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and gluconeogenesis.
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Diagram showing the Electron micrograph of a

branched structure of glycogen granule (o =
glycogen; the molecule has granule; p = spherical
multiple non-reducing ends glycogen molecules

but only one reducing end. with associated proteins)



of glycosidic linkages (bond cleavage with the participation
of P;; G1P is the product

2. Glycogen debranching enzyme: removes glycogen
branches

3. Phosphoglucomutase: converts G1P into G6P
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An interpretive “low-resolution”
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enzyme’ s various ligand-binding sites.
A ribbon diagram of the
glycogen phosphorylase a
dimer.
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a linkage
to phosphate

Pyridoxal-5'-phosphate (PLP)
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GP is regulated by allosteric
interactions and by covalent
modification (phosphorylation/
dephosphorylation).



The glycogen phosphorylase reaction proceeds with retention
of configuration, suggesting the involvement of a covalent
glucosyl-enzyme intermediate. However, the enzyme exhibits Random Bi Bi
kinetics, not Ping-Pong kinetics, as would be expected for a double-
displacement mechanism. Evidence for the existence of a covalent
intermediate has not been found. For these reasons, a cyclic oxonium ion

has been proposed as an intermediate in the reaction.

The active (R) and inactive (T) states of GP can be explained by gross
changes in protein structure, with the T-state having a buried active site
and the R-state having an accessible active site. Phosphorylation of the
T-state activates the enzyme by facilitating conversion to the R-state.
Alternatively, the unphosphorylated T-state can be activated allosterically
by AMP to give an active, unphosphorylated R-form.
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Mimics the mechanism of the glycolytic enzyme,
phosphoglycerate mutase



Hereditary Glycogen Storage Diseases

Type Enzyme Deficiency Tissue Common Name Glycogen Structure

| Glucose-6-phosphatase Liver von Gierke$ disease Normal

I a-1,4-Glucosidase All lysosomes Pompe’s disease Normal

]} Amylo-1,6-glucosidase All organs Cori’s disease Outer chains missing
(debranching enzyme) or veryshort

v Amylo-(1,4— 1,6)-transglycosylase Liver, probably Andersen’s disease Very long unbranched
(branching enzyme) all organs chains

Vv Glycogen phosphorylase Muscle McArdle’s disease Normal

Vi Glycogen phosphorylase Liver Hers’ disease Normal

vil Phosphofructokinase Muscle Tarui’s disease Normal

Vil Phosphorylase kinase Liver X-Linked phosphorylase Normal

kinase deficiency
IX Phosphorylase kinase All organs Normal
0 Glycogen synthase Liver Normal, deficient

in quantity
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Inherited disorders that affect glycogen metabolism
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AG® (glycogen phosphorylase) = +3.1 kdJ/mol, but under
physiological conditions, the overall AG for glycogen breakdown is -5
to -8 kd/mol: glycogen degradation is thermodynamically favored.

Glycogen biosynthesis is driven by the conversion of G1P into the
“biologically-activated sugar”, UDP-glucose, which serves as the sugar
donor, with subsequent release and hydrolysis of PP, driving the reaction.



constructing the a(1,4)-glycosidic linkages of glycogen using
UDP-glucose as the sugar donor

2. Glycogen branching enzyme: enzyme responsible for
introducing o(1,6)-glycosidic linkages into glycogen (branching)
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D-Glucono-1,5-lactone
is a potent inhibitor
of GS.



GS is an allosteric enzyme. Its activity is modulated by allosteric effectors
and by covalent maodification. The latter involves phosphorylation/
dephosphorylation; in this case, phosphorylation of GS (b form)
inactivates the enzyme, and the dephospho form (a form) is active (opposite
to what is observed for glycogen phosphorylase).

Comment on the mechanisms of GP and GS

Both involve an oxonium ion intermediate. In this sense,
both GP and GS resemble the glycosidase, lysozyme, that hydrolyzes
the glycosidic linkages of the bacterial cell wall peptidoglycan.



an a(1,4)-linked glucan
chain to the C6 oxygen
of a glucose residue on
the same chain or
another chain.

o(1—-4)-terminal
chains of glycogen

AN KM LM LM

The branching reaction is
favored energetically:

AG°" of hydrolysis of

a(1,4)-linkages =-15.5 kJ/
mol; AG°" of hydrolysis

of a(1,6)-linkages = -7.1

kd/mol.
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Glycogen synthase cannot link two glucose monomers together; it can
only extend an existing a(1,4) chain.

Glycogen does not have a “reducing end”. The single “reducing-end”
glucose residue is covalently attached to a 349-residue dimeric protein,
glycogenin.

Glycogenin is a glycosyliransferase. The enzyme attaches a glucose
residue from UDP-glucose to its free OH group of Tyr 194
(autocatalytic). It then extends the glucose chain to a 7-8 mer, creating
a glycogen “primer”. Glycogen synthase then acts on this primer.



2 branches
per chain

3 branches
per chain

With three branches per chain,
the maximal size of the
glycogen particle is limited.

Glycogen with two
branches per chain;
in vivo state Optimal chain length: 8-14 residues

8 John Wiley & Sons, Inc. All rights reserved.




CHEM 420 - Principles of Biochemistry
Instructor — Anthony S. Serianni

Chapter X: Voet/Voet, Biochemistry, 2011
Spring 2015



(a, B, y and 6) (v is the catalytic subunit; 0 is the calcium-binding subunit,
calmodulin)

2. Protein kinase A (PKA): phosphorylates and thus activates
phosphorylase kinase; PKA is activated by cAMP

3. Phosphoprotein phosphatase-1 (PP1): dephosphorylates
and thus deactivates glycogen phosphorylase a and
phosphorylase kinase



Conformational changes in glycogen phosphorylase

T state

Ribbon diagram of one subunit Ribbon diagram of one subunit
(T-state) in the absence of allosteric (R-state) with bound AMP
effectors



Conformational changes in glycogen phosphorylase: The portion of the
glycogen phosphorylase a dimer in the vicinity of the dimer interface.

280s loop

Glucose

Courtesy of Stephen Sprang, University of Texas Southwest Medical Center
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GP activity is
controlled
allosterically
and covalently.

Phosphorylase a

Only glycogen phosphorylase b binds the allosteric effector,
AMP, thus converting it into an active enzyme (the b form
is AMP-dependent).



general scheme, where F and R
are, respectively, the modifying
and demodifying enzymes, and e
and e, are effectors.
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protein kinase A

The conversion of GPb
to GPa is achieved via
phosphorylation by
GP kinase, which
is activated by protein
kinase A (PKA), which is in
turn activated by cAMP.
GPa and GP kinase are
deactivated by the
same phosphatase, PP-1

0
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A

— e, ———————

phosphoprotein
phosphatase-1
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N-terminal domain in
pink; C-terminal domain
in cyan; activation loop

in light blue; heptapeptide

in orange, with serine
residue in white.




6P kinase is maximally activated
by binding Ca?* ion (6 subunit is
calmodulin,CaM)

X-Ray structure of rat testis
calmodulin

EF hand: The Ca?* binding
sites in many proteins that
function to sense the level of
Ca?* are formed by helix-
loop-helix motifs called EF
hands.

F helix

" EF hand
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Occur through their effects on the PP-1 catalytic subunit, PP1c,
via its glycogen-bound G,, subunut.
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