#### **CHEM 537**

Carbohydrate Biochemistry and Glycobiology Part III: Glycobiology, Glycoproteins & Glycoconjugates

Anthony S. Serianni aseriann@nd.edu

Slide Set 3a

Chapters 11 & 23: *Biochemistry*, Voet/Voet, 4th edition, 2011 *Introduction to Glycobiology*, Taylor/Drickhamer, 3rd edition, 2011

### Glycobiology: Definitions and terminology

**Glycobiology**: studies of the structures and functions of sugars attached to proteins and lipids.

**Glycoconjugates**: formed when mono-, oligo- or polysaccharides are attached to proteins or lipids.

**Glycoproteins and glycolipids**: proteins and lipids to which carbohydrate is <u>covalently</u> attached; the mechanism of attachment is enzyme-catalyzed *in vivo*.

Glycan: the carbohydrate component of glycoproteins and glycolipids.

## Glycosylation and glycation

**Glycosylation**: enzyme-catalyzed covalent modification of proteins and lipids; involves specific sugar donors such as nucleotide and dolichol sugars, and glycosyltransferases; glycosylated products have specific structures and biological functions.

**Glycation**: chemical modification of proteins that occurs *in vivo*; spontaneous, <u>non-enzyme-catalyzed</u>; products are heterogeneous in structure and often deleterious to the organism.

## Protein glycation is not enzyme-catalyzed.



# Mechanism of formation of the Amadori intermediate during protein glycation



Glycoconjugates associated with plasma membranes (glycoproteins and glycolipids): asymmetric distribution of glycan chains on the extracellular side of the membrane.

The extracellular location allows specific glycan interactions with biomolecules, cells, viruses.

# **Glycoproteins**

#### Protein glycosylation affects:

- thermodynamic stability
- biological half-life
- cellular localization
- biological activity



Protein glycosylation is under enzymatic control:

- glycosylation of a particular protein can differ by cell type, growth stage, metabolic activity, and substrate availability, resulting in different isoforms that differ by glycosylation only.
- glycosylation differences produce glycoforms characterized by their microheterogeneity (a conserved protein component but different glycan components)

Nearly all eukaryotic secreted and membrane-associated proteins are heavily glycosylated; glycosylation is the most common post-translational modification of proteins; ~50% of proteins in the human body are glycosylated.

Two major forms of protein glycosylation: N-linked glycans and O-linked glycans

As a general rule, prokaryotes do not glycosylate proteins.

## Some functions of protein glycosylation

**Structural**: *O*-glycosylation of mucins results in an open, extended structure.

**Recognition**: *N*- and *O*-glycosylation of membrane proteins promote cell identity and adhesion (leukocyte rolling, immune system recognition).

**Protein degradation**: Slow cleavage of *N*-linked glycans can serve as a timing device for initiating protein proteolysis.

**Protein stability**: *N*-linked glycans can increase protein stability by enhancing water activity around the protein, "magnifying" the influence of the hydrophobic effect.

**Orientation in assemblies**: protein glycosylation can affect their interactions to form larger assemblies (*e.g.*, membrane signaling complexes)

Glycoproteins and glycolipids on plasma membranes mediate cell identity, communication, adhesion and/or growth.

Most oligosaccharides attached to proteins extend away from the protein's surface and probably do not affect protein structure significantly (we think).

# Experimental methods to modify protein glycosylation patterns



#### Peptide N-glycanase (PNGase):

Cleaves at the GlcNAc-Asn attachment point, liberating the full *N*-glycan *in vitro*.

Tunicamycin: a small molecule inhibitor of the initial step of protein *N*-glycosylation (dolichol-P stage); prevents *N*-glycosylation *in vivo*.

Mutagenesis can achieve the same effect, although the protein is modified.

Endo- and exo-glycosidases trim existing oligosaccharides in vitro.

Protein expression in different organisms/cells can modify glycosylation patterns in vivo.



In eukaryotes, tunicamycin inhibits the GPT translocase involved in the biosynthesis of GlcNAc-linked dolichol pyrophosphate (an early event in protein *N*-glycosylation). Tunicamycin is widely used to inhibit glycoprotein translocation and processing.

Tunicamycins are natural products isolated from *Streptomyces*. They vary in the structure of the fatty acid hydrophobic tail.

# Mechanism of hydrazine-mediated cleavage of an N-glycan from a glycoprotein

The chemical mechanism by which hydrazine cleaves the *N*-glycoside linkage of *N*-glycans is not completely understood.

Step 1: hydrazinolysis Step 2: re-*N*-acetylation

NHCOCH<sub>3</sub>

NHCOCH<sub>3</sub>

#### A proposed reaction scheme:

Step 3: acetohydrazone cleavage

OH

NH<sub>2</sub>NH<sub>2</sub>

Step 1

NH<sub>2</sub>NH<sub>2</sub>

Step 2 | Ac<sub>2</sub>O

OH

OH

OH

OH

OH

OH

Step 3

free reducing-end glycan

NHCOCH<sub>3</sub>

# Hydrolysis of the N-glycoside bond of N-glycans by peptide N-glycanase

Results in release of the <u>intact</u> *N*-glycan from the protein; the *N*-glycan has a free reducing end available for subsequent derivatization.



Use of hydrazine or PNGase to release an intact N-glycan from a glycoprotein. Subsequent chemical tagging of the released oligosaccharide at the reducing end with a fluorescent probe facilitates analysis by HPLC.

### N-Linked Glycoproteins and N-Glycans

N-Glycosylation involves a consensus sequence: GlcNAc is <u>β-linked</u> to the amide nitrogen of an Asn sidechain Consensus tripeptide sequence = Asn-X-Ser or Thr (X ≠ Pro / Asp)





N-linked glycans contain a common pentasaccharide core: (Man)<sub>3</sub>(GlcNAc)<sub>2</sub>



The GlcNAc<sub>2</sub>Man<sub>3</sub> "core" pentasaccharide is common to all *N*-linked glycans. The two Man branch points in this core pentasaccharide give rise to the 1,3 and 1,6 arms of the *N*-glycan. The GlcNAc<sub>2</sub>Man<sub>9</sub>Glc<sub>3</sub> oligosaccharide is the biological precursor in the construction of all *N*-glycans *in vivo*.

# Three main classes of N-glycans







### O-Linked Glycoproteins and O-Glycans

#### **O**-Glycosylation

β-D-Galactopyranosyl-(1,3)-*N*-acetyl-D-galactosamine α-linked to the side-chain OH group of either Ser or Thr.



O-Glycosylation is often structural (e.g., in proteoglycans and mucins). Heavy O-glycosylation forces the protein to adopt an extended conformation.