Biothermodynamics Free Energy Concepts in Biochemistry; Chemical Equilibria; Organic Phosphates

CHEM 420 – Principles of Biochemistry Instructor – Anthony S. Serianni

Chapters 3/16: Voet/Voet, *Biochemistry*, 2011 Fall 2015

September 2 & 4

```
Joule (J)
    1 J = 1 kg \cdot m^2 \cdot s^{-2} 1 J = 1 C V(coulomb volt)
    1 J = 1 N \cdot m (newton meter)
Calorie (cal)
   1 cal heats 1 g of H<sub>2</sub>O from 14.5 to 15.5°C
   1 \text{ cal} = 4.184 \text{ J}
Large calorie (Cal)
                             1 \text{ Cal} = 4184 \text{ J}
   1 \text{ Cal} = 1 \text{ kcal}
Avogadro's number (N)
   N = 6.0221 \times 10^{23} \,\mathrm{molecules} \cdot \mathrm{mol}^{-1}
Coulomb (C)
   1 \text{ C} = 6.241 \times 10^{18} \text{ electron charges}
Faraday (F)
   1 \mathcal{F} = N electron charges
   1 \mathcal{F} = 96,485 \text{ C} \cdot \text{mol}^{-1} = 96,485 \text{ J} \cdot \text{V}^{-1} \cdot \text{mol}^{-1}
Kelvin temperature scale (K)
   0 \text{ K} = \text{absolute zero} 273.15 \text{ K} = 0^{\circ}\text{C}
Boltzmann constant (k_{\rm B})
   k_{\rm B} = 1.3807 \quad 10^{-23} \, \text{J} \cdot \text{K}^{-1}
Gas constant (R)
    R = Nk_{\rm B} R = 1.9872 \, \text{cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}
    R = 8.3145 \,\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1} R = 0.08206 \,\mathrm{L} \cdot \mathrm{atm} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}
```

Thermodynamic units and constants

ΔE and ΔH

ENERGY, HEAT, AND WORK 57 Thermometer Sealed bomb H₂O H₂O H20 Igniter 02 CO, Palmitic acid Initial state Reaction Final state (a) Reaction at constant volume 1 atm Reaction vessel with piston. 1 atm 1 atm H₂O H₂O H₂O Palmitic acid Initial state Final state Reaction Heat lost, work done (b) Reaction at constant pressure

Variation of reaction spontaneity (sign of $\Delta \emph{G})$ with the signs of $\Delta \emph{H}$ and $\Delta \emph{S}$

ΔH	ΔS	$\Delta G = \Delta H - T \Delta S$
_	+	The reaction is both enthalpically favored (exothermic) and entropically favored. It is spontaneous (exergonic) at all temperatures.
_	_	The reaction is enthalpically favored but entropically opposed. It is spontaneous only at temperatures below $T = \Delta H/\Delta S$.
+	+	The reaction is enthalpically opposed (endothermic) but entropically favored. It is spontaneous only at temperatures <i>above</i> $T = \Delta H/\Delta S$.
+	-	The reaction is both enthalpically and entropically opposed. It is <i>un</i> spontaneous (endergonic) at all temperatures.

Thermodynamic parameters for three different chemical reactions.

Variation of K_{eq} with ΔG° at 25 °C

$K_{ m eq}$	$\Delta G^{\circ}(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$
10^{6}	-34.3
10^{4}	-22.8
10^{2}	-11.4
10^1	-5.7
10^{0}	0.0
10^{-1}	5.7
10^{-2}	11.4
10^{-4}	22.8
10^{-6}	34.3

The difference
between △G and
△G for an
enzyme-catalyzed
reaction:
Phosphoglucoisomerase
(PGI)

Chemical vs biological oxidation of a saccharide

BOX 14-1 PERSPECTIVES IN BIOCHEMISTRY

Oxidation States of Carbon

The carbon atoms in biological molecules can assume different oxidation states depending on the atom to which they are bonded. For example, a carbon atom bonded to less electronegative hydrogen atoms is more reduced than a carbon atom bonded to highly electronegative oxygen atoms.

