strong Erdös-Hajnal (which is a theorem in this situation) says
that there is δ depending on G such that for each such finite
V ′,W ′ there are V0 ⊆ V ′ and W0 ⊆W ′, with |V0| ≥ δ|V ′|
and |W0| ≥ δ|W ′|, such that V0,W0 is homogeneous for R.

I The closely related strong regularity theorem, provides, given
ε > 0 some Nε such that for every finite V ′,W ′ there is a
decomposition V ′ = V1 ∪ .. ∪ Vn, W ′ = W1 ∪ .. ∪Wm with
m,n < N such that outside a small exceptional set Σ of pairs
(i, j), each Vi,Wj is outright homogeneous for R.

I The distal theorems give the same results but replacing the
structure (R,+,×) by any first order structure M such that
Th(M) is distal (and our pseudofiniite formalism adapts well
to this set-up).

I Distality was introduced by Simon in his thesis and is supposed
to capture the idea of a “purely unstable” NIP theory.



Distal regularity II

I Strong Erdös-Hajnal (which is a theorem in this situation) says
that there is δ depending on G such that for each such finite
V ′,W ′ there are V0 ⊆ V ′ and W0 ⊆W ′, with |V0| ≥ δ|V ′|
and |W0| ≥ δ|W ′|, such that V0,W0 is homogeneous for R.

I The closely related strong regularity theorem, provides, given
ε > 0 some Nε such that for every finite V ′,W ′ there is a
decomposition V ′ = V1 ∪ .. ∪ Vn, W ′ = W1 ∪ .. ∪Wm with
m,n < N such that outside a small exceptional set Σ of pairs
(i, j), each Vi,Wj is outright homogeneous for R.

I The distal theorems give the same results but replacing the
structure (R,+,×) by any first order structure M such that
Th(M) is distal (and our pseudofiniite formalism adapts well
to this set-up).

I Distality was introduced by Simon in his thesis and is supposed
to capture the idea of a “purely unstable” NIP theory.



Distal regularity III

I Examples of distal first order theories are RCF (more
generally o-minimal theories), Th(Qp,+,×), Th(Z,+, <),
RCV F (real closed valued fields).

I The theory of algebraically closed valued fields is an important
unstable NIP theory, but is not distal because the residue
field is stable (in the correct sense of a sort or definable set in
an ambient theory being stable).

I The theory of dense pairs of real closed fields is unstable,
NIP , but not distal (for subtle reasons that I have forgotten).

I A characterization of distality which is convenient for our
purposes is:

Definition 0.18
A (complete) theory is distal if T is NIP and every generically
stable Keisler measure is smooth.
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Smooth and generically stable measures I

I (This is stuff from more than 10 years ago ...) We have
already alluded to smooth Keisler measures, but let us repeat
the formal definition. As usual the context is a complete
theory T etc.

Definition 0.19
Let µ(x) be a Keisler measure over a model M . µ is said to be
smooth if µ(x) has a unique extension to a Keisler measure µ′(x)
over M̄ (equivalently over any elementary extension of M).

I We could also restrict the notion of smoothness to Keisler
φ-measures, in the obvious way.

I Before defining generically stable measures, let us remark on
how established notions for types generalize to measures.

I For some of these definitions a global assumption that T has
NIP may be useful.
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Smooth and generically stable measures II

I Let µ(x) be a Keisler measure over a model M and let
A ⊆M , M0 ≺M .

I We say that µ(x) does not fork (divide) over A if whenever
φ(x, b) is over M , and µ(φ(x), b)) > 0 then φ(x, b) does not
fork (divide) over A.

I We say that µ(x) is finitely satisfiable in M0, if whenever
φ(x, b) is over M and µ(φ(x, b)) > 0, then φ(x, b) is realized
by an element (tuple) of M0.

I Assume M is |A|+-saturated. We say that µ is definable over
A if for every L-formula φ(x, y), and closed set C ⊆ [0, 1],
{b ∈M : µ(φ(x, b)) ∈ C} is “type-definable” over A.
(explain..).

I Note that these definitions agree with the usual ones when
µ(x) is a complete type.
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Smooth and generically stable measures III

I Let us remark for interested members of the audience that
measures behave similarly to types with respect to forking if T
is NIP .

I Namely, assume T is NIP , and µ is a Keisler measure over
M̄ . Then µ does not fork over M0 iff µ is
Aut(M̄/M0)-invariant.

Definition 0.20
(Assume T is NIP ). Let µ(x) be a Keisler measure over a model
M . We say that µ is generically stable if µ has an extension µ′(x)
over M̄ which is both definable over M and finitely satisfiable in
M (and in fact µ′ turns out to be the unique global nonforking
extension of µ).



