Rules for drawing the several parts of architecture:
in a more exact and easy manner than has been heretofore practised,
by which all fractions, in dividing the principal members and their parts,
are avoided

James Gibbs 1682-1754.
The 3d ed..
London: W. Innys etc.
1753
Helen Park List, folio 18
1753 3rd edition
64 engravings complete.
RULES
OF
DRAWING,
IN
ARCHITECTURE.

By JAMES GIBBS.
RULES
FOR
DRAWING
The several PARTS of
ARCHITECTURE,
in a
More exact and easy manner than has been heretofore
practised, by which all FRACTIONS, in dividing the
principal MEMBERS and their Parts, are avoided.

By JAMES GIBBS.

The THIRD EDITION.

LONDON:
Printed for W. INNYS and J. RICHARDSON, J. and P. KNAFTON,
R. MANBY and H. S. COX.
MDCCCLIII.
RULES
FOR
DRAWING
ARCHITECTURE
IN
A
MANNER
easy
and
mercantile
may
be
profitably
in
drawing
the
principles
of
the
teachings
for
the
practically
of
the
works
of
the
in
which
the
of
the
works
of
the
in
which
the
of
the
works
of
the

BY
JAMES
CIBBS

THE
FIRST
EDITION

LONDON

Printed
by
J.
Raven
and
J.
Raven

MDCCCLXVII

MDCCLXXII
TO THE
RIGHT HONOURABLE

EDWARD

Earl of OXFORD

AND

Earl MORTIMER,

Baron HARLEY of WIGMORE, &c.

My LORD,

YOUR Lordship's extensive Knowledge and good Taste command the Esteem of all that profess or love the Liberal Arts and Sciences; but more immediately of those who are personally known to Your Lordship.

I should shew myself unworthy of that Honour, did I omit this Opportunity of publicly testifying my Regard to so generous and universal a Patron, as well as the grateful
iv

DEDICATION.

ful Sense I shall ever retain of particular Obligations: To which Your Lordship will still add by receiving the following Sheets into the same Protection, with which the Author has been always honoured.

I am with the greatest Respect,

MY LORD,

Your Lordship's

and

Most obliged and

Most obedient humble Servant,

EDWARD.

Your Lordship's

and

Most obedient humble Servant,

JAMES GIBBS.
TO THE

READER.

UPON Examination of the common ways of drawing the Five Orders of Architecture, I thought there might be a Method found out so to divide the principal Members and their Parts, both as to their Heights and Projections, as to avoid Fractions. And having tried one Order with success, I proceeded to another, till at length I was satisfied it would answer my intention in all; and I doubt not, but that the Method here proposed will be acknowledged by proper Judges to be the most exact, as well as the easiest, that hath as yet been published.

I have here sufficiently explained the Arcades and Inter-columnations of each Order, and set down a Rule for placing Orders above Orders. I have also given Rules for drawing Doors, Gates, Windows and Chimney-pieces of different kinds, Cornices and their Profiles, Architraves, Bafes, Impofls, Surfaces, Frames for Pannels or Pictures in Rooms and other sorts of Mouldings and the Proportions of Ballusters; as also Scrolls, Frets or Guillochi's, and Pannelling for Ceilings, both Flat and Circular.

In the common manner of drawing the Orders, the Diameter, or sometimes the Semidiameter, of the Column, is called a Module; and this Module is divided into Parts or Minutes, as into twelve, eighteen, twenty four, thirty and sixty parts, according to different Authors. Palladio in dividing and adjusting his Orders, has no doubt excelled the rest, whom I have therefore followed. He has divided the Diameter of his Column, which he calls his Module, into sixty Minutes, and subdivided them into Seconds, a

Thirdd,
vi To the Reader.

Thirds, and Fourths. This is supposed to be the Method of the Ancients in composing their Designs; but it is very difficult to Beginners and such as are but little skill'd in Arithmetick: And certainly the parts consisting of so many Fractions may occasion mistakes in those who copy the Orders of Palladio; besides the difficulty of dividing those small parts with Compasses. But by this method of dividing the Orders Mechanically into equal parts, Fractions are entirely avoided; which will be found so beneficial to Workmen in drawing any part at large (as shall be explain'd by the following Directions) that when they are once accustomed to it, they will never follow any other. But before I proceed to the Explanation of the Plates, it may not be improper to premise something in general touching Columns, and their Entablatures and Pedestals.
PLATE OF Columns and their Measures.
Of Entablatures.

I. Of the Five Orders in general and their principal Parts. 1
 N. 1. The general Proportions of the Tuscan Order. 2
 N. 2. The general Proportions of the Dorick Order. 3
 II. N. 3. The general Proportions of the Ionick Order. 4
 N. 4. 5. The general Proportions of the Corinthian and Composite Orders.

III. The Tuscan Pedestal with part of the Column and its Base. 4

IV. The Entablature of the Tuscan Order, with the Capital and part of the Column. 5

V. The Tuscan Cornice at large. 6

VI. The Capitals of the Tuscan and Dorick Orders.

VII. The Dorick Pedestal, with part of the Column and its Base; 7

VIII. The Dorick Entablature. 8

IX. The Cornice and Prise of the Dorick Order. 9

X. The Ionick Pedestal with part of the Column and its Base. 10

XI. The Ionick Entablature. 11

XII. The Ionick Modillion-Cornice. 12

XIII. The Ionick Dintel-Cornice. 13

XIV. The Ionick Capital. 14

XV. A Rule for drawing the Spiral lines of the Volume of the Ionick Capital. 15

XVI. The Corinthian Pedestal with part of the Column. 16

XVII. The Corinthian Entablature. 17

XVIII. The Corinthian Cornice at large. 18

XIX. The Corinthian Capital. 19

XX. The Composite Pedestal with part of the Column. 20

XXI. The Composite Entablature. 21

XXII. The Composite Cornice at large. 22

XXIII. The Composite Capital. 23

XXIV. The Bases and Caps of the Pedestals of each Order. 24

XXV. Bases for the Columns of each Order. 25

XXVI. The Architraves of each Order. 26

XXVII. The Imposts of each Order. 27

XXVIII. Of Exoctic Pedestals, and the Rule for drawing the Eggs and Darts. 28

XXIX. The Intercolonnement of each Order. 29

Of Arches adorned with Columns or Pilasters.

XXX. The Tuscan Arch with and without its Pedestal. 30

XXXI. The
The CONTENTS

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXI</td>
<td>The Dorick Arch with and without the Pedestal.</td>
<td>15</td>
</tr>
<tr>
<td>XXXII</td>
<td>The Ionick Arches.</td>
<td>16</td>
</tr>
<tr>
<td>XXXIII</td>
<td>The Corinthian Arch.</td>
<td>16</td>
</tr>
<tr>
<td>XXXIV</td>
<td>The Composite Arch.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Of placing Columns over Columns.</td>
<td>17</td>
</tr>
<tr>
<td>XXXV</td>
<td>The Ionick and Corinthian Orders over the Dorick.</td>
<td>16</td>
</tr>
<tr>
<td>XXXVI</td>
<td>Arches over Arches.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Of Doors and Gates.</td>
<td>18</td>
</tr>
<tr>
<td>XXXVII</td>
<td>No. 1. The Tuscan Door.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>No. 2. The Dorick Door.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>No. 3. The Ionick Door.</td>
<td>16</td>
</tr>
<tr>
<td>XXXVIII</td>
<td>No. 1. The Composite Door.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>No. 2. The Corinthian Door.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>No. 3. Another Door of the Corinthian Order.</td>
<td>16</td>
</tr>
<tr>
<td>XXXIX</td>
<td>No. 1. The Tuscan Arched Door with a Pediment and Ballustrade.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>No. 2. The Dorick Arched Door.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>No. 3. The Ionick Arched Door.</td>
<td>16</td>
</tr>
<tr>
<td>XL</td>
<td>N°.1. The Composite Arched Door.</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>N°. 2. The Corinthian Arched Door with double Columns.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>N°. 3. The Corinthian Arched Door with single Columns.</td>
<td>16</td>
</tr>
<tr>
<td>XLI</td>
<td>Two Gates, one Dorick and the other Ionick.</td>
<td>16</td>
</tr>
<tr>
<td>XLII</td>
<td>Three Doors with Architraves.</td>
<td>16</td>
</tr>
<tr>
<td>XLIII</td>
<td>Ruffick Doors.</td>
<td>16</td>
</tr>
<tr>
<td>XLIV</td>
<td>Windows and Niches.</td>
<td>18</td>
</tr>
<tr>
<td>XLV</td>
<td>The Proportions of Windows for different heights of Rooms.</td>
<td>16</td>
</tr>
<tr>
<td>XLVI</td>
<td>Cornices for Doors, Windows and Niches.</td>
<td>16</td>
</tr>
<tr>
<td>XLVII</td>
<td>A Rule to draw the Scroll for the Support of Cornices over Doors, Windows</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>and Niches.</td>
<td>16</td>
</tr>
<tr>
<td>XLVIII</td>
<td>Venetian Windows.</td>
<td>16</td>
</tr>
<tr>
<td>XLIX</td>
<td>Six different Chimney-pieces.</td>
<td>16</td>
</tr>
<tr>
<td>I.</td>
<td>Three other Chimney-pieces, with Frames for Pictures or Pannels over them.</td>
<td>23</td>
</tr>
<tr>
<td>II.</td>
<td>Three more Chimney-pieces.</td>
<td>16</td>
</tr>
<tr>
<td>II.</td>
<td>Three different sorts of large Mouldings for Pannel or Picture-frames fixed</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>in Rooms.</td>
<td>16</td>
</tr>
<tr>
<td>LI.</td>
<td>Five different Mouldings for smaller Pannels.</td>
<td>16</td>
</tr>
<tr>
<td>LIV</td>
<td>The Proportions of Rooms and the Covings of their Ceilings.</td>
<td>16</td>
</tr>
<tr>
<td>LV</td>
<td>Of Ceilings in general and their Ornaments.</td>
<td>24</td>
</tr>
<tr>
<td>LVI</td>
<td>Of Coved Ceilings and their Ornaments.</td>
<td>16</td>
</tr>
<tr>
<td>LVII</td>
<td>Of Cupola's and circular Softies.</td>
<td>16</td>
</tr>
<tr>
<td>LVIII</td>
<td>Of Flat Ceilings adorned with Fret-work.</td>
<td>16</td>
</tr>
<tr>
<td>LIX</td>
<td>Of Frets or Gaiolchi's.</td>
<td>16</td>
</tr>
<tr>
<td>LX</td>
<td>Of Block-Cornices and Ruffick Coves.</td>
<td>16</td>
</tr>
<tr>
<td>LXI</td>
<td>The Profiles of Block-Cornices.</td>
<td>27</td>
</tr>
<tr>
<td>LXII</td>
<td>Of Ballusters their Proportions and Distances.</td>
<td>16</td>
</tr>
<tr>
<td>LXIII</td>
<td>Of Balconies and their Truffles.</td>
<td>16</td>
</tr>
<tr>
<td>LXIV</td>
<td>The Corinthian Modillion explained.</td>
<td>28</td>
</tr>
</tbody>
</table>