The simplest way to determine the oxidation number (and hence the oxidation state) of a particular carbon atom is to examine each of its bonds and assign the electrons to the more electronegative atom. In a C—O bond, both electrons "belong" to O; in a C—H bond, both electrons "belong" to C; and in a C—C bond, each carbon "owns" one electron. An atom's oxidation number is the number of valence electrons on the free atom (4 for carbon) minus the number of its lone pair and assigned electrons. For example, the oxidation number of carbon in CO_2 is 4-(0+0)=+4, and the oxidation number of carbon in CH_4 is 4-(0+8)=-4, Keep in mind, however, that oxidation numbers are only accounting devices; actual atomic charges are much closer to neutrality.

The following compounds are listed according to the oxidation state of the highlighted carbon atom. In general, the more oxidized compounds have fewer electrons per C atom and are richer nowgen, and the more reduced compounds have more electrons per C atom and are richer in hydrogen. But note that not all reduction events (gain of electrons) or oxidation events (loss of electrons) are associated with bonding to oxygen. For example, when an alkane is converted to an alkene, the formation of a carbon-carbon double bond involves the loss of electrons and therefore is an oxidation reaction although no oxygen is involved. Knowing the oxidation number of a carbon atom is seldom required. However, it is useful to be able to determine whether the condation state of a given atom increases or decreases during a demical reaction.

Compound	Formula	Oxidation Number
Carbon dioxide	o= <u>c</u> =o	4 (most oxidized)
Acetic acid	$_{\mathrm{H_{3}C}-\overset{\circ}{\mathrm{C}}_{\mathrm{OH}}}^{\mathrm{O}}$	2913 min edi yilang
Carbon monoxide	: C ≡0:	2
Formic acid	H-COOH	2
Acetone	$_{\mathrm{H_{3}C}-\overset{\mathrm{O}}{\overset{\parallel}{C}}-\mathrm{CH_{3}}}$	2
Acetaldehyde	$_{\mathrm{H_3C}}$ $\stackrel{\mathrm{O}}{=}$ $_{\mathrm{H}}$	1
Formaldehyde	$_{\mathrm{H-}}^{\mathrm{C}}\mathrm{-H}$	0
Acetylene	HC≡ <mark>C</mark> H	-1
Ethanol	$^{\mathrm{H}}_{3}\mathrm{C}-\overset{\mathrm{H}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}{\overset{\mathrm{I}}{\overset{\mathrm{I}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}{\overset{\mathrm{I}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}}{\overset{\mathrm{I}}}{\overset{I}}}{\overset{\mathrm{I}}}}{\overset{I}}}{\overset{\mathrm{I}}}{\overset{I}}}{\overset{I}}}{$	-1
Ethene	$_{\mathrm{H_{2}C}=\overset{\mathbf{C}}{\subset}\overset{\mathrm{H}}{\overset{\mathrm{H}}{\hookrightarrow}}}$	-2
Ethane	$^{\mathrm{H}}_{3}\mathrm{C}-\overset{\mathrm{I}}{\overset{\mathrm{I}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}{\overset{\mathrm{C}}{\overset{\mathrm{C}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}{\overset{\mathrm{C}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}{\overset{\mathrm{C}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}}{\overset{\mathrm{C}}}{\overset{\mathrm{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{$	-3
	H	
Methane	н-с-н	-4 (least oxidized)
	Н	

The flow of phosphoryl groups from "high-energy" phosphate donors, via the ATP-ADP system, to "low-energy" phosphate acceptors (note the central role of ATP as energy currency).

Standard free energies of hydrolysis for specific types of bonds common in biochemistry

Standard free energies of phosphate hydrolysis of some compounds of biological interest: Two modes of hydrolysis of ATP

Compound	$\Delta G \;\; (\mathrm{kJ} \cdot \mathrm{mol}^{-1})$
Phosphoenolpyruvate	-61.9
1,3-Bisphosphoglycerate	-49.4
Acetyl phosphate	-43.1
Phosphocreatine	-43.1
PP_i	-33.5
$\mathbf{ATP} \; (\to \mathbf{AMP} + \mathbf{PP}_i)$	-32.2
$\mathbf{ATP} \; (\to \mathbf{ADP} + \mathbf{P}_i)$	-30.5
Glucose-1-phosphate	-20.9
Fructose-6-phosphate	-13.8
Glucose-6-phosphate	-13.8
Glycerol-3-phosphate	-9.2

Source: Jencks, W.P., in Fasman, G.D. (Ed.), Handbook of Biochemistry and Molecular Biology (3rd ed.), Physical and Chemical Data, Vol. I, pp. 296–304, CRC Press (1976).