Smooth and generically stable measures III

I We have a nice alternative characterization of generically
stable measures; a strong form of the VC-theorem.

Lemma 0.21
(Assume T NIP .) Let µ(x) be a Keisler measure over M . The
following are equivalent:
(i) µ is generically stable,
(ii) For any L-formula φ(x, y), and ε > 0, there are a1, ...., an in
M such that for any b ∈M , µ(φ(x, b)) is within ε of the
proportion of ai which satisfy φ(x, b).
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following are equivalent:
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(ii) For any L-formula φ(x, y), and ε > 0, there are a1, ...., an in
M such that for any b ∈M , µ(φ(x, b)) is within ε of the
proportion of ai which satisfy φ(x, b).



Smooth and generically stable measures IV

I One source of generically stable measures (in an NIP theory)
is so-called average measures: let I = (ai : i ∈ [0, 1]) be an
indiscernible “segment” in a model M and for φ(x) over M ,
define µI(φ(x)) to be the Lebesgue measure of
{i : M |= φ(ai)}. This makes sense, because φ(x, y) being
NIP , the set of {i ∈ [0, 1] : M |= φ(ai)} is a finite union of
points and convex sets, hence finite unions of points and
intervals, so measurable.

I For an NIP formula φ(x, y), there should be (and maybe
already is) a good theory of generically stable φ-types (as well
as a notion of φ-distality), which would help place subsequent
results and proofs in a formula-by-formula context.
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Distality theorems I

I So we can formally make sense of the definition of distality.

I What we call the distality theorems are about strong
regularity and Erdos-Hajnal for certain families of finite
graphs, related in some way to distal theories.

I There are probably cleaner statements related to “distality”
just of the graph relation, but I did not work such things out
yet.

I The context is a family G = (Gi : i ∈ I) of finite (bipartitite)
graphs.

I As expected the proofs involve proving theorems about single
bipartitite graphs definable in a model of a distal theory,
which will be almost tautological, and then applying the
pseudofinite stuff.

I We first give our version of distal regularity.
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Distality theorems II

Theorem 0.22
Given G, suppose that one of the following happens:

I (i) The graphs in G are uniformly definable in some model M
of a distal theory,

I (ii) For some model M of a distal theory T , there is a graph
(V,W,R) definable in M such that every graph in G is a finite
(induced) subgraph of (V,W,R), or

I (iii) Every model of the common theory of the Gi’s (in the
language of bipartitite graphs) is definable in some model of
some distal theory.

THEN for any ε > 0 there is Nε such that that for every
(V,W,R) ∈ G there are partitions V1, .., Vn of V and W1, ..,Wm of
W with n,m ≤ Nε such that outside a small exceptional set of
pairs (i, j), each pair Vi,Wj is homogeneous for R.
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Distality theorems III

I So in comparison with the conclusion of Szemeredi regularity,
Theorem 0.22 has the improved conclusion of outright
homogeneity in place of ε-regularity, but the small error
(exceptional set) is stll there (and cannot be done without).

I In comparison with the conclusion of the stable regularity
lemma, we have the improvement of homogeneity instead of
ε-homogeneity, but on the other hand the small error
(exceptional set), in place of no exceptional set.

I Note that with assumption (ii), 0.22 recovers the Fox et al
results.

I Our strong Erdos-Hajnal theorem has the same assumptions
as in Theorem 0.22, but the conclusion is that there is δ > 0
such that for each (V,W,R) in G there are V0 ⊆ V , W0 ⊆W
with |V0| ≥ δ|V | and |W0| ≥ δ|W | such that V0,W0 is
homogeneous for R. This clearly follows from Theorem 0.22.
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Regularity theorem for smooth measures I

I Our proof of Theorem 0.22 will use a couple of results, first a
regularity theorem for arbitrary definable graphs (V,W,R)
equipped with Keisler measures on V,W , at least one of
which is smooth, which we do in this section. The other,
discussed later is the fact that in the NIP environment the
pseudofinite counting measure is generically stable (whoich
follows from the Vapnik-Chervonenkis theorem).

I We start with a basically immediate “domination” statement
for smooth measures in arbitrary theories.
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Regularity theorem for smooth measures II

Lemma 0.23
I (T an arbitrary theory.) Let µ(x) be a Keisler measure over a

model M0 on the sort X. Suppose µ to be smooth. Let µ
also denote the induced (Borel probability) measure on
SX(M0). And let π : X = X(M̄)→ SX(M0) be the
tautological map π(a) = tp(a/M0).