RULES
RULES
For Drawing the several Parts of
ARCHITECTURE, &c.

Of Columns and their Measures.

In all Compositions of Architecture, the Column, being the principal Figure, should be perfect in its Proportions, as they are taught us by the Antients, with that the height of the Column should be measured by its Diameter without a Remainder; that is to say, the height of the Column should consist of such a number of times its Diameter without a Fraction, according to the different Proportions of each Order, of which there are Five, none exceeding ten Diameters in height, nor less than seven; Those of eight and ten are accounted perfect, and the first invented by the Antients; the rest are inferior. Their Names and Proportions are as follow, including Base and Capital:

- The Tuscan is in height 7 Diameters,
- The Doric is 8 Diameters,
- The Ionic is 9 Diameters,
- The Corinthian is 10 Diameters, and
- The Roman or Composite is 10 Diameters.

Of Entablatures.

Having settled a Rule for the Proportions of Columns, the Entablatures must bear a proportion to them in each Order; for which Palladio has given a Rule which cannot undergo any considerable change, without altering the just Proportions of Columns. He makes the Entablatures of the Tuscan and Doric to be to their Columns as one to four, and the Ionic, Corinthian and Composite, as one to five. The Proportion of the Entablature in each Order is explained as followeth:

One Diameter and \(\frac{1}{4} \) is the height of the Entablature of the Tuscan Order, which is \(\frac{1}{2} \) of Seven Diameters. Two Diameters is the height of the Entablature of the Doric; that being \(\frac{1}{8} \) of Eight Diameters. One Diameter and \(\frac{1}{4} \) is the height of the Entablature of the Ionic; which is \(\frac{1}{3} \) of nine Diameters. Two Diameters is the height of the Entablature of the Corinthian Order; that being \(\frac{1}{5} \) of Ten Diameters. The Entablature of the Composite has the same proportion with that of the Corinthian.
Of Pedestals.

The Entablature being a part proportionable to its Column, and the Pedestal an addition to both, it should be considered as a part of the Column and Entablature taken together; therefore the height of the Column and Entablature being divided into four equal parts, one of them shall be the height of the Pedestal. This Rule is to be observed through all the Five Orders, by which the Pedestal will have an agreeable effect with the Whole and all its Parts. N. B. The Pedestal may be made lower when necessity requires, but not otherwise.

Of the Five Orders in general, and their principal Parts.

Plate I.

The Five Orders in general are each divided into three principal parts from the Base-line upwards, and are named as follow;

A B, the Pedestal,
B C, the Column,
C D, the Entablature.

Each of these is divided into three essential Parts, viz.

1. The Pedestal into 2. The Column into 3. The Entablature into
 a b, the Base; d e, the Base; g h, the Architrave,
 b c, the Die; e f, the Shaft; b i, the Frieze,
 c d, the Cap. f g, the Capital. i k, the Cornice.

Other smaller divisions are called Members, whether they be Square or Curvilinear, and are more or less in number according to the several Orders; as will be observed particularly in the Explanation of each of them.

The general Proportions of the Tuscan Order.

Plate I. No. 1.

Take any height proposed for this Order upon a straight line, and divide it into five equal parts; one of those parts shall be the height of the Pedestal, according to the outer division of the Scale on the left hand. Then divide the other four parts above it into five parts, according to the inner division of that Scale; the upper fifth part shall be the height of the Entablature, and the other four parts between the Pedestal and Entablature, shall be the height of the Column, including its Base and Capital; and this height being divided into seven parts, one shall be the Diameter or thickness of the Column. The Base and Capital are each in height a Semidiameter of the Column. The Entablature is divided into seven parts, two of which go to the height of the Architrave, two to the Frieze, and three to the Cornice. The Column must be divided into three Parts, from the top of the lower division, it is diminished at the upper part 1 of its Semidiameter on each side. From the diminished part draw two upright lines parallel to the middle line, through the Capital and Entablature, and from those lines mark the Projections of the Capital, Architrave and Cornice. The Diameter of the Column at the smallest part a-top being divided into four equal parts, one of them is the projection of the Capital. The Architrave proj
(3.)

The Base of the Column projects on each side 1/4 of its Semidiameter. From the extremity of the projections of the Base, let fall on each side a line to the bottom of the Plinth of the Pedestal, that will give the breadth of the Die. Divide the height of the Pedestal into four parts; one is the height of the Plinth, half the height of one of them is the height of the Cap, and one third of one of them is the height of the Base of the Pedestal. The projection of the Base is equal to its height, and the Cap projects the same as the Base. This Paragraph well understood will make the rest easy.

The general Proportions of the Dorick Order.

PLATE I. No. 2.

TAKE any height upon a straight line, as in the Tuscan Order, and divide it into five equal parts; one of them is the height of the Pedestal. The other four parts are to be divided into five parts, one of which is the height of the Entablature; and that height is divided into eight parts, two of which give the Architrave, three the Frize, and three the Cornice. The height of the Column is divided into eight parts, one of which is the Diameter of the Column. The Base and Capital are each in height a Semidiameter of the Column. The Base of the Column projects on each side 1/4 of the Semidiameter, which gives the breadth of the Die of the Pedestal. The Base and Cap of the Pedestal, as to their heights, are the same as in the Tuscan Order, as also their projections. The Column diminishes 1/4 of its Semidiameter on each side from the third part of its height to the top. The Capital projects 1/2 of the Diameter of the Column at the smallest part. The Architrave projects 1/3 of its height; and the projection of the Cornice is equal to half the height of the whole Entablature.

The general Proportions of the Ionick Order.

PLATE II. No. 3.

TAKE any determined height, and divide it into five equal parts; one of those parts is the height of the Pedestal, as in the foregoing Orders; the other four being divided into six parts, one of them is the height of the Entablature. The height of the Column being divided into nine parts, one of them is the Diameter of it. The Base and Capital are each in height a Semidiameter of the Column. The Column diminishes on each side 1/4 of its Semidiameter. The projection of the Base is 1/4 of the Semidiameter of the Column; and that determines the breadth of the Die of the Pedestal. The other parts of the Pedestal are as in the Dorick and Tuscan Orders. The height of the Entablature is divided into five parts, one part and a half is the height of the Architrave; the Frize is of the same height with it, and two parts give the height of the Cornice. The Architrave projects 1/3 of its height. The Projection of the Cornice is equal to its height. The Capital projects on each side one half of the Semidiameter of the Column.
The general Proportions of the **Corinthian** and **Composite** Orders.

Plate II. No. 4 and 5.

The whole height is divided into five parts both in the one and the other, one of which is the Pedestal, and the other four parts over it are divided into six, one of which is the height of the Entablature. The height of the Column being divided into ten parts, one of them is the Diameter of it. The height of the Capital is one Diameter and \(\frac{1}{4}\) the other dimensions are as in the **Ionic** Order.

The **Tuscan** Pedestal with part of the Column and its Base.

Plate III.