The structure of ATP indicating its relationship to ADP, AMP, and adenosine

TABLE 13–5 Adenine Nucleotide, Inorganic Phosphate, and Phosphocreatine Concentrations in Some Cells

Concentration (mm)*

	ATP	ADP [†]	AMP	P _i	PCr
Rat hepatocyte	3.38	1.32	0.29	4.8	0
Rat myocyte	8.05	0.93	0.04	8.05	28
Rat neuron	2.59	0.73	0.06	2.72	4.7
Human erythrocyte	2.25	0.25	0.02	1.65	0
E. coli cell	7.90	1.04	0.82	7.9	0

^{*}For erythrocytes the concentrations are those of the cytosol (human erythrocytes lack a nucleus and mitochondria). In the other types of cells the data are for the entire cell contents, although the cytosol and the mitochondria have very different concentrations of ADP. PCr is phosphocreatine, discussed on p. 505.

[†]This value reflects total concentration; the true value for free ADP may be much lower (see Box 13-1).

WORKED EXAMPLE 13–2 Calculation of $\Delta G_{\rm p}$

Calculate the actual free energy of hydrolysis of ATP, $\Delta G_{\rm p}$, in human erythrocytes. The standard free energy of hydrolysis of ATP is -30.5 kJ/mol, and the concentrations of ATP, ADP, and P_i in erythrocytes are as shown in Table 13–5. Assume that the pH is 7.0 and the temperature is 37 °C (body temperature). What does this reveal about the amount of energy required to *synthesize* ATP under the same cellular conditions?

Solution: The concentrations of ATP, ADP, and P_i in human erythrocytes are 2.25, 0.25, and 1.65 mm, respectively. The actual free energy of hydrolysis of ATP under these conditions is given by the relationship (see Eqn 13–4)

$$\Delta G_{\mathrm{p}} = \Delta G^{\prime \circ} + RT \ln \frac{[\mathrm{ADP}][\mathrm{P_i}]}{[\mathrm{ATP}]}$$

Substituting the appropriate values we get

$$\begin{split} \Delta G_{\rm p} &= -30.5 \text{ kJ/mol} + \left[(8.315 \text{ J/mol} \cdot \text{K})(310 \text{ K}) \ln \frac{(0.25 \times 10^{-3})(1.65 \times 10^{-3})}{(2.25 \times 10^{-3})} \right] \\ &= -30.5 \text{ kJ/mol} + (2.58 \text{ kJ/mol}) \ln 1.8 \times 10^{-4} \\ &= -30.5 \text{ kJ/mol} + (2.58 \text{ kJ/mol})(-8.6) \\ &= -30.5 \text{ kJ/mol} - 22 \text{ kJ/mol} \\ &= -52 \text{ kJ/mol} \end{split}$$

(Note that the final answer has been rounded to the correct number of significant figures (52.5 rounded to 52), following rules for rounding 5 down to the nearest even number to avoid the bias inherent in rounding "up.") Thus $\Delta G_{\rm p}$, the actual free-energy change for ATP hydrolysis in the intact erythrocyte (-52 kJ/mol), is much larger than the standard free-energy change (-30.5 kJ/mol). By the same token, the free energy required to synthesize ATP from ADP and $P_{\rm i}$ under the conditions prevailing in the erythrocyte would be 52 kJ/mol.