I Then for every definable (with parameters from M̄) subset Y
of X, there is a closed subset E of SX(M0) of µ-measure 0,
such that for all p ∈ SX(M0) such that p /∈ E, either
π−1(p) ⊂ Y or π−1(p) ∩ Y = ∅.
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Regularity theorem for smooth measures III

Proof.
I We make use of some basic manipulations around extending

measures.

I Let E be the (closed) subset of SX(M0) consisting of those p
which are consistent with both x ∈ Y and x /∈ Y .

I Suppose, for a contradiction, that µ(E) > 0. Then let (µ)E
denote the localization of µ at E, namely as a measure on
SX(M0), (µ)E(B) = µ(B ∩ E)/µ(E) for B Borel.

I Then (µ)E has two different extensions to a Keisler measure
over M̄ , one giving Y measure 1 and one giving Y measure 0.

I From which it follows that µ itself has two different extensions
to M̄ , contradicting smoothness.
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Regularity theorem for smooth measures IV

I The smooth regularity theorem is a simple compactness
argument applied to Lemma 0.23.

I We already see a manifestation of the exceptional set as E in
Lemma 0.23.

Lemma 0.24
I Let (V,W,R) be a graph definable in a structure M . Let µ, ν

be Keisler measures over M on V , W , respectively, and
assume that µ is smoooth.

I Let ε > 0.

I Then there are partitions V = V1 ∪ .. ∪ Vn,
W = W1 ∪ .. ∪Wm into definable sets, and an “exceptional
set” Σ of indices (i, j) such that

I (i) (µ× ν)(∪(i,j)∈Σ(Vi ×Wj)) < ε, and

I (ii) For (i, j) /∈ Σ, (Vi,Wj) is homogeneous for R.
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Regularity theorem for smooth measures V

I Let us go briefly through the proof of Lemma 0.24 which
involves several compactness arguments.

I We work in M̄ . and make use of Lemma 0.23 with X = V ,
(and M0 = M) and the same meaning for π. Fix ε > 0.

I For any b ∈W , let Eb be the closed µ-measure 0 subset of
SV (M) outside of which each fibre of π is contained in or
disjoint from Eb.

I Eb clearly only depends on tp(b/M), so we write Eb as Eq
where q = tp(b/M). Let Zq be an M -definable set containing
Eq with µ(Zq) with µ-measure < ε.

I By compactness we can partition V \Zq into M -definable sets
Vq,1, ..., Vq,nq such that for each i, π−1(Vq,i) is either
contained in R(x, b) for some/all b realizing q, or is disjoint
from R(x, b) for some/all b realizing q.
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Regularity theorem for smooth measures VII

I Let V1, .., Vt be a common refinement of this finite collection
of partitions of V (into M -definable sets).

I We claim that this partition of V together with the partition
W = Wq1 ∪ ... ∪Wqm , is as required.

I It is just a matter of identifying the exceptional set and
checking the measure constraint.

I Let E = {(i, qj) : Vi ⊆ Zqj}.
I For each qj , ∪(i,qj)∈EVi ×Wqj = Zqj ×Wqj which has µ× ν

measure < εν(Wqj ).

I Summing over the qj , gives (µ× ν)(∪(i,qj)∈E(Vi ×Wqj )) < ε.

I And for (i, qj) /∈ E, Vi must be contained in Vqj ,s for some s,
so by (*) Vi ×Wqj is contained in or disjoint from R.

I End of proof of Lemma 0.24.
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NIP and pseudofinite measures I

I We can now give the second ingredient.

I The Vapnik-Chervonenkis theorem is a uniform law of large
numbers for “families of events” with finite VC dimension.

I It has the following consequence for Keisler measures:

I Suppose µ(x) is a Keisler measure over M . Let φ(x, y) be an
L-formula which has k-NIP .

I Then for any ε, there is N = Nk,ε depending only on k and ε,
such that there are p1(x), .., pN (x) ∈ Sx(M), such that for all
b ∈M , µ(φ(x, b)) is within ε of the proportion of the
p1, .., pN which contain φ(x, b).
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NIP and pseudofinite measures II

I In the special case when A is a finite set of tuples from M of
the appropriate length, and µ = µA is the counting measure
with respect to A (which we could recall), then this says that
there are a1, .., aN ∈ A such that for all b ∈M , µ(φ(x, b)) is
within ε of the proportion of the a1, .., aN which satisfy
φ(x, b).

I We conclude the following:

Lemma 0.25
Suppose M is a model of an NIP theory, A is a subset of X(M)
for some sort X, A is pseudofinite in M , (M,A) is saturated (?),
and µ(x) is a pseudofinite counting measure on X(M) (over M)
given after Lemma 0.8. Then µ is generically stable.
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NIP and pseudofinite measures III

I Proof of Lemma 0.25.

