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The reaction catalyzed by methylmalonyl-CoA
mutase: requires coenzyme B,
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Stepwise (a) versus concerted (b) mechanisms for the methylmalonyl-CoA
mutase-catalyzed generation of 5’ -deoxyadenosine, cob(II)alamin,
and substrate radical
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Mechanism proposed for coenzyme B,,-
dependent ribonucleotide reductase
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Mechanism proposed for reducing and reestablishing the
active site of coenzyme B,,-dependent ribonucleotide
reductase
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Acetyl coenzyme A
(a biologically-activated acetyl group:
a thioester that serves more as a substrate
than as a coenzyme)



Chemical structure of acetyl-CoA
A pantothenic acid-containing coenzyme
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Phosphopantothenic acid coenzymes
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Fig. 3-32. Structures of pantothenic acid and phosphopantetheine coenzymes. The struc-
tures of coenzyme A (CoA) and phosphopantetheine prosthetic groups of proteins are based
on the vitamin pantothenic acid. The —SH group covalently binds acyl groups and chemi-
cally activates them. The phosphopantetheine moiety may be tightly bound and immobilized
through protein interactions, especially in reactions of CoA, or it may be relatively freely
mobile in the reactions of acyl carrier protein (ACP). The bonds that allow rotation are

highlighted.



Biological activation of a carboxyl group
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During nucleophilic attack on a carboxylic acid, (-) charge accumulates
in the tetrahedral intermediate, and breakdown of the latter involves
the loss of an oxide anion (not favorable). In thioester substrates,

(-) charge accumulation is reduced, and a good leaving group is present.
Thioesters are more ketone-like (and thus more electrophilic) than oxyesters
due to less overlap and less delocalization of non-bonding electrons from
sulfur onto the carbonyl oxygen than in the oxyester.



Enolization of carboxylic acids, oxyesters and thioesters
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Increasing stability

The rate of base-catalyzed enolization is fastest for
the species that contains the most electrophilic
carbonyl and produces the most stable enolate ion.



Acetyl CoA plays a key role in C-C bond formation in vivo

H] S H
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B
H* CoASH
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C
H
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Fig. 14-1. Chemical patterns in biological carbon-carbon bond formation. (A) In many enzy-
matic reactions linking two molecules with new carbon-carbon bonds, a carbanion is added
to the carbonyl group of an aldehyde or ketone in a two-step process through a tetrahedral
intermediate, which is quenched by protonation. The requisite carbanions are stabilized by the
group C=X, where X can be the carbonyl oxygen of an aldehyde or ketone in an aldolase reac-
tion, the acyl-carbonyl group of a CoA-ester in the action of citrate synthase, the thiazole ring
of thiamine pyrophosphate (TPP) in the action of transketolase, or the pyridoxamine ring in
the reaction of serine hydroxymethyltransferase. (B) In reactions such as that of B-ketothiolase,
a carbanionic CoA ester can add to another CoA ester and then eliminate CoASH to form a
B-ketothioester. (C) In many reactions of terpene biosynthesis, allylic carbenium ions form

carbon bonds by addition to carbon-carbon double bonds, and elimination of protons from the
resulting carbenium ion intermediates stabilizes the new carbon-carbon bonds.
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Citrate synthase: An ordered bi-bi reaction involving
a ternary complex (sequential, single displacement)

Citrate E Oxaloacetate
5 1
0]
g
E HC “T o E
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CoASH Acetyl CoA
. e
H,0
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O I
!
E HC ~ 7 SCoA 3 E He mlea
I O3 ~CH,C00
HO ~§ ~CH,CO0" ,
COO~ COO~

Fig. 14-4. The mechanism for the overall action of citrate synthase shows the condensation of
acetyl CoA with oxaloacetate in five stages: binding of oxaloacetate, binding of acetyl CoA,
reaction of the ternary complex to form citryl CoA, hydrolysis of citryl CoA to release CoASH,

and dissociation of citrate.



Cleland notation
E+A =—= EA
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(b) Ping Pong Mechanism

Figure 10.53. Mechanisms of interaction for two substrate reactions.
Textbook of Biochemistry With Clinical Correlations, Sixth Edition, Edited by Thomas M. Devlin. Copyright © 2006 John Wiley & Sons, Inc.
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The five reactions of the pyruvate dehydrogenase complex (PDC)
(a multi-enzyme complex; involves five coenzymes and three enzymes)

NAD*
dihydrolipoyl NADH &
+ H
OH S\ dehydrogenase
‘ » | ) (E5)
CO, CH;—C—TPP 5 \
Hydroxyethyl- R S
TPP Lipoamide é
HS
1 pyruvate 9 dihydrolipoyl
dehydrogenase transacetylase HS—
(E E :
o O i (Eyp)
| / 0
RO PP CH —(L—S ?
0~ ot Bl CH;—C—S— CoA
Pyruvate