$\Delta G''$ and ΔG : ATP hydrolysis in vivo

The metallated, biologically active forms of ADP and ATP

Figure 1.9 Plot of the base 10 logarithm of the apparent equilibrium constant for the hydrolysis of ATP to ADP and P_i at 298.15 K and 0.25 M ionic strength

Figure 1.10 Plot of $-RT \ln K'$ in kJ mol⁻¹ versus pH at 298.15 K and 0.25 M ionic strength

Effect of pH and pMg on K of ATP hydrolysis and on the free energy of ATP hydrolysis

Summary of factors responsible for the negative standard free energy of hydrolysis of ATP

(a) Structures of phosphate ion contributing to resonance stabilization

- **(b)** Resonance hybrid
- **(c)** Molecular orbitals of tetrahedral phosphate ion

The flow of phosphoryl groups from "high-energy" phosphate donors, via the ATP-ADP system, to "low-energy" phosphate acceptors (note the central role of ATP as energy currency).

Standard free energies of phosphate hydrolysis of some compounds of biological interest: Phosphoenolpyruvate (PEP)

Compound	$\Delta G \;\; (\mathrm{kJ \cdot mol^{-1}})$
Phosphoenolpyruvate	-61.9
1,3-Bisphosphoglycerate	-49.4
Acetyl phosphate	-43.1
Phosphocreatine	-43.1
PP_i	-33.5
$\mathbf{ATP} \; (\to \mathbf{AMP} + \mathbf{PP}_i)$	-32.2
$\mathbf{ATP} \; (\to \mathbf{ADP} + \mathbf{P}_i)$	-30.5
Glucose-1-phosphate	-20.9
Fructose-6-phosphate	-13.8
Glucose-6-phosphate	-13.8
Glycerol-3-phosphate	-9.2

Source: Jencks, W.P., in Fasman, G.D. (Ed.), Handbook of Biochemistry and Molecular Biology (3rd ed.), Physical and Chemical Data, Vol. I, pp. 296–304, CRC Press (1976).

<u>Coupled reactions involving ATP</u>: The phosphorylation of ADP by phosphoenolpyruvate (PEP) to form ATP and pyruvate (the second substrate-level phosphorylation reaction of glycolysis)

Exergonic half-reaction 1
$$CH_2 = C + H_2O \iff CH_3 - C - COO^- + P_i - 61.9$$

Phosphoenolpyruvate Pyruvate

Endergonic half-reaction 2 $ADP + P_i \iff ATP + H_2O + 30.5$

Overall coupled reaction $CH_2 = C + ADP \iff CH_3 - C - COO^- + ATP - 31.4$

Hydrolysis of phosphoenolpyruvate (PEP)

Hydrolysis
$$COO^ COO^ OO^ OO^-$$

Standard free energies of phosphate hydrolysis of some compounds of biological interest: <u>Glucose 6P</u>

Compound	$\Delta G \; (\mathrm{kJ} \cdot \mathrm{mol}^{-1})$
Phosphoenolpyruvate	-61.9
1,3-Bisphosphoglycerate	-49.4
Acetyl phosphate	-43.1
Phosphocreatine	-43.1
PP_i	-33.5
$\mathbf{ATP} \; (\to \mathbf{AMP} + \mathbf{PP}_i)$	-32.2
$\mathbf{ATP} \; (\to \mathbf{ADP} + \mathbf{P}_i)$	-30.5
Glucose-1-phosphate	-20.9
Fructose-6-phosphate	-13.8
Glucose-6-phosphate	-13.8
Glycerol-3-phosphate	-9.2

Source: Jencks, W.P., in Fasman, G.D. (Ed.), Handbook of Biochemistry and Molecular Biology (3rd ed.), Physical and Chemical Data, Vol. I, pp. 296–304, CRC Press (1976).