I So we know (from Lemma 0.7 and the construction) that
µ(Z) is the standard part of |Z ∩A|/|A| for Z a definable
subset of X(M), and where |.| denotes cardinality in V∗
(which is finite in the sense of V∗ for A and its internal
subsets).

I On the other hand, every sentence of set theory true of
(M,A) in V∗ is true of some (M ′, A′) in V with A′ finite.

I Fix a formula φ(x, y) of L which we know has k-NIP in M ,
for some k, so we may assume that in every relevant (M ′, A′)
with A′ finite, φ(x, y) has k-NIP in M ′.

I So fixing ε > 0 and letting N = Nk,ε/2 be as above, it follows
that there are a1, .., aN in A such that for any b ∈M ,
|φ(x, b)(M) ∩A|/|A| is within ε/2 of the proportion of the ai
which satisfy φ(x, b) in M .
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NIP and pseudofinite measures IV

I So for each b ∈M , µ(φ(x, b)) is within ε of the proportion of
the ai which satisfy φ(x, b) in M .

I By Lemma 0.21, µ is generically stable, completing the proof
of Lemma 0.25.

I Assuming that we have a good notion of generically stable
φ-measure where φ(x, y) is a NIP -formula, then the proof
above will show that a pseudofinite counting measure,
restricted to a NIP -formula φ(x, y), will be generically stable.
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Proof of distal regularity I

I We prove Theorem 0.22. We will give the proof under
assumption (ii) which is the context of the combinatoricists
results on semialgebraic graphs, as well as the
Chernikov-Starchenko theorem.

I But let us note in passing that assumption (i) would be
vacuous in distal theories such as RCF or Presburger, as
there are uniform bounds on the cardinality of finite uniformly
definable sets. But not vacuous for the theory of the p-adics.

I As in the proof of stable regularity, assume the conclusion
fails. So there is ε > 0 such that for every N there is a finite
induced subgraph (V ′N ,W

′
N , RN ) for which there is no

suitable partition (into at most N sets).

I We may assume that at least the cardinalities of the VN are
strictly increasing.
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Proof of distal regularity II

I Add new predicates P and Q for the distinguished finite
subsets of V,W , to get a family of L(P,Q) structures, and as
usual take a saturated model of the common L(P,Q)- theory
of the (M,VN ,WN ).

I Call this model (M∗, V ∗,W ∗) (where V ∗, W ∗ are
pseudofinite subsets of V (M∗),W (M∗).

I Both V ∗, and W ∗ induce the pseudofinite counting measures
µ, ν, on V (M∗), W (M∗) respectively.

I By Lemma 0.25, µ is generically stable (as is ν). By distality
µ is also smooth.

I Fix ε and apply Lemma 0.24 with ε/2 to
(V (M∗),W (M∗), R(M∗)) equipped with µ and ν, to get a
partitions of size n,m of the vertex sets with the appropriate
properties.
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(V (M∗),W (M∗), R(M∗)) equipped with µ and ν, to get a
partitions of size n,m of the vertex sets with the appropriate
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Proof of distal regularity III

I Apply Lemma 0.8 to obtain (M,VN ,WN ) satisfying the
appropriate formulas of set theory in V, to get a
contradiction, as in the proof of the stable regularity lemma.

I Note that there is a difference with the stable proof, as the
VN ,WN etc are not in the language L.
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Remarks on the NIP case I

I There is an almost identical version of Theorem 0.22 for NIP
theories.

I The assumptions are weakened by replacing “distal theory”
everwhere by “NIP theory”.

I And the conclusion is weakened by replacing “homogeneous”
by “ε-homogeneous”.

I The analogue of the regularity theorem for smooth measures
(Lemma 0.24) is a regularity theorem for generically stable
measures (in an ambient NIP theory) where (ii) in the
conclusion is replaced by an ε-homogeneity statement (but
involving additional machinery including nonforking products
of measures).

I And the “compact domination” statement for smooth
measures (Lemma 0.23) on which 0.24 depends is replaced by
a “generic compact domination” statement for generically
stable measures.
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Remarks on the NIP case II

I I will state this latter result (from Generically stable and
smooth measures, HPS), which essentially says that
generically stable measures are stationary, and is behind the
NIP regularity theorem (for suitable families of finite graphs).

I First, given a Keisler measure µ(x) over a model M , and a
partial type Σ(x) over M , we say that Σ(x) is µ-random (the
expression µ-wide is also used), if every finite conjunction of
formulas in Σ has positive µ-measure.