- A, The Shaft of the Column.
- B, Lift.
- C, Torus.
- D, Plinth.
- E, Platband.
- F, Ogee.
- G, Die of the Pedestal.
- H, Fillet.
- I, Ogee reversed.
- K, Plinth.

The height of the Pedestal being divided into four parts, as was said before, one goes to the Plinth, half of that height is the **Cista** or Cap, and \(\frac{1}{2}\) of it is the Base; the projection of the Base is equal to its height, as is described by a Quadrant on the Base, and the Cap has the same projection. For the lesser divisions, see Plate XXIV for the Base and Cap of the Pedestal, and Plate XXV for the Base of the Column.

This Method shall be observed through the Five Orders of referring to the Plate, where each Member is drawn at large, with the Geometrical Rule to form it. And it is to be further observed, that the Plates of Pedestals and Entablatures shew the larger or groffer divisions, and the proportion one part bears to another; as for example, how many parts the Cornice is in proportion to the Architrave and Frize, and the Cap to the Pedestals; as also how the members are to be enriched: But when the particular parts are to be exactly drawn, recourse must be had to the Plates referred to, where they are drawn at large; as the Bases, Caps, Architraves, Cornices, &c. and you are not to truft to the small divisions marked here on the Plates of Pedestals and Entablatures.

The Entablature of the **Tuscan** Order, with the Capital and part of the Column.

Plate IV.

The height of the Entablature is divided into seven parts; two go to the Architrave, two to the Frize, and three to the Cornice. The Cornice projects as much as it is in height, and is divided into three principal parts, for which I must refer you to the next Plate, where it is drawn at large, and for the Architrave to Plate XXVI.

Names
Names of the Members of the Entablature.

A, Cimareta with a Fillet.
B, Corona with a Lift over it.
C, Ovolo or Quarter-round.
D, Cavetto with a Fillet.
E, Friez.
F, Lintel.
G, Upper Fasia.
H, Lower Fasia.
I, Abacus.
K, Ovolo.
L, Frize of the Capital.
M, Atrragal.
N, Column.
O, Platform of the Cornice.

The Tuscan Cornice at large.

Plate V.

In this and all other Cornices, the larger divisions are parts of the whole Entablature. The manner of drawing it is this: Draw the upright line from which it is to project, mark the height of the Cornice, and divide it into three equal parts, which will give the large divisions; then compare the greater with the lesser parts. The uppermost division contains the Cima Reetta with its Fillet, which is of that part. The Corona has a Lift of a fifth part of the middle division. The lowermost division contains two members of equal bigness, viz. the Cavetto and the Ovolo; the Cavetto has a Lift of of its height, and the Lift over the Ovolo, which makes the Dip under the Corona, is of the same bigness. The projection of the Cornice, being equal to its height, is divided into three principal parts, and subdivided according to the projection of the members, as appears by the divisions upon the Line under the Cornice.

The Capital of the Tuscan and Dorick Orders.

Plate VI.

The Tuscan Capital is half a Diameter in height; its projection is of the Diameter of the Column at the smallest part. Divide the height of the Capital into three parts; give one to the Collarino A, one to the Ovolo B, and the third to the Abacus C. The greater Divisions are subdivided into lesser according to their members. Divide the projection of the Capital into fix parts, and make the Ovolo less than the Quadrant of a Circle. To find its Center mark the interseotions from the extreme parts of the Ovolo, join them as marked by the prick'd line, and where this line intersects the upper line of the Ovolo, that will be the Center. The Atrragal D, under the Capital, is a member belonging to the Column, and its measure is of the Semidiameter of it; and its height being divided into three equal parts, goes to the Lintel. It projects as much as it is in height. The method for joining the Lintel to the Column is this; divide the projecting part of the Lintel into five parts, and take fix such parts for the Semidiameter of the Cavetto.

The Profile of the Dorick Capital being much the same with that of the Tuscan (except that the divisions are more both in its members and projection) the foregoing Rule will be sufficient to explain it.
The Doric Pedestal with part of the Column and its Base.

Plate VII.

The Doric Base is in height a Semidiameter of its Column, and its projection is \(\frac{1}{4} \) of the Semidiameter, and that gives the breadth of the Die of the Pedestal. The height of the Pedestal was mentioned before in Plate I. No. 2. The projection of the Base and Cap is the same as in the Tuscan, Plate III. For their particular members see Plate XXIV, and for the Base of the Column see Plate XXV. The Flutings are twenty-four as they are marked on the Column.

The Names of the members of the Base of the Column are as follow:

A, The upper Torus.
B, Scotia or Crevette.
C, Under Torus.
D, Flinth.

The Doric Entablature.

Plate VIII.

The height of the Doric Entablature (which is two Diameters or a fourth part of the height of the Column) being divided into eight parts, two go to the Architrave, three to the Frize, and three to the Cornice. The Cornice projects a whole Diameter or four of those parts, or one half of the height of the whole Entablature, as is marked above the Cornice; but to make the Cornice and Frize better understood, I have drawn them larger on the next Plate. For the Architrave see Plate XXVI, and for the Capital, Plate VI.

The Names of the Members of the Doric Entablature.

A, Cima rölla with a Lift over it.
B, Lift.
C, Corone.
D, Mistle, with an Ogee over it.
E, Ovolo with its Fillet.
F, Capital of the Triglyph.
G, Triglyph.
H, Flutings of the Triglyph.
I, Profile of the Triglyph.
K, Metop.
L, An Ornament in the Metop.

M, Tenia or Bandage.
N, Guttue or Drops.
O, Fascia of the Architrave.
P, Cymatium.
Q, Abacus.
R, Ovolo or Quarter-round.
S, Crevette.
T, Frize of the Capital.
U, Atralgal.
V, The smallest part of the Column.
W, The Platform of the Cornice.

The Cornice and Frize of the Doric Order.

Plate IX.

The Frize and Cornice are here expressed at large; the first shewing its Triglyphs and Metops, and the Cornice its Mutilis and Modillions. The prick'd line \(AB \) is the middle of the Column, and the line \(CD \) answers to the diminifled part of the Column. The Metops of the Frize must be square, their breadth
broadth being equal to their height, and they are \(\frac{1}{3} \) of a Diameter. The Triglyphs are half a Diameter. Divide half the Triglyph into fix parts; one is half a Flute, and the Space betwixt the Flutes is \(\frac{1}{4} \). The Profile or thickness of the Triglyph \(G \) is \(\frac{1}{2} \); divide that thickness into three parts, two will be the depth of each Flute. The Drops or Bells must be fix; their form is triangular.

The Cornice is in height \(\frac{1}{2} \) of a Diameter, and is divided into three parts; and each of them is subdivided into three. Take off one of the subdivided parts at the bottom of the Cornice, for the flat member that crowns the Triglyphs; then give two for the Ovolo, two for the Modillion, two for the Cornea, and two for the Cyma. The Fillets and small Ogee are explained by the smaller divisions.

The projection of the Cornice is one Diameter. There is at the bottom of the Frize a Scale divided into four parts, and each fourth divided into three, and each third into three more. Take off the projection of the Ovolo and Cyma, as is expressed by the upright pricked lines; proceed to find the divisions for the heads of the Modillions, which are all to be equal. In order to this divide the distance from middle to middle of two Triglyphs into four parts; two of them will be the Modillion with the Fillet and Ogee over it, and two will be the distance betwixt the Modillions, which is to be divided into five parts for the Panel in the Soffit; take one on each side for its Border, there will remain three for the square of the Panel, as is expressed here in the Profile. The bigness and projection of the Modillion being known, form the Platform or Soffit of it in this manner, as at F. Draw the two Diagonal lines from the corners \(a \) and \(b \), intersecting one another at right angles in the middle of the inner square at \(G \). The distance of the Diagonal lines falling on the joining part of the Modillion at \(d, d \), will give the side of the inner square, and the remainder will be the border \(e, e, e \), on the three sides. Divide the sides of the square into fix parts, and draw parallel lines from each division; then describe the Circular drops, leaving a small space of \(\frac{1}{6} \) betwixt them. A double square of two must be left plain in the middle, and the space betwixt the Drops must be sunk to half a Diameter of one of the Drop.

The Ionick Pedestal with part of the Column and its Base.

Plate X.

The general divisions of the Ionick Pedestal are the same as in the foregoing Orders. For the particular parts see Plate XXIV for the Base and Cap of the Pedestal, and Plate XXV for the Base of the Column.

A. The Lift.
B. Upper Torus.
C. Scotia.
D. Lower Torus.
E. Plinth.
F. Cyme of the Pedestal.
G. Dado, or Die.
H. Base.
I. Plinth of the Base.

The Ionick Entablature.

Plate XI.

