Rearrangement of an external aldimine: formation of
an a-carbanionic PLP intermediate via a-decarboxylation
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Reaction specificity
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Fig. 3-20. Determinants of reaction specificities and stereospecificities of pyridoxal-5'-
phosphate (PLP) enzymes. Reaction specificity: Orientation about the N—C, bond in the exter-
nal aldimine and the placement of catalytic groups determine whether decarboxylation or
removal of the o-hydrogen will take (Floss and Vederas, 1982). Abstraction of the o-hydrogen
is facilitated by the orientation at the left, in which the o-carbanion orbital developing from
proton abstraction by a well-placed base is aligned for maximum overlap with the nt-bonds of
the imine and pyridinium ring. Decarboxylation is favored by the placement of the carboxylate
group as at the right, in which the o-carbanion orbital developing from decarboxylation attains
maximum overlap with the m-bonding system. Stereospecificity: In many PLP-dependent
enzymes, such as aminotransferases, the o-hydrogen is abstracted and PLP-C4’ is temporarily
protonated. In these cases, there is often transfer of the proton from C,, of the amino acid moiety
to C4” of the coenzyme. This is detected in tritium tracer experiments with [2-*H]amino
acids, in which tritium can be found stereospecifically incorporated into the C4” carbon of
pyridoxamine-5"-phosphate.
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PLP enzyme mechanisms: conveniently studied because the
infermediates can be observed spectrophotometrically

CHO CH,NH,
HOCH, _\_-OH HOCH, . _A_-OH
S ®
N~ “CH, N CHj
' H
}"mux = 390 nm }"max — 330 nm
NH*-Lys-E Y
z —Lys—i # NL
_ | _
PO X0 PO O™ one resonance form
| | I of an a-carbanion
+ .
N CH; N~ “CH,
H H :
Mmax = 430 nm Ay = 495500 nm

Fig. 3-21. Spectrophotometric properties of some pyridoxal-5"-phosphate compounds.

Nominal A.,: vary somewhat from system to system



Mechanism of tryptophan synthase
Conversion of indole glycerol phosphate and serine to
tryptophan and G3P
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Fig. 3-22. A mechanism of the reaction of tryptophan synthase. The interface between the
subunits symbolizes the tunnel shown in fig. 3-23. Indole is produced from indoleglycerol
phosphate in the o subunit and migrates through the protein to the active site of the  subunit,
where pyridoxal-5'-phosphate (PLP) catalyzes the dehydration of serine. Indole undergoes a
B-replacement of the OH group of serine to form tryptophan. The ring nitrogen of PLP is not
shown as protonated because the structure indicates that the nitrogen is hydrogen bonded to a
serine residue, not an aspartate as in transaminases.



Tunneling between the o and B subunits of tryptophan synthase

Fig. 3-23. A “tunnel” (red) connecting the active sites in tryptophan synthase runs between the
two active sites in Salmonella typhimurium tryptophan synthase (EC 4.2.1.20), allowing indole
generated in the o subunit to travel to the B subunit without being released into solution. Indole
glycerol phosphate is shown as a ball-and-stick model in the o-subunit active site, with the
indole moiety in red and the remainder in black. The pyridoxal-5’-phosphate internal aldimine
is shown as a black ball-and-stick model in the active site of the [3 subunit. The illustration was
generated using PDB 1QOQ (Weyand and Schlichting, 1999).
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Radical-based rearrangements involving PLP: aminomutases
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Fig. 3-25. The role of pyridoxal-5"-phosphate (PLP) in the radical-based rearrangement
of aminomutases. PLP cannot facilitate the reaction of lysine 2,3-aminomutase by way of
carbanionic intermediates. Instead, aminomutases induce radical formation through hydrogen
abstraction by the 5’-deoxyadenosyl radical generated from S-adenosylmethionine or adenosyl-
cobalamin (see chap. 4). PLP facilitates amino group migration in the external aldimine by
means of radical isomerization.



Involvement of PLP in deoxysugar biosynthesis

CDP-4-keto-
G ci, 3,6-dideoxyglucopyranose
DP-4-keto- E,PMP/E
1 3 +
6-deoxyglucopyranose °—=" + NADH + H* -ooooommiioens -0= + NAD* + H,0
Y9 Py N OC N op
OH
1 E,PMP E,PMP 7
H,O E;FAD|2Fe-2S]

i 2 one-electron

reductions
5? .
2-0,P0
E3FAD|2Fc-25|
5 MﬁNADH +H*
le” + IH*

H,C H H,C

N e !

N ) /Jvé\ OCDP OCDP
— OH

2-0,PO 2-04P0

Fig. 3-26. Role of pyridoxal-5"-phosphate in deoxysugar formation. A hypothetical mechanism
is shown for reduction of carbon 3 in 3,6-dideoxysugar biosynthesis.
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Folate coenzymes



Core structure: tetrahydrofolic acid
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Figure 4.16 Generalized structure and nomenclature of tetrahydrofolate de-
rivatives. The active, nucleophilic nitrogen atoms in the coenzyme are N° and
N'° both of which are activated by adjacent aromatic rings. The active coen-
zyme consists of three moieties: a reduced, substituted pterin ring, 2-amino-
4-hydroxy-6-methylpterin, p-aminobenzoic acid, and a chain of from one to
seven glutamyl residues. Only a single glutamyl residue is shown. R, and R;
are either hydrogens (in FH, itself) or the one carbon fragments shown in
Figure 4.17.