Lemma 0.26
Suppose T is NIP and µ(x) is a Keisler measure on a sort X over
a model M0, such that µ|M0 is generically stable. Let
π : X = X(M̄)→ SX(M0) be as before. Let Y ⊆ X be definable
over M̄ . Then there is closed set E ⊆ SX(M0) of µ-measure 0
such that all p(x) ∈ SX(M0) \ E, exactly one of p(x) ∪ “x ∈ Y ”
and p(x) ∪ “x /∈ Y ” is µ-random.
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Remarks on the NIP case III

I Finally there is a regularity lemma just for finite bipartitite
graphs (V,W,R) for which the edge relation R is k-NIP , or
equivalently, as we have mentioned earlier, which omit a fixed
induced subgraph. This is again proved by the
combinatoricists, and in fact is a celebrated theorem of
Lovasz-Szegedy, if I am not mistaken, and implies the results
above.

I Also proved later by Chernikov and Starchenko with
model-theoretic methods.

I This could be obtained by our methods, given a generic
compact domination theorem for generically stable φ measures
where φ(x, y) is NIP .

I In any case the regularity lemma alluded to above, still has
the exceptional pairs, but has ε-homogeneity rather than
ε-regularity.
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Arithmetic or group regularity lemmas; introduction I

I In this last part of the course we will discuss Szemeredi type
theorems for the class of finite groups G equipped with a
distinguished subset X.

I As mentioned before, in the distal or NIP case,
model-theoretic methods provide new approaches to or
model-theoretic generalizations of known results around graph
regularity.

I In contrast, in the group case, under the assumption k-NIP
of the relation xy ∈ X, we obtain new theorems. The
methods involve structural results in local fsg-group theory
(and local stable group theory in the k-stable case).

I First what can be said in general?

I In all the work by combinatoricists on this problem, there is a
blanket assumption that G is commutative, probably so as to
be able to use Fourier analytic methods.
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Arithmetic or group regularity lemmas; introduction II

I As mentioned in the introduction from (G,X) we obtain a
bipartitite graph (G,G,R) where R(x, y) iff xy ∈ X, so one
would expect some improved statement of Szemeredi
regularity in which the group structure is respected in some
sense.

I Green’s paper, A Szemeredi-type regularity lemma in abelian
groups, GAFA, 2005, (possibly) initiated the topic, and has a
rather complicted Fourier-analytic statement, which is difficult
to parse.

I However when restricted to the class of finite-dimensional
vector spaces over F2 (equipped with a distinguished subset
X), it yields the following:
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Arithmetic or group regularity lemmas III; introduction

Theorem 0.27
For every ε there is N such that for all (G,X) (where G = Fn2
some n), there is a partition of G into cosets
H + 0, H + g1, ..,H + gk with respect to a subgroup (vector
subspace) H of G of index at most N , such that outside a smal
exceptional set of pairs, each graph
(H + gi, H + gj , R|((H + gi)× (H + gj))) is ε-regular. (where
remember the graph relation R(x, y) is x+ y ∈ X).

I Terry and Wolf (TW) in 2017 considered the case where
G = Fnp for p fixed, AND where the relation x+ y ∈ X is
k-stable, obtaining stronger structural results; X is almost a
union of cosets of a subspace of small index.

I Alon, Fox, and Zhao, subsequently considered the case where
G is (finite) abelian and x+ y ∈ X is k-NIP .
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Arithmetic or group regularity lemmas IV; introduction

I With Conant and Terry, we considered first arbitrary (G,X)
where G is arbitrary (not necessarily abelian) and xy ∈ X is
k-stable, and then the more general case where xy ∈ X is
k-NIP .

I The thrust is that X is close to being a union of translates of
a nice subobject (a subgroup or a “Bohr neighbourhood”)

I One cannot expect such kinds of results in general, even when
G = Fn2 .

I However we do have a general rather soft “coset regularity”
statement (for arbitrary (G,X)), which we may give later.

I In the next section we will state the “new” results (mainly
from 2017-2018) and then discuss ingredients of the proof.
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Stable and NIP arithmetic regularity lemmas I

I We will now use A rather than X to denote the distinguished
subset of G.

I And we will define A to be to be k-stable if the relation
xy ∈ A is. Likewise for k-NIP .

I The stable case yields a strong and transparent statement:

Theorem 0.28
Fix k. For any ε > 0 there is N depending on ε (and k) such that
for any pair (G,A) where G is a finite group and A is a k-stable
subset, there is a normal subgroup H of G of index at most N ,
such that

I (i) for each coset C of H in G, either |C \A| ≤ |H|(= |C|),
or |C ∩A| ≤ |H|. Moreover

I (ii) There is a union Y of cosets of H such that A = Y up to
a set of cardinality ≤ ε|H|.
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I (ii) There is a union Y of cosets of H such that A = Y up to
a set of cardinality ≤ ε|H|.



