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The acid-catalyzed condensation of a-D-glucopyranose in methanol solvent to
form an anomeric pair of methyl D-glucopyranosides (Fischer glycosidation).

Furanosides also form under these conditions (kinetically favored). The anomeric (C1)
carbon of the two pyranosides (methyl a- and -D-glucopyranosides) is an acetal carbon,
whereas the anomeric (C1) carbon of D-glucose is a hemiacetal carbon. Glycosides are

not reducing sugars, and they do not undergo anomerization in solution under neutral

and basic conditions.

Glycosides are always formed under acidic conditions, and are always
hydrolyzed under acidic conditions. Glycosides are stable in neutral and
basic solution.
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relative concentration

reducing sugar

furanosides

Glucofuranosides form
oyranosides initially (kinetically favored), followed by
glucopyranosides. At equilibrium,
pyranosides (thermodynamically favored)
are more abundant than furanosides. The
relative proportions of pyranosides and
furanosides at equilibrium depend on
aldohexose structure.

The final anomeric distribution of
pyranosides and furanosides also
depends on aldohexose structure.
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When the alcohol functional group is supplied by another monosaccharide like D-
glucose instead of methanol, a disaccharide forms. Ten different Gle-Gle
disaccharides are possible since five different hydroxyl groups are present in the Glc
acceptor, and the Glc donor can have the a or § anomeric configuration.

Disaccharides in vivo play important roles as independent sugars (e.g., lactose)
or occur as repeating subunits in the construction of oligo- and polysaccharides.
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methyl a-isomaltoside
methyl o-D-glucopyranosyl-(1—6)-a-D-glucopyranoside
(non-reducing disaccharide; does not anomerize in solution)

a-(1—> 6)linkage
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a-cellobiose
B-D-glucopyranosyl-(1—4)-a-D-glucopyranose
(reducing disaccharide; anomerizes in solution)

B-(1—> 4)linkage

Some Glc-6Glc disaccharides
showing different
regiochemistries and
stereochemistries. Only
two of the three structures
are reducing disaccharides.
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Cyclization to form a- and B-furanoses cannot occur in cellobiose because the
C4 hydroxyl group is protected (it participates in the glycosidic linkage).
Furanoses are possible in the anomerization of isomaltose.
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%HZOH hemiacetal
carbon
phi (¢) torsion psi () torsion
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glycosidic bond or linkage

Proper name:
B-D-glucopyranosyl-(1 —> 4)-a-D-glucopyranose
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HO \_-0 For 1,6 linkages, an additional torsion angle, w (omega), affects linkage
HO conformation. These linkages have the potential for greater flexibility compared
HO to those characterized by only two C-O bond torsions.
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Results suggest
correlated behavior
between ¢ and 1)
for the 1,4-linkage in
this branched
tetrasaccharide
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B-D-glucopyranose
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any of the three
rotamers

competing endo-
anomeric effect in
all three rotamers



,p-trehalose

The anomeric
on hydroxyl groups on

the donor and
HO 2 acceptor Glc units
HO are involved in the
OH glycosidic linkage.

0 . transport form
a,0-trehalose of glucose in insect

5 hemolymph
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