Chemical structure of tetrahydrofolate (THF)

|
HN___AY N H
2 ‘ H g O(H €00~ 0
HNS_, 5 8 | | |
‘ H 9 10 n
9 H
~ K ~ J \ e J
2-Amino-4-oxo- p-Aminobenzoic Glutamates
6-methylpterin acid ) (n =1-6)

Pteroic acid

~

Pteroylglutamic acid (tetrahydrofolate; THF)



H,N N N
T T
HN P PABA -p-aminobenzoic acid
N
O HN \\
\O\ 20
C

|
Folate HN - CHCH,CH,COO"~

COO~

Y Chemical
|G structures of folate,
e oo dihydrofolate, and
tetrahydrofolate

HN 10
O\ 20
C

|
Tetrahydrofolate HN ~(CHCH,CH,CO0),0~

COO™

Fig. 3-33. Structure and oxidation states of folic acid. The biologically important forms of
the vitamin folic acid are dihydrofolate and tetrahydrofolate, shown at the bottom of the figure.
p-Aminobenzoic acid (PABA), a nutritional factor, is incorporated in the biosynthesis of folate.
The highlighted N° and N'° in tetrahydrofolate participate directly in biological reactions of
folic acid. A polyglutamate is shown in the structure of tetrahydrofolate because the polygluta-
mate species with five of six glutamates are the most biologically active.



The two-stage reduction of folate to THF
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Fig. 3-34. Structures and interconversions of folate compounds in one-carbon metabolism.



H

HzNjéN N  H
HO T H
| (L

T T B HN 5
,C (If CO0 ?“J (|:H2
+ 10|
NH3 0 CHy; N—R
Serine Glycine : H
: N°-Methyl-THF
serine
hydroxymethyl- /. NADT
transferase / NN -methylene-THF
reductase NADH + H*
H
THF HyN VN N cH
[
HN 5
glycine N 10l
cleavage 0 C—N—R THF
" system Hy
HyN—CH,—CO0™  CO, + NHY N3 N'"Methylene-THF Histidine
Glycine + NADH m
+ 3 o)
NAD™ N°, N*%.methenyl-THF HATE (xlutfmate
reductase NADPH + 0T NHj
H H
HyN /N N H N formimino-THF ~ HaN /N N H
| H H cyclodeaminase | H H
HN. 5 HN 5
CHZ CH2
N,
H NHj aN” Sy H
N°, N'*.Methenyl-THF N %Formimino-THF
NS, Nlo-mcthcnyl-THFw k H,0 ABP
cyclohydrolase P ATP
H

H
N N N N
N'formyl-THF "2Njé H N formyl-THF IlzN\( H
THF synthetase | H H isomerase | H H
HN 5 ) HN 5
N~ ~CHp N~ CH,
/\ T N l(}lx_R /—\ ll 10| .
HCO, + ATP  ADP + P; | ADP + P,  ATP ~Cx, N—R

H O H
Formate ~Cx
H 0

N'""Formyl-THF NP Formyl-THF

Interconversion
of the C, units
carried by THF



—N — —N N—
Aokiif Nissef
CHO T \‘ H / H CHO
0 5 10 5 AND10 5 10
i N NS — N RS — N e
HCOH ___/ ___/ | SR W
fo Y0
NADPH _K° %@
NADP *
0 CH,0H H H CH,OH
52 10 L |5 ||o2
HCH  —N N— ~— —N N— <~ —N N—
\ _/ -/ __/
®
//9/H NADH
HCH
\s NAD*
N
N (I:H3 H
|
_as e
CH,OH —/

_—Homocysteine
Methionine

FHs

Figure 4.17 Interconversion of the various derivatives of tetrahydrofolic acid (FH,).
Vertical interconversions are catalyzed by NADP*- and NAD*-dependent enzymes
as shown. Horizontal interconversions may occur spontaneously or be enzyme-
catalyzed. The structures of formic acid (HCO,H), formaldehyde (HCHO), and
methanol (CH3;OH) are depicted on the left to indicate the oxidative state of the
1-carbon fragment(s) attached to FH4. Reaction of an activated form of formic
acid, the mixed anhydride derivative (top, right), and of formaldehyde (middle,
left) with the free coenzyme (FH,) are also shown.



The biosynthetic fates of the C, units in the THF pool
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Formyltetrahydrofolate synthetase: production of
10-formyl-tetrahydrofolate

H,folate + MgATP + HCOO -~ — 10-Formyl-H,folate + MgADP + P; (3-30)

Mechanism

HOPO,>

Fig. 3-35. Synthesis of 10-formyltetrahydrofolate by formyltetrahydrofolate synthetase.



Methylene-H,folate is produced mainly by serine
hydroxymethyltransferase and methenyl-H,folate reductase.
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Cyclohydrolase dehydrates 10-formyl-H,folate to give
methenyl-H,folate; a reasonable mechanism follows:
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Cyclohydrolase mechanism:
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Scheme 3-4

Reduction of the imine by NADPH catalyzed by
methenyl-H,folate reductase produces methylene-H,folate.



Reduction of the imine by NADPH catalyzed by
methenyl-H,folate reductase produces methylene-H,folate.
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The enzymatic conversion of dUMP to dTMP requires

methylene-H,folate.
O H 0]
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Fig. 3-36. The enzymatic conversion of dUMP into dTMP. Thymidylate synthase catalyzes
the conversion of dUMP and methylenetetrahydrofolate into dTMP and dihydrofolate.
The process would deplete the tetrahydrofolate pool were it not for dihydrofolate reductase,
which catalyzes the reduction of dihydrofolate by NADPH. Serine hydroxymethyltransferase

regenerates methylenetetrahydrofolate.
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Role of formyl transferases in purine biosynthesis
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Biological importance of folate: masked methanol, formaldehyde,
and formate functionalities

Free CH;OH, HCHO and HCOOH are cytotoxic. HCHO is
especially reactive fowards amino groups (crosslinking).
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