The height of the Ionick Entablature, being \(\frac{1}{3} \) of the height of the Column, is divided into ten parts; three of them go to the height of the Architrave, three
three to the Prize, and four to the Cornice. The projection of the Cornice, being equal to its height, is likewise divided into four parts. For the particular members see the next Plate, where it is drawn larger, and Plate XXVI for the Architrave.

\[
\begin{align*}
A, & \text{ Cima rite.} \\
B, & \text{ Corona.} \\
C, & \text{ Modillion.} \\
D, & \text{ Ocule.} \\
E, & \text{ Cuvette.} \\
F, & \text{ Prize.} \\
G, & \text{ Lift.} \\
H, & \text{ Reversed Cima.} \\
I, & \text{ Upper Fascia.} \\
K, & \text{ Lower Fascia.}
\end{align*}
\]

The Ionick Modillion-Cornice.

Plate XII.

There are two Ionick Cornices, one with Modillions, and the other with Dentels; they have both the same general proportions, but differ in their particular members. The Ionick Modillion-Cornice is divided into four principal parts; and those parts are subdivided for its smaller members. The projection of the Cornice is equal to its height; the members are confined by pricked lines coming from the Scale at the bottom of the Cornice, which is divided into four parts and subdivided. This Cornice, when used over Columns, must have its Modillions \(\frac{1}{4} \) of the Diameter of the Column, and the space between them \(\frac{1}{2} \). Half a Diameter between middle and middle of the Modillions is here divided into fix parts; of which one is half a Modillion, and four the space between them and the length of the Modillion three. The pricked line \(AB \), which is the middle of the Column, must go through the middle of the Modillion; and the line \(CD \) shews the diminished part of the Column, which toucheth the side of a Modillion. The shape or form of it is made from three Centers: The length of it being first divided into fix parts, erect a perpendicular at \(4 \), and another at \(1 \); the first Center will be at \(4 \), the second one and a half below it, and the third two and a half above it, according to the two Quadrants on the Modillion. The projection of a reversed Osge and Fillet over it, being the Cap of the Modillion, is shewn by a pricked square at the end of the Modillion. As to the square Pannels in the Soffit of the Cornice, divide the space between the Caps of the Modillions into fix parts, as is figured; take one on each side for the Border, there remain four for the Pannel. Mark the same divisions on the Profile of the Corona at \(E \), and divide the remaining part in two for the Drip. But where the Cornice is used without Columns, the signets of the Modillion in proportion to the Cornice is given on the Scale below the Cornice.

The Ionick Dentel-Cornice.

Plate XIII.

The height of the Ionick Dentel-Cornice is divided into four parts as the former, and is very easy in its divisions. When this Cornice is used upon Pillars or Pilasters, the Dentels must be exactly divided by the Diameter of the Column. Supposing the line \(AB \) to be the middle line of the Column, from hence is set down half a Diameter divided into twelve equal parts, as marked on
(9)

the Dentels, of which one is half a Dentel, and one the space betwixt them. The upright line CD answers to the diminished part of the Column, from whence the Cornice doth project, as directed by a Scale below the Cornice. But in case the Cornice is used by itself for Rooms, Doors, Windows, &c. to find the higness of the Dentel, you must divide $\frac{1}{3}$ of the Scale of the projection of the Cornice into fix parts: Then take the length of seven such parts, and divide it into five parts; two of them will be the Dentel, and one the space betwixt them, as you may observe by the Scale CC.

The Ionic Capital.

Plate XIV.

This Plate contains three Figures; No. 1. the upright face of the Capital, No. 2. the Plan of the round and square Column with the projection of the Capital, and No. 3. the Volute seen in front and angular-wise, drawn larger than above. Between No. 1. and No. 2. there is a Scale of one Diameter, half of which is divided into fix parts, to which there are added three parts on each side, for the projection of the Capital. Draw a line for the middle of the Capital, and another cross-wise for the upper part of it; give half a Diameter for its height AB: Divide it into three parts, as marked on the left hand above; take $\frac{1}{3}$ for the Abacus, which you are to divide into two parts, and the upper half into four, of which you must give three to the Ovolo, and one to the Lift of the Abacus. Then divide the height BC into eight parts, two of them give the Ovolo H, one the Bead I, which answers to the Eye of the Volute, and half one of those parts gives the Lift K. This being done, form the Volute from its several Centers, as in the example No. 3. And as the height of the Volute is divided into eight parts, the breadth of it must be seven of them: But to make it more plain, I have drawn it larger on the next Plate.

To draw the Plan No. 2. take five parts of the Diameter for the solid or diminished part of the Column, which is shaded on the Plan. From the Profile of the upright face of the Capital draw the projection of the Ovolo, Bead and Lift, and mark them in the Plan. The Flutings are $2\frac{1}{2}$; to form which, divide a quarter of the Plan of the Column into fix parts, which shall give the Center for each Flute. Then divide half a fifth into four parts; take three parts for half the Diameter of the Flutes, and draw them Semicircular, the spaces between the Flutes will be $\frac{1}{3}$ of a Flute; the Eggs and Darts are of the same number, and answer the same Divisions. The Flutes of Plasters or square Columns must be the same as in round Columns, which will make seven in number, divided from the middle; at the corner of each Flute after there remains $\frac{1}{3}$ for a Bead. Then form a square at the extremity of the projection of the Capital, take off at each corner diagonally $\frac{1}{3}$ of half the Diameter of the Column, from the corner of the remaining length mark the intersection at D, from this Center draw the Segment or Cavity of the Abacus EE, set off corner-wise $\frac{1}{3}$ for the two members of the Abacus FF, divide it into two parts and give one to the narrowest part of the Abacus GG, join the inner and outer corner by a line, and return the members of the Cavity. The greatest projection of the Volute L falls plumb with the lower part of the Abacus G, as is shown in No. 3.
A Rule for drawing the Spiral Lines of the Volute of the Ionick Capital.

PLATE XV.

The Rule to draw the Spiral lines, which form the Ionick Volute, is this:

Take the height AB, and divide it into eight parts, the fourth shall be the bigness of the Eye, which divide into two parts for the Center; then draw AC in a rectangle to AB, and mark on it seven of the divisions of the upright line AB, which gives the breadth of the Volute; the upright line on the third division gives the Center of the Eye: Then draw the outer square that contains the Eye, and the Diagonal lines through the Center of it; parallel to those Diagonals, describe the inner square, in which observe the cross lines from side to side divided into six parts for the Centers, as is expressed larger in the lower Figure, where the Centers are marked 1, 2, 3. From these Centers draw lines parallel to the sides of the outer square, extended on each side, fix one point of your Compasses in the first Center 1, and extend the other upwards to 1, and draw the biggest Quadrant from 1 to 2; change your Compasses to the Center 2, and with the length 2, 2, describe the next Quadrant from 2 to 3; and so on to the number of Centers, until the Spiral line touch the upper part of the Eye. The inner Spiral runs parallel to the outer from a to Center 3, and the breadth of the Fillet formed by them is half one of the divisions of the upright Scale. The second Spiral is marked with letters a b c d, &c. as also the Centers belonging to it; all which will be plain if followed in the same manner as before.

The Corinthian Pedestal with part of the Column.

PLATE XVI.

The Corinthian Pedestal is the same, as to its general proportions and parts, as the Pedestal of the foregoing Orders. For the Base and Cap of it see Plate XXIV, and for the Base of the Column, Plate XXV. The Flutings of the Column are twenty in number, and are of a Semicircular form.

The Corinthian Entablature.

PLATE XVII.

The height of the Corinthian Entablature is divided into ten parts; whereof the Architrave hath three, the Prize three, and the Cornice four. The projection of the Cornice, being equal to its height, is divided into four parts; the smaller divisions are expressed at large on the next Plate. For the Architrave see Plate XXVI. The Drawings below shew the Platform of the Cornice with its Modillions and Rofes.
The Corinthian Cornice at large.

Plate XVIII.

The Corinthian Cornice is of a more rich composition, and hath a greater variety of members than the former. The first upright Scale contains four parts of the ten into which the whole Entablature is divided, as on Plate XVII. The second Scale is divided into five parts, the third of which goes to the Modillion, the fourth to the Cornice, the fifth to the Cymafera; the first and second together are divided into three parts, the first is for the revolved Cyma at the bottom, the second for the Dentels, and the third for the Ovolo. The smaller members are in proportion to the greater, as is explained by the lesser divisions on that Scale. The Modillions are $\frac{1}{2}$ of the Diameter of the Column, and their distances two sixths and a half. Half a Diameter is here divided on the Cornice into five parts, of which the breadth of the Modillion is two, and the length of it is four; the Cap projects $\frac{1}{2}$ of those parts, and the distance betwixt the Modillions is five. By this Rule the exact distance betwixt middle and middle of the Modillions is $\frac{3}{5}$ of the Diameter. The upright prick'd line AB is the middle of the Column, and CD answers to the diminished part of it, from whence the Cornice is projected; which projection is equal to its height, as is shown by the Scale at the bottom of the Cornice, on which is likewise shewn the height of a Modillion, where one fourth of the Scale is divided into five parts, five of which make the breadth of the Modillion. The distance between them is in proportion to it, as figured in the Front and Profile of it. The Pannels in the Soffite are plain by the divisions marked on them. The Out-fillets of the Modillion marked $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{2}$ of its breadth; and so is the Bead f. But I have draw'd the Modillion at large and explained it at the end of this Book, Plate LXIV. As to the Dentels, divide the Semidiameter marked on the Cornice into fourteen parts: two of those parts will be the Dentel, and one the space betwixt them.