Acetyl-CoA

A
R CoA
Acetyl-dihydrolipoamide



Lipoic acid (acyl group carrier)

Interconversion of lipoamide and dihydrolipoamide
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Couples electron transfer and acyl group transfer reactions
in a-ketoacid dehydrogenase multienzyme complexes; are
conformationally flexible
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The coenzymes and prosthetic groups of the
pyruvate dehydrogenase complex (PDC)

Cofactor Location Function

Thiamine pyrophosphate (TPP) Bound to E, Decarboxylates pyruvate, yielding a
hydroxyethyl-TPP carbanion

Lipoic acid Covalently linked to a Lys on Accepts the hydroxyethyl carbanion from

E, (lipoamide) TPP as an acetyl group

Coenzyme A (CoA) Substrate for E, Accepts the acetyl group from acetyl-
dihydrolipoamide

Flavin adenine dinucleotide (FAD) Bound to E; Reduced by dihydrolipoamide

Nicotinamide adenine dinucleotide (NAD™) Substrate for E; Reduced by FADH,

a-Ketoacid dehydrogenase multi-enzyme complexes catalyze
the reactions of a-ketoacids with NAD+ and CoA to produce
acyl CoA, NADH and CO, (oxidative decarboxylation of a-ketoacids)
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Fig. 18-9. Reactions catalyzed by the fatty acid synthase complex in the biosynthesis of
palmitic acid.




Thiamine pyrophosphate



The structure of thiamine pyrophosphate (TPP)
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The thiazolium ring is the reactive part of the molecule. TPP
functions to delocalize the (-) charge on acylium ions during
the decarboxylation of a-ketoacids.



Biosynthesis of TPP from vitamin B,
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Figure 4.2 Biosynthesis of thiamine pyrophosphate from adenosine triphosphate (ATP) and
thiamine (vitamin B,). The structures of ATP, the vitamin, and the active coenzyme are
illustrated. A single reaction converts thiamine to thiamine pyrophosphate as shown. The
byproduct of the reaction is adenosine monophosphate (AMP). The enzyme catalyzing this
reaction is called thiamine pyrophosphate synthase.



TPP is involved in enzyme-catalyzed reactions involving
C-C bond formation or cleavage in carbonyl or carbonyl-like

substrates.

;|

Bonds susceptible (”) (”) (") (I)
to cleavage by TPP —C—-C— —C—-C—

|
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For example: —/O\' E (”j R R
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Fig. 3-10. Types of covalent bonds cleaved by action of thiamine pyrophosphate (TPP). Bonds
of the type shown in red appear in o-ketoacids, vicinal diketones, and o-hydroxyketones and
are cleaved by TPP-dependent enzymes. The nature of the cleavage reactions is illustrated in
the lower part of the figure. The chemical properties of the thiazolium ring of TPP in forming
adducts with substrates obviate the necessity to produce the unacceptably high-energy acylium
ions implied by the electron flow.
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Fig. 3-11. Typical reactions of thiamine pyrophosphate (TPP)-dependent enzymes. Pyruvate
decarboxylase and transketolase are TPP-dependent enzymes that do not require other
coenzymes or cofactors. Pyruvate oxidoreductases couple the decarboxylation of pyruvate,
with its further oxidation to the acetate level; they require other cofactors, including coenzyme
A and an electron acceptor such as NADP*, a quinone, or dioxygen. Electron transfer is
also mediated by iron-sulfur clusters or flavin coenzymes, or both. The o-ketoacid dehydro-
genase complexes consist of at least three proteins and require coenzyme A, NAD", lipoic acid,
and FAD to support the acetyl group transfer and electron transfer, in addition to TPP for
decarboxylation.



Decarboxylation of p-ketoacids
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SCHEME 8.2 Decarboxylation of B-keto acids.
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SCHEME 8.3 Cyclic transition state for decarboxylation of B-keto acids.
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SCHEME 8.4 Amine-catalyzed decarboxylation of B-keto acids.

Applicable to 1° and 2° amines only
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SCHEME 8.8 Proposed mechanism for acetoacetate decarboxylase.
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SCHEME 8.9 Fate of NaBH, reduction during the reaction catalyzed by acetoacetate decarboxylase.



CN--catalyzed decarboxylation of a-ketoacids
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How TPP functions to stabilize an acylium ion during the
decarboxylation of pyruvate
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Fig. 3-12. Thiamine pyrophosphate (TPP) catalysis of the decarboxylation of pyruvate. Only
the chemically essential thiazolium ring of TPP is explicitly shown in this mechanism, which
is intended to focus on the chemical steps.



