fessor Anthony Serianni
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Figure 10-1  Spaceship Earth and the Major Components of Our Life-Support
System—the Biosphere.

) be foreign on this large celestial body consisting of spheres, namely, organic life.
a determined zone at the surface of the lithosphere. The plant, whose deep roots
) feed, and which at the same time rises into the air to breathe, is a good illustration
1€ region of interaction between the upper sphere and the lithosphere, and on the

e of continents it is possible to single out an independent biosphere.”

(The Face of the Earth,1885-1901 — three volumes)
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Table 1. Reflectivity values of various surfaces.

Surface Details Albedo
Soil Dark and Wet 0.05 -
Light and Dry 0.40
Sand 0.15-0.45
Grass Long 0.16 -
Short 0.26
Agricultural Crops 0.18 - 0.25
Tundra 0.18 - 0.25
Forest Deciduous 0.15-0.20
Coniferous 0.05-0.15
Water Small Zenith Angle 0.03-0.10
Large Zenith Angle 0.10 - 1.00
Snow Old 0.40 -
Fresh 0.95
Ice Sea 0.30-045
Glacier 0.20-0.40
Clouds Thick 0.60 -0.90
Thin 0.30 - 0.50

Sources: Oke, 1992; Ahrens, 2006.
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TABLE 2.18 Terminology Relating to Atmospheric Particles

Aerosols, aerocolloids,
aerodisperse systems
Dusts Suspensions of solid particles produced by mechanical disintegration

Tiny particles dispersed in gases

of material such as crushing, grinding, and blasting; D, > 1 um
Fog A term loosely applied to visible aerosols in which the dispersed phase

is liquid; usually, a dispersion of water or ice, close to the ground
Fume The solid particles generated by condensation from the vapor state,

generally after volatilization from melted substances, and often
accompanied by a chemical reaction such as oxidation; often the
material involved is noxious; D, < 1 pm

Hazes An aerosol that impedes vision and may consist of a combination of
water droplets, pollutants, and dust; D, < 1 um

Mists Liquid, usually water in the form of particles suspended in the o*hcr fac*or’

atmosphere at or near the surface of the Earth; small water droplets

floating or falling, approaching the form of rain, and sometimes
distinguished from fog as being more transparent or as having fha* ccn*rlbu*e
particles perceptibly moving downward; D, > 1 pm
Particle An aerosol particle may consist of a single continuous unit of solid or * P' * ry ' b d
liquid containing many molecules held together by intermolecular o an‘ a a ‘ °
forces and primarily larger than molecular dimensions (>0.001
pum); a particle may also consist of two or more such unit structures
held together by interparticle adhesive forces such that it behaves as
a single unit in suspension or on deposit
Smog A term derived from smoke and fog, applied to extensive contamina-
tion by aerosols; now sometimes used loosely for any contamina-
tion of the air
Smoke Small gasborne particles resulting from incomplete combustion,
consisting predominantly of carbon and other combustible materi-
als, and present in sufficient quantity to be observable indepen-
dently of the presence of other solids. D, > 0.01 pm
Soot Agglomerations of particles of carbon impregnated with “tar,” formed
in the incomplete combustion of carbonaceous material
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dlar constant =S,

rea of Earth irradiated by Sun = nr2
face area of Earth = 4xr2

it received by Earth = nr2/4ar2 = 1/4 x 1370 W/m?2 = 342 W/m?2
bal mean planetary reflectance = albedo = 0.3
342 W/m2 x 0.7 = ~235 W/m?2

‘Scattering by air molecules; scattering by atmospheric
icles; reflection from the surface itself (surface albedo is
denoted R,)

If §, was reduced by 5-10%, ice would engulf the
planet within 100 years.
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FIGURE 23.7 Variations in solar total radiation incident on the Earth (in W m~2), on different
timescales (Lean and Rind 1996). (a) Recorded day-to-day changes for a period of 7 months at a
time of high solar activity. The largest dips of up to 0.3% persist for about a month and are the result
of large sunspot groups that are carried across the face of the Sun with solar rotation. (b) Observed
- changes for the 15-year period over which direct measurements have been made, showing the 11-
year cycle of amplitude about 0.1%. (c) A reconstruction of variations in solar radiation since about
1600, based on historical records of sunspot numbers and postulated solar surface brightness during
the 70-year Maunder Minimum. Estimated variations are of larger amplitude than have yet been
observed. (d) A longer record of solar activity based on postulated changes in solar radiation that
are derived from measured variations in '*C and '’Be.
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FIGURE 4.2 Solar spectral irradiance (Wm™2 pum~!) at the top of the Earth’s atmosphere
compared to that of a blackbody at 5777 K (dashed line) (Igbal 1983). There is a reduction in total
intensity of solar radiation from the Sun’s surface to the top of the Earth’s atmosphere, given by the
ratio of the solar constant, 1370 Wm™2 to the integrated intensity of the Sun [see (4.4)]. That ratio
is about 1/47 000. (Reprinted by permission of Academic Press.)
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dlar constant =S,