The Corinthian Capital.

Plate XIX.

There are three Figures on this Plate. No. 1. is the upright of the Capital. No. 2. the Plan, being one quarter-part of a round and square Column; as also of the Capital with its Projections. No. 3. the Capital seen angular-wise and in profile, with its Stems and Caudicles. The height of the Capital is one Diameter and $\frac{1}{4}$, including the Abacus. Divide the height of the Capital from the Attic to the under-part of the Abacus into three parts, which give the height of the Leaves and Caudicles; and each part being subdivided, as on the Scale upon the left hand of the Capital, will give the Foldings of the Leaves, which must not exceed in projection the oblique prick'd line drawn from the Attic to the extremity of the Abacus.
The Composite Pedestal with part of the Column.

Plate XX.

The general proportions of the Composite Pedestal are the same as in the foregoing Orders. For the particular parts, see Plate Xxiv for the Base and Cyma of the Pedestal, and Plate Xxv for the Base of the Column.

The Composite Entablature.

Plate XXI.

The height and projection of the Composite Entablature is the same with that of the Corinthian; only the Atrragal under Ogee at the bottom of the Cornice is taken off the Prise. The Cornice is drawn by itself on the next Plate. For the Architrave see Plate Xxvi.

The Composite Cornice at large.

Plate XXII.

The height of the Composite Cornice is divided into four parts; as also its projection. This Cornice is in itself plain and easy, being taken from the Ionic Modillion-Cornice, from which this differs only in the form of the Modillion. The upright line AB is the middle of the Column, and CD is the diminished part of it, from whence the Cornice doth project, equal to its height. If \(\frac{1}{2} \) of the Scale below be divided into six parts, five give the height of the Modillion. The Atrragal under the Ogee at the bottom is not a part of the Cornice, but belongs to the height of the Prise.

The Composite Capital.

Plate XXIII.

The three Figures here exhibit (No. 1.) the Upright of the Capital. (No. 2.) The Plan of the round and square Column, and the Capital with its Projections. (No. 3.) The Capital seen on its angle and in profile. The Volute is the same as in the Ionic. The height of the Capital, including the Abacus, is one Diameter and \(\frac{1}{2} \), as that of the Corinthian is \(\frac{1}{4} \), and so are the height of the Leaves and their Foldings.

The Bases and Caps of the Pedestals of each Order.

Plate XXIV.

The projection of the Base of the Pedestal being equal to its height, draw the Base-line and erect a perpendicular for the Out-line of the Pedestal, as it is drawn on this Plate for the Tuscan Base and Cup; mark its height and projection, draw the Diagonal of the square, divide the height into two parts, and one of them into three, take off the square of one for the Lills at the top and bottom,
bottom, divide the Diagonal betwixt Lift and Lift into two parts, and mark the Intersections from the middle and extremes of the Diagonal, as in the Plate; those Intersections are the Centers for drawing the Out-line of the Ogee. This is the Rule for all Curvilinear members of this kind, whether erect or reversed, as will appear in other examples. The Caps or Cornices of Pedestals are very easy in their divisions; and their projection is to their height as two to three, as appears by the upright Scales for their height and division of their members, and the Scales between the Caps and Bases for their projections.

Bases of the Columns of each Order.

Plate XXV.

The Bases are in height a Semidiameter of their Columns; their projection is \(\frac{1}{3} \) of their height: Their members are of an easy form, being most of them Semicircular, except the Scotia which is mixt-linear, drawn from two Centers in this manner, as in the figure of the Ionic Base: Having divided and drawn the signds of each member and the Centers of the upper and under Torus, let fall a perpendicular from the Center of the upper Torus, and divide it within the space of the Scotia into seven parts; the three uppermost will be the Semidiameter of the inner Circle \(CDE \); From the Center \(C \), draw the outer Semicircle \(AFB \), then draw the oblique line \(AE \) through the Center of the inner Circle, \(A \) shall be the Center of the Segment \(BE \); so that \(BEO \) is the Scotia required. This Rule will serve for all the Bases of Columns. The upright and horizontal Scales shew the divisions of the members and their projections.

The Architraves of each Order.

Plate XXVI.

It is to be observed that the height of the Architraves of the Tuscan and Doric Orders is divided into two parts, and then subdivided, as appears on this Plate; and that of the Ionic, Corinthian and Composite, is divided into three parts, and those subdivided, to form their members. The projection is taken from the line \(AB \), which falls perpendicular to the lower Scotia, and is in the first and second Order \(\frac{2}{3} \), and in the three other Orders \(\frac{1}{2} \) part of their height.

The Imposts of each Order.

Plate XXVII.

The letter \(A \) is the Impost, and \(B \) the Plan of the Pilaster contained in the square \(abcd \), marked on the Plan and in the Upright over the Impost, is the Architrave that goes round the Arch \(be \) in the insole of the Pilaster. The Imposts of Arches are in height \(\frac{1}{4} \) of their Opening; which being divided into three parts, one of them is the height of the Neck or Frize of the Impost, the rest goes to the Cap. The Atragal at the foot of the Impost is \(\frac{1}{4} \) of its height, and is divided into three parts, one goes to the Lift, and the other two to the Atragal. As to the projection of the Impost, in the Tuscan and Doric, divide the Architrave
trave that goes round the Arch into three parts, one of them is the projection of the Impo{t}: But in the Ionick, Corinthian and Composite, the Impo{t} project ⅔ and ⅔ more of one of those parts. The Profiles of the Architraves of the Arches of each Order are drawn under each Impo{t}. For the divisions of the parts observe the upright and horizontal Scales.

Of Exotick Pedi{t}als, and the Rule for drawing the Eggs and Darts.

PLATE XXVIII.

By Exotick Pedi{t}als I mean such as have their Mouldings otherwise formed and adorned than the Regular Pedi{t}als that belong to each Order. And they are used generally for supporting Figures or Vases in Gardens, &c. Not but that those Orn{a}ments may be supported by Regular Pedi{t}als; but not being confined to such, they are made generally different from them. I have given here two sorts of them with their measures; and if the divisions on the Scales be observed, they will not be found difficult.

As to the Ornament of Eggs and Darts cut in the Ovolo, much used by the Ancients, if they are well proportioned they have a good effect. The Rule for drawing them is this: Divide the height of the Ovolo or Quarter-round into nine parts, seven of them, marked on each side of the middle line of the Egg, give the middle of the Darts; the small crores on the right hand shew the Centers of the circular lines, and the prick'd lines coming from the Centers shew the joining of those lines that form the Egg and Shell. The Dart itself is formed by the prick'd lines which intersect each other; the one coming from the top of the middle line of the Egg, and the other from the upper part of the other Dart. I have given here several sorts of Eggs without Darts for a variety.

The Intercoloniations of each Order.

PLATE XXIX.

The placing of Columns at convenient distances a{t}under is called Intercoloniations, and are used in Galleries or Corridores, either for Beauty or U{f}, or both, or for Communication from one place to another, for Porichoes, Peristyles or Colonnades, &c. The Columns may be more or less distant from each other according to the different Orders; but will be most agreeable when they are in proportion to their height. I have given on this Plate three different examples of each Order, and their distances figured. The narrowest is for double Columns, or Columns placed two and two.

Of Arches adorned with Columns or Pilasters.

When Arches are adorned with Columns or Pilasters, either with or without Pedi{t}als, let the Columns or Pilasters be so disposed, as to leave a convenient space for the Arch and its Architrav{e}, and let the Pears be no more than one half, nor less than ⅔ of the Void. The Architrav{e} round the Arch should be always ⅔ of the Void of the Arch, and the Impo{t} the same, whether the Arch be great or small. The Impo{t} resembles the form of a Capital because of its bear-

ing.
ing. The Arches of each Order will not admit of any considerable variety, being confined to the divisions of Triglyphs and Modillions.

The Tuscan Arch with and without its Pedestal.

Plate XXX.

To form the Tuscan Arch without the Pedestal, first find out the Diameter of the Column, and divide the height into five parts; the fifth part is the height of the Entablature. Then divide the height of the Column into seven parts; one of them is the Diameter of the Column. Give one Diameter for the height of the Plinth. The distance from middle to middle of the Columns must be six Diameters. The Pilasters on each side of the Column are a Semidiameter of it in bigness, and the width of the Arch is four Diameters. To find the Center of the Arch, divide the height from the Ground-line to the under-part of the Entablature into three equal parts, as is expressed by a line on the right hand; the extremity of the second division is the Center of the Arch.

N.B. Let this be a general Rule not only for the Tuscan Arch with or without the Pedestal, but for all other Arches of the five Orders. When the Diameter and distance from middle to middle of the Columns, on each side the intended Arch, is found the distance from Column to Column being divided into ten parts, one of them shall be the bigness of the Pilaster, and the other eight give the Opening of the Arch.

