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TABLE 12-1 Properties of Selected Members of Human
Glucose Transporters (GLUT)

Transporters

GLUT 1

GLUT 3

GLUT 4

GLUT 5

SGLT 1

SGLT 2

Major Tissue
Distribution

Brain, microvessels,
red blood cells,
placenta, kidney,
and many other
cells

Liver, pancreatic
B-cell, small
intestine

Brain, placenta, fetal
muscle

Skeletal and heart
muscle, fat tissue
(adipocytes)

Small intestine,
testes

Small intestine and
renal tubules

Renal tubules

Properties

Low K, (about 1mM),
ubiquitous basal
transporter

High K., (15-20mM)

Low K, provide
glucose for tissue
cells metabolically
dependent on glucose

K (5 mM), insulin
responsive transporter

Exhibits high affinity
for fructose

Low K, (0.1-1.0mM)

Low K, (1.6mM)

GLUT: concentration
gradient-dependent
facilitated transport
with specific carrier;

either insulin
dependent or insulin
independent

SGLT: active transport
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Overview of the
ten reactions of

glycolysis



AG°’" and AG for the Reactions of Glycolysis in Heart
Muscle”

AG” AG
Reaction Enzyme (kJ - mol™") (kJ - mol™")

1 Hexokinase —20.9 —27.2
2 PGl +2.2 -1.4
3 PFK -17.2 —25.9
4 Aldolase +22.8 —-5.9
5 TIM +7.9 ~0
6+ 7 GAPDH + PGK —16.7 =)o
8 PGM +4.7 —0.6
9 Enolase —3.2 —2.4
10 PK —23.0 -13.9

“Calculated from data in Newsholme, E.A. and Start, C., Regulation in Metabolism, p. 97,
Wiley (1973).
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Glucose

in glycolysis
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Free energy changes
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Conformational change in hexokinase upon substrate binding

(b)
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: A base-catalyzed reaction
van Ekenstein reaction)
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Proposed
aldolase
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First half of
glycolysis:
ATP investment
phase
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