Stable and NIP arithmetic regularity lemmas II

I When A is k-NIP , and G is of bounded exponent, we obtain
the same conclusion, but now with an exceptional set of
cosets of H.

Theorem 0.29
Fix k and r. Then for any ε > 0 there is N such that for any pair
(G,A) where G is a finite group of exponent ≤ r and A is a
k-NIP subset of A, there is a normal subgroup H of G of index
at most N , and a union Z of cosets of H (the exceptional set)
with |Z| ≤ ε|G| such that

I (i) For any coset C of H in G not contained in Z, we have
|C \A| ≤ ε|H|, or |C ∩A| ≤ ε|H|, and moreover,

I (ii) there is a union Y of cosets of H such that A \ Z = Y up
to a set of cardinality ≤ ε|H|
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Stable and NIP arithmetic regularity lemmas III

I In the case of arbitrary finite G (and k-NIP A), the normal
subgroup has to be replaced by something else.

I In general a Bohr neighbourhood of an (abstract) group G is
the preimage of a neighbourhood of the identity U of a
compact group L with respect to a homomorphism π : G→ L
(and sometimes π is assumed to have dense image in L,
although this only makes sense when G is infinite).

I For certain reasons to be discussed later we will be interested
only in homomorphisms from H to Tn, where Tn is the
n-dimensional torus, i.e. the n-fold product of the circle
group.

I In fact the Tn’s are precisely the compact connected
commutative Lie groups.

I So we define an (ε, n)-Bohr neighbourhood of a (possibly
finite) group H to be the preimage of the open ball of radius ε
around the identity under a homomorphism π : H → Tn.
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Stable and NIP arithmetic regularity lemmas IV

Theorem 0.30
Fix k. Then for any ε > 0, there is N (depending on ε and k) such
that for any pair (G,A) where G is a finite group and A is a
k-NIP subset of G, there are

I a normal subgroup H of G of index at most N ,

I a (δ, r)-Bohr neighbourhood B in H for some r ≤ N and
δ ≥ 1/N , and

I a subset Z ⊆ G with |Z| ≤ ε|G| (exceptional set), such that

I (i) for any g ∈ G \ Z, either |gB \A| ≤ ε|B| or
|gB ∩A| ≤ ε|B|, and moreover

I (ii) there is a union Y of translates of B such that A is equal
to Y up to a set of cardinality ≤ ε|B|, after throwing away Z.
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Coset regularity I

I This is a recent (2019) observation by us, which is relatively
soft, but yields Green’s Theorem 0.27 for example.

I We give the definition:

I Let G be a finite group, and A a subset. Let H be a subgroup
of G and C a coset of H in G. We say that C is
ε-coset-regular for A, if for sufficiently large subgroups K of
H and coset D of K in G such that D ⊆ C, the density
|A ∩ C|/|C| is within ε of the density |A ∩D|/|D|.

I Sufficiently large means that |K| ≥ ε|H|.
I This is a natural notion of regularity of a coset C of a

subgroup H of G with respect to A, but where we only
consider the densities with respect to large subsets of C which
are themselves cosets of subgroups.
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Coset regularity II

Theorem 0.31
For any ε there is N , such that if (G,A) is any pair consisting of a
finite group G and a subset A, then there is a normal subgroup H
of index at most N , and a union Z of cosets of H (the exceptional
set) with |Z| ≤ ε|G|, such that for any coset C of H in G such
that C is not contained in Z, then C is ε-coset-regular with
respect to A.

I Note that when G is simple (noncommutative), Theorem 0.31
says that G is itself ε-coset regular. But anyway Theorem
0.31 is only meaningful when G has a reasonable supply of
subgroups.
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The stable case I

I Local stable group theory is part of the literature (e.g. Groups
definable in local fields and pseudofinite fields,
Hrushovski-Pillay, IJM, 1994), and the structural statements
required for the proof of Theorem 0.28 can easily be extracted.

I We fix a group G definable in a model M (to work in some
degree of generality), as well as a L-formula δ(x, y), x ranging
over G and y over some other sort (maybe tuples from G).

I We assume that δ(x, y) is “left invariant” meaning that for
any b ∈M , and g ∈ G, the left translate by g of the subset of
G defined by δ(x, b) is defined by δ(x, c) for some c.

I As before a δ-formula (over M) is a Boolean combination of
formulas δ(x, b) for b ∈M , and the subset of G it defines is
called a δ-definable set. (We treat x = x, x 6= x as
degenerate δ-formulas, and sometimes we may want to
include Boolean combinations of x = g etc. too....)
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The stable case II

I Note that by our assumptions on δ the class of δ-definable
subsets of G is closed under left translation by elements of G.