Reaction mechanism of pyruvate decarboxylase
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Formation of the active ylid form of TPP in the pyruvate
decarboxylase reaction
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A model system: The C2-H of 1,5-dimethylthiazolium undergoes
fast exchange with 2H,0 in neutral solution
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The pK, for C2-H ionization of TPP in aqueous solution is ~19.
In an enzyme active site, the same ionization is orders of magnitude
lower than in water.
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Hydroxyethylidene-TPP is carbanionic in nature, with stabilization provided by
its important resonance forms. The enamine form is likely to be more important
than the charge-separated carbanion, although the polarity of the
microenvironment probably influences the relative importance of the two forms.
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Fig. 3-12. Thiamine pyrophosphate (TPP) catalysis of the decarboxylation of pyruvate. Only
the chemically essential thiazolium ring of TPP is explicitly shown in this mechanism, which
is intended to focus on the chemical steps.
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Fig. 3-13. Enzymatic reactions of hydroxyethylidene—thiamine pyrophosphate (TPP). The
major enzymatic fates of hydroxyethylidene-TPP are depicted in its charge-separated carban-
ionic resonance form.



Proposed mechanism of phosphoketolase
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Fig. 3-14. A hypothetical mechanism for the role of TPP in the reaction of phosphoketolase.
The overall transformation of xylulose-5-P and phosphate into acetyl phosphate, glyceralde-
hyde-3-P, and a mole of water is postulated to proceed by the mechanism shown in the lower
portion of this figure. The enzyme and reaction mechanism have not been characterized.
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The transketolase
reaction: A TPP-

requiring enzyme



Pyridoxal phosphate
(key coenzyme of amino acid
metabolism)



CH,OH

HO | “N\—CH,OH
HaC o
ATP N

Pyridoxine

ADP

CHOH CHO o-

|
HO | “\—CH,0P0; HO | X cn,—o—h’—o-

H;C P ; : l'l:|C S
N 0, HO N

2

Pyridoxine Pyridoxal phosphate
phosphate t

CH,NH, o-

HO | N CH,—O—II’—O‘
H,C N/ C")
Pyridoxamine phosphate
Figure 4.13 Biosynthetic pathways for the conversion
of pyridoxine (top)—the most common form of vitamin
Bs—first to pyridoxine phosphate (middle, left) and then
to the principal coenzyme form, pyridoxal phosphate
(PLP) (middle, right). PLP can secondarily be converted
to the second coenzyme form of the vitamin, pyridox-
amine phosphate (PMP) (bottom), which is a coenzyme

of transamination (aminotransfer) reactions.

Biosynthesis of

pyridoxal phosphate (PLP)

from vitamin B,
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Fig. 3-16. Vitamin B coenzymes and the cleavable bonds in pyridoxal-5’-phosphate (PLP)
reactions. (A) Structures of vitamin By and its coenzymatic forms. (B) The bonds susceptible
to PLP-dependent cleavages in o-amino acids. The §-amino group in ornithine, y-amino group
in y-aminobutyric acid, the €-amino group of lysine, and amino groups in substrates other
than amino acids are also cleaved by the actions of PLP-dependent aminotransferases and
aminomutases.



Forms of pyridoxal 5" -phosphate: (a) pyridoxine
(vitamin B,) and (b) pyridoxal 5’ -phosphate (PLP)
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Forms of pyridoxal 5" -phosphate:
(c) Pyridoxamine 5’ -phosphate (PMP) and (d) the Schiff
base that forms between PLP and an enzyme &-amino group

NH,
H,C

*~0,P—O0—H,C OH
\
+ =

N CH,
H

Pyridoxamine-5'-
(c) phosphate (PMP)

(CHy),— Enzyme

+
H\C%N\H

CH, 0~
S
2~0,PO N

+ =
N CH,
H

Enzyme-PLP
(d) Schiff base

An internal aldimine
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Fig. 3-17. Typical pyridoxal-5"-phosphate—dependent enzymatic reactions are shown with the
chapters in which the enzymes are discussed.



o—Carbanions: aminotransferases (transamination), o.-decarboxylases, racemases,
aldolases, o.,B-eliminations, B,y-eliminations, aspartate--decarboxylase

Fig. 3-18. Structures of pyridoxal-5"-phosphate-stabilized amino acid carbanionic intermediates.



Internal aldimine: maintains PLP in highly a reactive state to
facilitate the formation of external aldimines (from amino groups
of varied substrates); the protonated imine is considerably more

electrophilic than the corresponding aldehyde or ketone.
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Fig. 3-19. Structure of pyridoxal-5"-phosphate (PLP) enzymes. (A) Most PLP enzymes bind
PLP covalently through an imine linkage between the aldehyde group of PLP and the €-amino
group of a lysine residue at the active site. (B) The internal aldimines undergo transaldimina-
tion with amino acids to form external aldimines much faster than PLP itself would react.