rea of Earth irradiated by Sun = nr2
face area of Earth = 4xr2

it received by Earth = nr2/4ar2 = 1/4 x 1370 W/m?2 = 342 W/m?2
bal mean planetary reflectance = albedo = 0.3
342 W/m2 x 0.7 = ~235 W/m?2

‘Scattering by air molecules; scattering by atmospheric
icles; reflection from the surface itself (surface albedo is
denoted R,)

If §, was reduced by 5-10%, ice would engulf the
planet within 100 years.
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FIGURE 4.4 The Earth’s annual and global mean energy balance (Kiehl and Trenberth 1997). Of
342 W m~2 incoming solar radiation, 168 W m~2 is absorbed by the surface. That energy is returned
to the atmosphere as sensible heat, latent heat via water vapor, and thermal infrared radiation. Most of
this radiation is absorbed by the atmosphere, which, in turn, emits radiation both up and down.
(Reprinted by permission of the American Meteorological Society.)

n2 168 + 67 = 235 Wm~2

m-2 390 Wm2 surface radiation



Variations of the Earth's surface temperature for:

(a) the past 140 years
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FIGURE 23.1 Variations of the Earth’s surface temperature over the last 140 years (a) and the
past 1000 years (b) (IPCC 2001).
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What is climate sensitivity?

It is the equilibrium temperature change in
response to changes of the radiative forcing.

Radiative forcing is defined as the difference of radiant
energy received by the Earth and energy radiated back to space.

Examples of radiative forcing: changing atmospheric
CO, concentration; changing cloud behavior; changing
atmospheric soot particles (e.g., from volcanoes)
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On average, Earth absorbs approximately 240 W of sunlight
per square meter (240 Wm-). A doubling of atmospheric CO,
[concentration] causes a radiative forcing of ~4 Wm=™2,
Therefore, to offset the 4 Wm= forcing requires reflection of
approximately 4/240, or ~1.7%, of incoming solar radiation.
Precise numbers depend on uncertain climate system
feedbacks and differences in climate system response to
different types of radiative forcing [climate sensitivity].

Geoengineering

Caldeira et al., Ann. Rev. Earth Planet. Sci. 2013, 41, 231-56



Desire for

improved
well-being

Impacts on
humans and
ecosystems

Consumption
of goods and
services

Consumption
of energy

CO,in
atmosphere

Figure 1
Most geoengineering approaches fall into one of two categories: carbon dioxide removal or solar
geoengineering. Thesc approaches can be viewed as part of a portfolio of strategies for diminishing climate
risk and damage. Carbon dioxide removal attempts to break the link between CO; emissions and
accumuladion of CO; in the atmosphere. Solar geoengineering (also known as solar radiation management)
attempts to break the link between accumulation of CO; in the atmosphere and the amount of climate
change that can result.

ira et al., Ann. Rev. Earth Planet. Sci. 2013, 41, 231-56



Solar gcocnginccring/solar radiation management approaches work by rcﬂccdng to spacc sunlight that would otherwisc have been
absorbed. Illustrated methods are (#) using satellites in space, (b) injecting acrosols into the stratosphere, (¢) brightening marine clouds
(d) making the occan surface more reflective, (¢) growing more reflective plants, and (f) whitening roofs and other built structures.
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Caldeira et al., Ann. Rev. Earth Planet. Sci. 2013, 41, 231-56
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URE 21.1 Zonally averaged components of the absorbed solar flux and emitted thermal
frared flux at the top of the atmosphere. The + and — signs denote energy gain and loss,
spectively. (From Radiation and Cloud Processes in the Atmosphere: Theory Observation and

lodeling by Kuo-Nan Liou. Copyright © 1992 by Oxford University Press, Inc. Used by
ermission of Oxford University Press, Inc.)
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