The Architrave that goes round the Arch, as also the Impediment, are each of them as big as the Pilaster, or \(\frac{2}{7} \) of the Opening of the Arch; so that if the distance from Column to Column be thus mechanically divided, as is marked on the Arches of each Order on the left hand, it will answer as if it were divided arithmetically. Although I have figured them arithmetically on the Plates, these figures are not to be taken notice of further than for the distances from Center to Center of the Columns; since the mechanical divisions mentioned before will do the same thing.

As to the Tuscan Arch with its Pedestal, divide its height into five parts, one of them is the height of the Pedestal. Then divide the height above the Pedestal into five parts, one of them is the height of the Entablature. The height from the Pedestal to the Entablature being divided into seven parts, one of them is the Diameter of the Column. The distance from middle to middle of the Column must be seven Diameters, the Pilasters that support the Arch are \(\frac{3}{7} \) of the Diameter, and the Opening of the Arch will be four Diameters and \(\frac{1}{7} \). The Center of the Arch is marked upon the upright line on the right hand.

The Doric Arch with and without the Pedestal.

Plate XXXI.

To draw the Doric Arch without the Pedestal, find the Diameter of the Column, and take the Semidiameter for the Plinth. The distance from middle to middle of the Columns must be six Diameters and \(\frac{1}{7} \), the Pilasters that support the Arch must be half a Diameter, and the Opening of the Arch four Diameters and \(\frac{1}{7} \). These dimensions cannot be varied, because of the divisions of the
the Metope and Triglyphs. The Center of the Arch is found by the upright line on the right hand.

As to the Dorick Arch with the Pedestal, first find the Diameter of the Column; the distance from middle to middle of the Columns must be seven Diameters and a half, the Pilasters of the Arch will be \(\frac{1}{2} \) of the Diameter, and the Opening of the Arch five Diameters and \(\frac{1}{2} \).

The Ionick Arches.

Plate XXXII.

The distance from middle to middle of the Columns of the Ionick Arch without the Pedestal, so as to have the Motillions fall right, must be six Diameters; the Pilasters that support the Arch must be half a Diameter, and the Opening of the Arch four Diameters, &c.

The Ionick Arch with the Pedestal, from middle to middle of the Columns, must be seven Diameters and a half, the Pilasters \(\frac{1}{4} \) of a Diameter, and the Opening of the Arch five Diameters and \(\frac{1}{4} \). The Rule for finding the Center of the Arch is marked on the Column.

The Corinthian Arch.

Plate XXXIII.

The distance from middle to middle of the Columns of the Corinthian Arch, without the Pedestal, must be six Diameters and \(\frac{1}{2} \); the Pilasters that support the Arch are \(\frac{1}{4} \) of a Diameter, and the opening of the Arch four Diameters and \(\frac{1}{2} \).

The distance from middle to middle of the Columns of the Corinthian Arch, with the Pedestal, must be eight Diameters and \(\frac{1}{2} \); the Pilasters that support the Arch \(\frac{1}{2} \), and the opening of the Arch five Diameters and \(\frac{1}{2} \). To find the Center of the Arch, divide the distance from the upper part of the Pedestal to the upper part of the Entablature into ten parts; the sixth division will be the Center of the Arch.

The Composite Arch.

Plate XXXIV.

The distance from middle to middle of the Columns of the Composite Arch, without the Pedestal, is six Diameters and a half, the Pilasters \(\frac{1}{2} \), the Opening of the Arch four and \(\frac{1}{2} \). The Center of the Arch is marked on the right hand.

The distance from middle to middle of the Columns of this Arch, with the Pedestal, is eight Diameters. The Center of the Arch is found by dividing the distance from the upper part of the Pedestal to the under part of the Entablature into ten parts; the Center is at the fifth division.
Of placing Columns over Columns.

In designing of Colonnades, or Arcades, adorned with Columns of two or three Orders placed one another, it is to be observed, that the first or lowest or first Order, as the Doric, in the following Plate, must give the bigness of the Diameter to the Order immediately over it, being there the Ionic; which being 1 of the Diameter of the Doric, the Diameter of the Ionic will be equal to the diminished part of the Doric, which diminishes 1 of its Diameter. In small Draughts divide six Diameters of the Doric into seven parts, \(\frac{1}{7} \) will be the Diameter required for the Ionic. The same method is to be taken for finding the Diameter of the Corinthian over the Ionic. In this and all other compositions the Intercolunnium is directed by the Diameter; as also by the divisions of the Metopes and Triglyphs, and Modillions. Their proportions in respect to the Diameter are as follows:

The Doric from middle to middle of the Triglyphs is one Diameter and \(\frac{1}{2} \) the Triglyph \(\frac{1}{2} \) and the Metope \(\frac{1}{2} \) of a Diameter.

The Ionic from middle to middle of the Modillions is \(\frac{1}{7} \) the Diameter, the Modillion \(\frac{1}{2} \) and the Interval \(\frac{1}{7} \) of it.

The Corinthian from middle to middle of the Modillions is \(\frac{1}{7} \) of the Diameter, the Modillion \(\frac{1}{2} \) and the Interval \(\frac{1}{7} \).

The Composite from middle to middle of the Modillions is \(\frac{1}{7} \) of the Diameter, the Modillion \(\frac{1}{2} \), and the Interval \(\frac{1}{7} \).

N.B. \(\frac{1}{7} \) is twelve times in seven Diameters.

The Ionic and Corinthian Orders over the Doric.

Plate XXXV.

Here are two examples of Orders over Orders; that on the left hand is the Doric with the Ionic over it, and the Corinthian over the Ionic. The Doric, being the lowest or first Order, gives the rule to the other two, because of its Metopes and Triglyphs; the distance of each Intercolunnium is figured.

The other example, on the right hand, is the Corinthian over the Ionic, on a Rustick Basement. The first example shews the Intercolunniums where the Columns are inderal, this shews the Intercolunniums when they are three quarter Columns. The distances between middle and middle of the Columns are figured.

It was observed before, that the Pedestal should not be less than \(\frac{1}{7} \) of the height of the Column and Entablature together; but here it is necessary to have it left, otherwise the Breadth of the Windows would be too high, if the Columns be of a large Diameter.

Arches over Arches.

Plate XXXVI.

There must always be regard had to the lower Order, as was said before, because it regulates the Orders over it, so that the Modillions may fall regularly over each other. The distances from middle to middle of the Columns being figured, the Rules given before will be sufficient for explaining these two examples.
Of Doors and Gates.

Doors and Gates have their Heads either square or circular; the latter ought not to be used, unless the Impost be above a Man's height. The proportion of their Openings is as one to two, or their height is twice their breadth; but the highest of them should not exceed two squares and $\frac{1}{2}$. To be more particular with respect to Doors, I will begin with the Tuscan.

The Tuscan Door.

Plate XXXVII. No. 1.

First find the Diameter of the Column, give six Diameters from middle to middle of the Column, the Opening of the Door will be four Diameters, the Frame round the Door will be a Semidiameter, the height of the Opening will be seven Diameters, and the Plinth one Diameter.

The Doric Door.

Plate XXXVII. No. 2.

Having found the Diameter of the Column, give six Diameters and $\frac{1}{2}$ to the distance from middle to middle of the Columns; four Diameters and $\frac{1}{2}$ is the Opening, and eight Diameters and a half go to the height, &c.

The Ionic Door.

Plate XXXVII. No. 3.

The distance from middle to middle of the Columns is six Diameters and a half, the Opening four Diameters and a half, and the height of the Opening nine Diameters and a half, &c.

The Geometrical Rule to find the height of the Pediment is this: Draw the line BG through the middle of the intended Door (as in No. 2.) take the full extent of the Cornice AC, from the middle of it at E describe the Circle ABCD, and from D describe the Circle AFGC, the Segment AFC is the proper height of the Pediment.

The Composite Door.

Plate XXXVIII. No. 1.

The distance from middle to middle of the Columns, so that the Modillions may answer right, must be seven Diameters, the Opening four Diameters and $\frac{1}{2}$, and the height of the Opening ten Diameters and $\frac{1}{2}$, &c.

The
(19)

The Corinthian Door.

Plate XXXVIII. No. 2.

This Door hath seven Diameters betwixt middle and middle of the Columns, the Opening is four Diameters and \(\frac{1}{2}\), and the height ten Diameters and \(\frac{1}{2}\), &c.

Another Door of the Corinthian Order.

Plate XXXVIII. No. 3.

The distance from middle to middle of the Columns is seven Diameters and \(\frac{1}{2}\), the Opening four Diameters and \(\frac{1}{2}\), and the height ten Diameters and \(\frac{1}{2}\), &c.

The Tuscan Arched Door with a Pediment and Balustrade.

Plate XXXIX. No. 1.

The distance from middle to middle of the Columns must be six Diameters, and the Opening four. The Rule for finding the Center of the Arch appears upon a line on the right hand, &c.

The Doric Arched Door.

Plate XXXIX. No. 2.

The distance from middle to middle of the Columns is six Diameters and \(\frac{1}{2}\), and the Opening of the Arch is four Diameters and \(\frac{1}{2}\), &c.