I We also assume that the formula δ(x, y) is stable (for
Th(M)).

I A δ-definable subset X of G is said to be (left) generic, if
finitely many left translates of X (by elements of G of course)
cover G.

I A type p(x) ∈ Sδ(M) is called generic (or a δ-generic type of
G) if it only contains generic formulas.

I With this notation and assumptions, here is the fundamental
theorem of local stable group theory.
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The stable case III

Theorem 0.32
I G has a smallest δ-definable subgroup of finite index which we

call G0
δ .

I (ii) The δ-generic types of G are in one-one-correspondence
with the left cosets of G0

δ , namely each left coset of G0
δ is (as

a δ-formula) contained in a unique δ-generic type of G.

I (iii) There is a unique left-invariant (Keisler) δ-measure on G,
µ say, and moreover

I (iv) for any δ-definable set X, µ(X) > 0 iff X is generic.
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The stable case IV

Corollary 0.33

(In the same context as that of Theorem 0.32, and the same
notation.)
Let X be a δ-definable subset of G. Then

I (i) For each left coset C of G0
δ , either µ(C \X) = 0, or

µ(C ∩X) = 0.

I (ii) X is a union of left cosets of G0
δ up to a set of µ-measure

0.
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The stable case V

I To go from Theorem 0.32 and Corollary 0.33 to Theorem
0.28, we take δ(x, y) to be the formula yx ∈ A which is by
assumption k-stable and left invariant in the finite (G,A).

I Passing to the limit, i.e. taking some saturated infinite model
(G,A) of some collection of the finite (Gi, Ai) will then
preserve k-stability so stability of δ(x, y), whereby 0.32 and
0.33 can be applied

I But the crucial point is that the pseudofinite Keisler measure
on G (coming from V∗) will be left invariant, hence by the
uniqueness aspect of Theorem 0.32(iii), must coincide on
δ-definable sets with the δ-measure µ from Theorem 0.32.

I This allows us to pull Theorem 0.32 and Corollary 0.33 to the
finite (of course using some approximations) and obtain
Theorem 0.28.

I Note that Theorem 0.28 also implies that k-stable sets in
finite simple groups better be (asymptotically) either almost
everything or almost nothing.
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G/G00 I

I We saw in the discussion at the end of the last section that up
to small cardinality, suitable subsets of the finite groups G are
controlled by bounded index subgroups, i.e. all the action is
going on in G/H for some bounded index subgroup H.

I A slight variant of this will actually be the case in general.
That is, roughly speaking, for an infinite pseudofinite group G
with its pseudofinite Keisler measure µ, internal sets of
positive measure will be controlled in a sense by a compact
(rather than finite) quotient G/G00.

I And passing to approximations, this will be reflected in various
ways in the finite.

I It is a rather surprisingly important role for thos compact
group, although variants are also behind the classification of
approximate subgroups.
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G/G00 II

I So I will give some background, which will also explain how
compact commutative Lie groups turn up in Theorem 0.30.

I Let us fix an L-structure M , and a group G definable in M .
(Maybe assume L countable.)

I (Even the special case where M is V and G is just a group, in
particular a set, is not uninteresting.)

I Let M̄ be a very saturated elementary extension of M .

I Then we consider type-definable over M subgroups H of
G∗ = G(M̄) which have “bounded index”.

I Bounded index means of index at most ≤ 2|M |+|L|, which can
be shown to be equivalent to < κ where κ is the degree of
saturation of M̄ .
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G/G00 III

I There is a smallest such group H, it is normal in G∗ and we
call it (G∗)00

M .

I The quotient G∗/(G∗)00
M is a compact Hausdorff topological

group, which does not depend on the choice of M̄ .

I In fact, because of the bounded index assumption, the coset
of g modulo (G∗)00

M depends only on tp(g/M), whereby the
canonical homomorphism from G∗ to (G∗)00

M factors through
the tautological map to the type space SG(M), and this
equips G∗/(G∗)00

M with its compact Hausdorff topology. It is a
definable groups analog of the so-called KP Galois group.

I Likewise we could consider a collection ∆ of L-formulas
δ(x, y) (or even a single such formula), and consider (G∗)00

M,∆,
the smallest subgroup of G∗ of “bounded index” defined by a
collection of ∆-formulas over M . (Not necessarily normal any
more.)
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G/G00 IV

I More remarks.

I First, if T is NIP , then (G∗)00
M does not depend on M , only

on the canonical parameter of the formula defining G,
whereby the quotient G∗/(G∗)00

M is an invariant of the
formula defining G.