Coupled reactions involving ATP: The phosphorylation of glucose to form glucose-6-phosphate and ADP

			$\Delta G^{\circ\prime} (\mathrm{kJ} \bullet \mathrm{mol}^{-1})$
Endergonic half-reaction 1	P_i + glucose	\Longrightarrow glucose-6-P + $\mathrm{H_2O}$	+13.8
Exergonic half-reaction 2	ATP + H_2O	\Longrightarrow ADP + P _i	-30.5
Overall coupled reaction	ATP + glucose	⇒ ADP + glucose-6-P	-16.7

Standard free energies of phosphate hydrolysis of some compounds of biological interest: <u>Phosphocreatine</u>

Compound	$\Delta G \text{ (kJ} \cdot \text{mol}^{-1}\text{)}$
Phosphoenolpyruvate	-61.9
1,3-Bisphosphoglycerate	-49.4
Acetyl phosphate	-43.1
Phosphocreatine	-43.1
PP_i	-33.5
$\mathbf{ATP} \; (\to \mathbf{AMP} + \mathbf{PP}_i)$	-32.2
$\mathbf{ATP} \; (\to \mathbf{ADP} + \mathbf{P}_i)$	-30.5
Glucose-1-phosphate	-20.9
Fructose-6-phosphate	-13.8
Glucose-6-phosphate	-13.8
Glycerol-3-phosphate	-9.2

Source: Jencks, W.P., in Fasman, G.D. (Ed.), Handbook of Biochemistry and Molecular Biology (3rd ed.), Physical and Chemical Data, Vol. I, pp. 296–304, CRC Press (1976).

Phosphocreatine: a high-energy phosphate found largely in <u>muscle</u>

$$\begin{array}{c} \text{COO}^- \\ \text{CH}_2 \\ \text{H} \\ \text{O-P-N-C-N-CH}_3 \\ \text{hydrolysis} \\ \text{Phosphocreatine} \end{array} \begin{array}{c} \text{COO}^- \\ \text{CH}_2 \\ \text{H}_2\text{N-C-N-CH}_3 \\ \text{H}_2\text{N-C-N-CH}_3 \\ \text{H}_2\text{N-C-N-CH}_3 \\ \text{Fresonance} \\ \text{Stabilization} \end{array} \begin{array}{c} \text{COO}^- \\ \text{H}_2\text{N} \\ \text{H}_2\text{N} \\ \text{H}_2\text{N} \\ \text{Creatine} \end{array}$$

Analogous competing resonance structures in phosphoguanidines

$$\begin{array}{c} H_2\overset{+}{N} & O \\ C\overset{-}{N}H\overset{-}{P}-O \\ N\overset{-}{N} & O \\ R & N\overset{-}{N} & O \\ R & R = CH_2\overset{-}{C}O_2^- \; ; \; X = CH_3 \\ \textbf{Phosphocreatine} & NH_3^+ \\ R = CH_2\overset{-}{C}CH_2\overset{-}{C}CH \overset{-}{C}CO_2^- \; ; \; X = H \\ \textbf{Phosphoarginine} & \textbf{Phosphoarginine} \end{array}$$

Standard free energies of phosphate hydrolysis of some compounds of biological interest: 1,3-bisphospho-D-glycerate (1,3 BPG)

Compound	$\Delta G \;\; (\mathrm{kJ \cdot mol^{-1}})$
Phosphoenolpyruvate	-61.9
1,3-Bisphosphoglycerate	-49.4
Acetyl phosphate	-43.1
Phosphocreatine	-43.1
PP_i	-33.5
$\mathbf{ATP} \; (\to \mathbf{AMP} + \mathbf{PP}_i)$	-32.2
$\mathbf{ATP} \; (\to \mathbf{ADP} + \mathbf{P}_i)$	-30.5
Glucose-1-phosphate	-20.9
Fructose-6-phosphate	-13.8
Glucose-6-phosphate	-13.8
Glycerol-3-phosphate	-9.2

Source: Jencks, W.P., in Fasman, G.D. (Ed.), Handbook of Biochemistry and Molecular Biology (3rd ed.), Physical and Chemical Data, Vol. I, pp. 296–304, CRC Press (1976).

Generation of a high-energy phosphate via glycolysis

Acetyl CoA: a biological thioester (high-energy bond)

Coenzyme A = CoASH

Why is the standard free energy of hydrolysis of acetyl CoA so negative?

Further explanation of the energetics of acetyl CoA hydrolysis

Biological activation of an α -amino acid: Pyrophosphate and acyl phosphate cleavage in the synthesis of an aminoacyl-tRNA (charged tRNA)

Calculating the $\triangle G$ associated with a concentration gradient across a biological membrane (for non-ionic solutes)