The Ionic Arched Door.

Plate XXXIX. No. 3.

The Ionic Arched Door has seven Diameters from middle to middle of the Columns, and the Opening of the Arch is four Diameters and a half. The prick’d line on the right hand (which is the height from the Ground-line to the under-part of the Entablature) being divided into three equal parts, the second division gives the Center of the Arch, &c.

The Composite Arched Door.

Plate XL. No. 1.

From middle to middle of the Columns there are seven Diameters and a half, the Opening of the Arch is five Diameters. The line on the right hand gives the Center of the Arch, and that on the left gives the general divisions, &c.
THE distance from middle to middle of the Columns on each side of the Arch is seven Diameters, and from middle to middle of the double Columns one Diameter and $\frac{1}{2}$, and the Opening of the Arch four Diameters and $\frac{1}{2}$, &c.

The Corinthian Arched Door with single Columns.

PLATE XL. No. 5.

THE distance from middle to middle of the Columns is seven Diameters and $\frac{1}{2}$, the Opening of the Arch is five Diameters, &c.

N.B. I have given great variety of Doors in my Book of Designs and Ornaments, published in 1728.

Two Gates; one Dorick, the other Ionick.

PLATE XII.

IN the Dorick Gate, in order to have the Metops and Triglyphs justly divided, the distance from middle to middle of the Columns next the Arch must be seven Diameters and a half; and from middle to middle of the lower Intercolunniation three Diameters and $\frac{1}{2}$, and the Opening of the Arch five Diameters.

The Attick is $\frac{1}{2}$ of the whole height of the Order, including the Pedestal, as appears by a line on the left hand, the Center of the Arch, or the height of the Imprint from the Ground-line, is marked on the right hand.

The Ionick Gate hath eight Diameters betwixt middle and middle of the Columns on each side of the Opening, which is fix Diameters and a half; the distance from middle to middle of the Columns of the lower Intercolunniation is three Diameters and a half, the Attick is $\frac{1}{2}$ of the height of the Order.

Three Doors with Architraves.

PLATE XLII.

I have given on this Plate, three different sorts of Doors with Architraves. The first has its Opening two squares, and the Architrave is $\frac{1}{2}$ part of the Opening. The Architrave, Frize and Cornice are in height one half of the breadth of the Opening; and that being divided into three parts, one goes to the Architrave; the other two being divided into seven, three go to the Frize, and four to the Cornice. For the particular divisions see Plate XLVI.

The second Door is two squares and $\frac{1}{2}$, having Architrave, Frize, and Cornice, with Scrolls and Pilasters. The Architrave is $\frac{1}{2}$ of the breadth of the Opening, and two thirds of the breadth of the Architrave give the height of the Pilaster, upon which the Scroll is fixed. The Entablature, as to its principal parts is divided as in the former example. For the particular parts see Plate XLVI.

The
The third Door is two squares, and hath the same proportions with the first; but it hath a circular Pediment and swell'd Frize, and the Architrave is kneel'd; part of the Opening. For the Particulars see Plate XLVI.

Rustick Doors.

Plate XLIII.

I have given on this Plate five different sorts of Rustick Doors, although they appear but three. They are all two squares in height, or their height is twice their breadth. The method of drawing them is so easy, the parts being figured, that it's needless to give any further description of them.

Windows and Niches.

Plate XLIV.

Here are three different kinds of Windows and Niches, all with Architraves, Frizes and Cornices. The Breast, or Pedestal-part, of the Window is 1 of the whole height, as is shown by a line on the left hand; the height of their Openings is two squares. There are Niches inscribed within them. The Architraves, Frizes and Cornices have the same proportions as in the Doors. For a greater Variety of Windows and Niches, see my Book of Designs and Ornaments before mentioned.

The Proportions of Windows for different heights of Rooms.

Plate XLV.

On this Plate is shown the different proportions of Windows for different heights of Rooms. There are two of two Squares, one of a Square and 1, one of a Square and a half, one of a Square and 1/4, and one square Window. The Architraves in all of them are 1/3 of their Openings.

Cornices for Doors, Windows and Niches.

Plate XLVI.

Here are three different sorts of Cornices for Doors, Windows and Niches. The outer line on the left hand divides the whole height into three parts, one of which goes to the Architrave; the two upper parts being divided into seven, as appears upon the second line, three of them go to the Frize, and four to the Cornice, which is subdivided into its members by the third line. The projection of the Cornice of the first is divided into three parts and subdivided; the projection of the second is divided into five parts and subdivided, and that of the third into four and subdivided for the projections of the members. The Architraves are divided into four parts and subdivided, and they project 1/4 of their height.

A Rule
A Rule for drawing the Scroll for the Support of Cornices over Doors, Windows and Niches.

PLATE XLVII.

THE Architrave, Frize and Cornice is in height half the breadth of the Opening, and the Architrave 3, as in the former examples. The Frize and Cornice being divided into seven parts, four go to the Cornice and three to the Frize, which gives the bigness of the upper Spiral of the Scroll; the longest part of the Scroll FG takes four parts, and the lower Spiral two parts. The projection of each Spiral is to its height as 8 to 7. The thickezza of the Scroll is always the same with that of the Pilaster it is fixed upon, which is ½ of the Architrave.

The Spiral is formed in the same manner as the Ionick Volute, with this difference, that the Ionick Volute has twelve Centers, this has but eight. The Eye of the Volute is drawn by itself larger below, with its divisions, where the Centers are marked. Begin the Spiral with the first Center from 1 to 2, proceed from 2 to 3, &c.

The Centers of the Segments are found in this manner; the first is on the same line with the first Center of the upper Spiral, continued to the adjoining Pilaster at D. The lower is six parts of the smaller Spiral distant from the extremity of the lesser Spiral, expressed by the Quadrant in prick'd lines ABC, and the line CD, drawn from Center to Center, joins both Segments in their proper lengths. The Foldings in front, or the thickezza of the Scroll from E to E, being divided into seven parts, one goes to each of the outer Fillets, and one to the middle Bead H with its Lifts, and each Lift is ½. The Center of the Bead is lower than the outer Fillets by ½.

Venetian Windows.

PLATE XLVIII.

THEY are called Venetian Windows, because they are most used in and about that City. They are proper to be placed at the end of Churches or Galleries. I have here given two of them, one Dorick and the other Ionick. The distance from middle to middle of the Pilasters of the middle Opening of the Dorick is seven Diameters, and from middle to middle of the Pilasters of the lesser Openings, three Diameters and ½.

In the Ionick, the distance from middle to middle of the Pilasters of the larger Opening is seven Diameters, and in the lesser Openings four Diameters, &c.

Six different Chimney-pieces.

PLATE XLIX.

Chimney-pieces are larger or smaller, according to the bigness of Rooms for which they are designed. I have on this Plate given six Draughts, which are so marked that the proportion of their breadth to their height may be readily seen. The thickest are square, and their Architraves are ½ of their Openings; in those below, being larger, the Openings vary, which the divisions plainly show.
Three other Chimney-pieces with Frames for Pictures or Pannels over them.

PLATE I.

These three Chimney-pieces have Frames over them adorned with Pediments, they have the same proportions as to their Openings, as those in the former Plate, but these are more ornamental. As to the proportion of their parts, observe the Scale to each of them.

Three more Chimney-pieces.

PLATE II.

These have broken Pediments over them. There may be drawn a great variety of them, and all good in their kind, if the Draughtsman has a good taste. Their Scales, as in the former, shew the proportion of their parts. I have given several more Designs of Chimneys in my Book of Designs and Ornament.

Three different sorts of large Mouldings for Pannel or Picture frames fixed in Rooms.

PLATE III.

You have in this Plate three different sorts of Mouldings for Pannel or Picture frames to be fixed in Rooms, with the manner of their Carving. Their Profiles are on the left hand, divided and figured, so that if the divisions are carefully observed they will be found very easy. With a little alteration they may serve for Surfaces to Rooms.

Five different Mouldings for smaller Pannels.

PLATE IV.

These five sorts of Mouldings are for smaller Pannels, to be placed over Doors, or between larger Pannels to bring them to a just proportion when they are too broad. The divisions of their Profiles on the left hand shew how to form them.

The proportions of Rooms, and the Coveing of their Cielings.

PLATE LV.