I Likewise for (G∗)00
M,∆ if ∆ is a collection of NIP formulas.

I If H is a compact (Hausdorff) topological group then H is an
inverse (or projective) limit of compact Lie groups.

I In particular we have an exact sequence
1→ H0 → H → H/H0 → 1, where H0 denotes the
connected component of the identity of H as a topological
group;
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G/G00 V

I Where H0 is an inverse limit of connected compact Lie
groups, and H/H0 is profinite (inverse limit of finite groups).

I Supposing M to be V and G a group (so in particular
definable in M), then G∗/(G∗)00

M is also known as the Bohr
compactification of G; the universal object among
homomorphisms of G to compact groups with dense image.

I So for arbitrary M , and G definable in M we also call
G∗/(G∗)00

M the “definable Bohr compactification” of
G = G(M).

Lemma 0.34
Suppose G is a pseudofinite group, considered as definable in the
structure M = V∗. Then the definable Bohr compactification of G
is profinite-by-commutative, that is the connected component of
G∗/(G∗)00

M (as a topological group) is an inverse limit of
connected commutative compact Lie groups.
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Local generic compact domination I

I There is a good theory of so called fsg groups in NIP
theories. These are definable groups which are equipped with
a translation invariant Keisler measure µ which is also
generically stable.

I We work in a saturated model M̄ , and one of the main results
is “generic compact domination” of G by G/G00.

I What this means (at least one form), is that given a definable
(with parameters from M̄) subset Y of G, there is a closed
EY ⊂ G/G00 of (normalized) Haar measure 0, such that for
all cosets C of G00 outside EY , not both “x ∈ C ∧ x ∈ Y ”
and “x ∈ C ∧ x /∈ Y ” are µ-random.

I This implies in particular that µ is the unique translation
invariant measure on G.
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Local generic compact domination II

I The desired local theory means working just with a single
translation invariant NIP -formula δ(x, y).

I In work with Conant, we developed such a theory, but
assuming also pseudofiniteness. It is an analogue of the
fundamental theorem of local stable group theory.

I Together with Lemma 0.34, which explains where the Bohr
neigbourhoods come from, this will suffices to prove Theorem
0.30.
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Local generic compact domination III

I The assumptions are that G (with some additional structure
in a language L) is saturated, pseudofinite, and a group.

I Also that δ(x, y) is a left invariant NIP -formula (for Th(G)).

I We assume for simplicity that G00
δ (which exists by discussions

in the previous section) is normal in G. Then we have:

Theorem 0.35
I (i) There is a unique left invariant Keisler δ-measure µ on G.

I (ii) The δ-definable sets of positive µ-measure are precisely
the (left) generic δ-definable sets.

I (iii) Given a δ-definable (over M̄) set Y ⊆ G, there is a closed
subset EY ⊂ G/G00

δ , of µ-measure 0 such that for
C ∈ G/G00

δ , C /∈ EY , exactly one of x ∈ C ∪ x ∈ Y ,
x ∈ C ∪ x /∈ Y is µ-random (equivalently by (ii) extends to a
global generic type).
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δ (which exists by discussions

in the previous section) is normal in G. Then we have:

Theorem 0.35
I (i) There is a unique left invariant Keisler δ-measure µ on G.

I (ii) The δ-definable sets of positive µ-measure are precisely
the (left) generic δ-definable sets.

I (iii) Given a δ-definable (over M̄) set Y ⊆ G, there is a closed
subset EY ⊂ G/G00

δ , of µ-measure 0 such that for
C ∈ G/G00

δ , C /∈ EY , exactly one of x ∈ C ∪ x ∈ Y ,
x ∈ C ∪ x /∈ Y is µ-random (equivalently by (ii) extends to a
global generic type).



Local generic compact domination III

I The assumptions are that G (with some additional structure
in a language L) is saturated, pseudofinite, and a group.

I Also that δ(x, y) is a left invariant NIP -formula (for Th(G)).

I We assume for simplicity that G00
δ (which exists by discussions

in the previous section) is normal in G. Then we have:

Theorem 0.35
I (i) There is a unique left invariant Keisler δ-measure µ on G.

I (ii) The δ-definable sets of positive µ-measure are precisely
the (left) generic δ-definable sets.

I (iii) Given a δ-definable (over M̄) set Y ⊆ G, there is a closed
subset EY ⊂ G/G00

δ , of µ-measure 0 such that for
C ∈ G/G00

δ , C /∈ EY , exactly one of x ∈ C ∪ x ∈ Y ,
x ∈ C ∪ x /∈ Y is µ-random (equivalently by (ii) extends to a
global generic type).
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