I have given on this Plate the different proportions of Rooms, as to their length, breadth and height; as also the proportion of their Coves and Arched Cielings. The first is a Cube of 20 feet, its Cove is 1/3 of its height. The second is 20 feet by 25, or a Square and 1/2, its height is 22 1/2, and its Cove is 1/2 of its height. The third is 20 by 30 feet, or a Square and a half, and has 25 feet for its height.
and its Cove is \(\frac{1}{4} \) of its height. The fourth is twenty feet by thirty-five, or a Square and \(\frac{1}{4} \), and is 27 feet high, and its Arch is \(\frac{1}{4} \) of its height. The fifth is 20 by 40 feet, or two Squares or the double Square; its height is 30 feet, and its Arch is \(\frac{1}{4} \) of its height; so that the Rule for finding the height of Rooms, of these sorts is this; let the length and breadth of them be added together, half the Sum is the height of the Room. The last is a Gallery 100 feet long and 20 feet broad, the length being five times its breadth; but let the Gallery be longer or shorter as it will fall out, its height must answer to the double Square. These are the just proportions of Rooms as handed down to us by the greatest Masters, if their Ceilings are Coered or Arched; but if they are flat, their height will be agreeable if made equal to their breadth; as for example, a Room 30 feet long and 20 broad should be 20 feet high; and even Rooms of these proportions are often Coered, and that sometimes \(\frac{1}{4} \) and \(\frac{1}{4} \). But in the common Buildings in England, we are forced to give Rooms a lower proportion in regard to the coldness of the Climate and the expense of building; so that the height is sometimes \(\frac{1}{4} \) less than the breadth, as 20 feet broad by 16 feet high, and sometimes \(\frac{1}{4} \) less, as 20 feet broad by 15 feet high, which is the lowest proportion they should have.

Of Ceilings in general and their Ornaments.

Plate LV.

There are different ways of adorning Ceilings. I have given here three different ways; one with large square Pannels, another with large Octagon Pannels and Squares, and the third with large Hexagons and Rhombs; all with Roofs in the middle of their Pannels, and bordered with Frets and Guaillet's. The proportions of each are figured on their Profiles on the left hand. These may serve either for Curviline or Flat Ceilings. By Curviline I mean either Semicircular or Elliptical. I have made the Ceiling of the Church of St. Mary le Strand with Squares and Rhombs, and the Elliptical Ceiling of St. Martin's in the Fields with large Squares, the Angles taken off, with Roofs in them; both which Ceilings have a very good effect.

Of Coved Ceilings and their Ornaments.

Plate LVI.

I have given on this Plate six different ways of adorning Coved Ceilings; the two uppermost are with Grindar. Each Ceiling hath its Platform under it. The Coves of Rooms are generally made to be a Quadrant of a Circle, adorned either with Fretwork or Painting, and sometimes with both.
Of Cupola's and Circular Sofites.

PLATE LVII.

FIG. 1. AB is the breadth of one side of an Octagonal Cupola, from the middle of which erect the perpendicular line DC, draw the lines CA, CB; the Triangle ABC makes the Platform of an eighth part of the Cupola.

Fig. 2. The Profile is to be made by a Quadrant of a Circle ABC, directly over the Plan or Platform; divide half the line AB into seven parts, as here figured; fix of them will make two Pannels, and the seventh will remain for the Border. The fame divisions must be marked on the Profile over the Base-line AB, in this manner; take for the Border at the bottom four parts, marked in the Plan, and place them on the Profile from the Base line to No. 1, from which draw a line parallel to the Base-line of the Plan, and measure the length of two Central lines marked 2, 2, in the Plan, and place it in the Profile for the second Pannel; from thence draw another parallel line, and measure the length of the two Central lines at 3, 3, in the Plan to find the square height of the third Pannel, and so on to the number of eight, as it appears in the Plan and Profile.

Fig. 3. The upright side of this Octagonal Cupola is made by the foregoing Geometrical Rule. First draw the Base-line AB, even with the Base-line of the Profile AB, on which erect the Perpendicular DC, for the middle of the side; then draw all the parallel lines from the Profile, as expressed by GG, &c. take half the length of each line, figured in the Plan, and mark it on each side of the middle line of Fig. 3, until the length of every Pannel is fixed, which afterwards must be followed with a line drawn by hand to compleat the form or out-line of the Pannels. In the same manner are the inner divisions brought over to the number of Pannels contained therein, as may appear by Fig. 3. The same Rule is to be observed in the other two sides H and I, adorned with Octagons and Hexagons.

As to the Sofites of Arches, if they are divided into Pannels, they must be of an uneven number, as in K, L, M, by having a Pannel in the middle. The Border must be no more than one fifth, nor less than one seventh part of the whole breadth.

The Quadrant or Profile EF (Fig. 2,) on which the Pannels of this Semicircular Sofite are divided, will be sufficient to explain them. I have drawn two Semicircular Sofites, N and O, of a larger breadth, to shew how they may be adorned.
Of Flat Cielings adorned with Fret-work.

PLATE LVIII.

FLAT Cielings may be divided into Pannels, and adorned with Fret-work and Painting. But it is to be observed that the lower the Cieling is, the Mouldings and Fret-work must project the less: For a Cieling 10 feet high must not have its Ornaments project as much as a Cieling 20 feet high; if it did, the Ornaments would appear a weight to the Cieling, so that their reliefs must not be so great. I have given in this Plate two different Draughts of them, with their Profiles; and there may be made with judgment great variety of them. I think it better to have them divided into Pannels in this manner, which by its variety gives an agreeable diversion to the Eye, than to have the whole in one large Pannel, which would make it appear too heavy.

Of Frets or Guilloche's.

PLATE LXI.

These little Ornaments called Frets or Guilloche's, wrought in the flat Borders of Frames, if well proportioned, have a fine effect. I have drawn on this Plate several different sorts of them. The first is the Pitrcoian Scroll, drawn either plain, or adorned with Leaves and Sprigs. The second is a Fret resembling a Knot. The third is a different Knot. The fourth is a Fret-border of eleven divisions done two ways, the distances of the sinking and rising parts being equal. The fifth is a Border of two different Frets of nine divisions. The sixth is a Border of two different Frets of seven divisions. These Ornaments are proper to be placed in Picture-frames, Sorties of Arches and Architraves, on Friezes and Plinths ofMais, when the rest of the members are carved.

Of Block-Cornices and Ruffick Coines.

PLATE LXII.

You have here three different sorts of Black-Cornices; their divisions are marked on the left hand. But to make them more plain, I have drawn the Profiles of them larger on the next Plate. As to the Ruffick Cornices, they have a proportion to each other as 2 to 3, and their chamfered Edges, or Rufficks, are 1/ of their height.
The Profiles of Block-Cornices.

Plate LXI.

These Profiles are each of them divided into eight parts, which are subdivided to form their members. They do not proceed so much as they are in height, as other Cornices. The projection of the Cima a-top must be reduced to a Square; and so must the little Lift under it as appears on the Plates. The Corona falls upon the fourth division of the Scale below for the projection in two of those Profiles; but in the third the Corona falls on the fifth division. The rest is very easy.

Of Ballufters, their Proportions and Distances.

Plate LXII.

I have given on this Plate five different sorts of Ballufters. The lowermost is divided into eight parts, and its breadth into four, two of which go to the solid, and two to the swell'd Members. The Ballufters are distant from each other one half of their thickness. The crofs prick'd lines shew the centers of the swelling and finking members. The Ballulfrade next above this on the left hand is divided into nine parts, and that on the right into ten, and subdivided as on the Plate. The uppermost Ballulfrades are of a more delicate form, being divided into twelve parts, and subdivided to form the Mouldings. These are fitted to be done in Wood or cast in Metal; the others may be made of Stone. Their Cups and Bafes have the same proportions with the common Pedestals.

Of Balconies and their Truffles.

Plate LXIII.

I have drawn here four different sorts of Balconies, where the foregoing Bal- lufter may be used from the largest to the smallest. I have also given their Profiles shewing eight different sorts of Truffles that support them. Some are drawn with Architraves, Friezes and Cornices; some with Panels enriched between the Truffles, others with Heads, Shields and Fieloons, &c.

The Corinthian Modillion explained.

Plate LXIV.

The real bignefs of a Modillion in respect to its Cornice is fhewn in the Profile and Platform of the Corinthian Entablature, Plate XVII; and in the Cornice at large, Plate XVIII. On this Plate are drawn at large three Views of this Modillion; the Profile A, the under-side B, and the end C. The Profile hath the form of a Scroll, and both ends are turned with a Spiral. The height of the biggest is divided into eight Parts; the fifth gives the bignefs of the Eye, the breadth is seven, and the fourth gives the Center. The Jeffer Spiral is four sevenths
sevenths of the bigger; divide each of the four parts into two, which make eight; the breadth is seven, and the Eye one, by the same Rule as the former. The Eye is divided into eight different Centers, according to the number of Quadrants which form the Spiral line, explained by prick’d lines drawn from each Center, and marked 1, 2, 3, &c. Both Spirals are joined by two Segments; the Center of that which joins to the biggest at a falls perpendicular upon the first Center of the Spiral, and is one fourth part of its height above it. The second at b is perpendicular to the inside of the Rofe, and one fourth of the lesser Spiral below the Base-line of the Modillion; this fourth is divided into three, to shorten the perpendicular line by two parts, for the Center of the diminished part c; the joining of these Segments is where the prick’d line drawn from a to b, being the Centers, do cut the Segments a a, b b, &c. The end of the Scroll c is to be divided into eight parts; one eighth is the bigness of each Fillet d, d, and so is the Bead e with its Lifts, and each Lift is one sixtieth of the Bead and Lifts; the sinking of the Lifts or Center of the Bead is three quarters.