Chapter 10: Mantle
Melting and the Generation
of Basaltic Magma




2 principal types of basalt In

the ocean basins
Tholelitic Basalt and Alkaline Basalt

Table 10.1

Common petrographic differences between tholeiitic and alkaline basalts

Tholeiitic Basalt

Alkaline Basalt

Usually fine-grained, intergranular

Usually fairly coarse, intergranular to ophitic

Groundmass No olivine Olivine common
Clinopyroxene = augite (plus possibly pigeonite) Titaniferous augite (reddish)
Orthopyroxene (hypersthene) common, may rim ol. Orthopyroxene absent
No alkali feldspar Interstitial alkali feldspar or feldspathoid may occur
Interstitial glass and/or quartz common Interstitial glass rare, and quartz absent
Olivine rare, unzoned, and may be partially resorbed Olivine common and zoned
Phenocrysts or show reaction rims of orthopyroxene

Orthopyroxene uncommon
Early plagioclase common

Clinopyroxene is pale brown augite

Orthopyroxene absent
Plagioclase less common, and later in sequence

Clinopyroxene is titaniferous augite, reddish rims

after Hughes (1982) and McBirney (1993).




Each Is chemically distinct

Evolve via FX as separate series
along different paths

Tholelites are generated at mid-ocean ridges

Also generated at oceanic islands,
subduction zones

Alkaline basalts generated at ocean islands
Also at subduction zones



Sources of mantle material

o Ophiolites
+ Slabs of oceanic crust and upper mantle
= Thrust at subduction zones onto edge of continent

» Dredge samples from oceanic crust
o Nodules and xenoliths In some basalts

e Kimberlite xenoliths

- Diamond-bearing pipes blasted up from the
mantle carrying numerous xenoliths from depth



Lherzolite Is probably fertile unaltered mantle
Dunite and harzburgite are refractory residuum after basalt has been
extracted by partial melting
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Figure 10-1 Brown and Mussett,
A. E. (1993), The Inaccessible
Earth: An Integrated View of Its
Structure and Composition.
Chapman & Hall/Kluwer.
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Lherzolite: A type of peridotite
with Olivine > Opx + Cpx
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Phase diagram for aluminous

4-phase lherzolite:
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Figure 10.2 Phase diagram of aluminous Iherzolite with melting interval (gray), sub-solidus reactions,

and geothermal gradient. After Wyllie, P. J. (1981). Geol. Rundsch. 70, 128-153.



How does the mantle melt??
1) Increase the temperature
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Figure 10.3. Melting by raising the temperature.



2) Lower the pressure
~ Adiabatic rise of mantle with no conductive heat loss
~ Decompression partial melting could melt at least 30%

o
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Figure 10.4. Melting by (adiabatic) pressure reduction. Melting begins when the adiabat crosses the solidus and
traverses the shaded melting interval. Dashed lines represent approximate % melting.



3) Add volatiles (especially H,0)
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Figure 10.4. Dry peridotite solidus compared to several experiments on H2O-saturated peridotites.
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» Heating of amphibole-bearing peridotite

1) Ocean geotherm
2) Shield geotherm

Figure 10.6 Phase diagram (partly schematic)
for a hydrous mantle system, including the
H20O-saturated Iherzolite solidus of Kushiro et
al. (1968), the dehydration breakdown curves
for amphibole (Millhollen et al., 1974) and
phlogopite (Modreski and Boettcher, 1973),
plus the ocean and shield geotherms of Clark
and Ringwood (1964) and Ringwood (1966).
After Wyllie (1979). In H. S. Yoder (ed.), The
Evolution of the Igneous Rocks. Fiftieth
Anniversary Perspectives. Princeton University
Press, Princeton, N. J, pp. 483-520.
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Melts can be created under
realistic circumstances

» Plates separate and mantle rises at mid-
ocean ridges

Adibatic rise — decompression melting
» Hot spots - localized plumes of melt
o Fluid fluxing may give LVL

Also important in subduction zones and
other settings



Generation of tholelitic and
alkaline basalts from a
chemically uniform mantle
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Figure 10.2 Phase diagram of aluminous Iherzolite with
melting interval (gray), sub-solidus reactions, and
geothermal gradient. After Wyllie, P. J. (1981). Geol.

Rundsch. 70, 128-153. 600




Pressure effects:

Figure 10.8 Change in the eutectic (first
melt) composition with increasing
pressure from 1 to 3 GPa projected
onto the base of the basalt tetrahedron.
After Kushiro (1968), J. Geophys. Res.,
73, 619-634.
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Liquids and residuum of melted pyrolite
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Figure 10.9 After Green and Ringwood (1967). Earth Planet. Sci. Lett. 2, 151-160.
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Initial Conclusions:

» Tholelites favored by shallower melting
25% melting at <30 km — tholeiite
25% melting at 60 km — olivine basalt
o Tholeliites favored by greater % partial melting (F)

20 % melting at 60 km — alkaline basalt
Incompatibles (alkalis) — initial melts

30 % melting at 60 km — tholelite



Crystal Fractionation of magmas

as they rise

o Tholelite — alkaline

by FX at med to highP °
o NotatlowP
Thermal divide
o Al in pyroxenes at Hi P
Low-P FX - hi-Al
shallow magmas
(“hi-Al” basalt)
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Figure 10.10 Schematic representation of the fractional
crystallization scheme of Green and Ringwood (1967)
and Green (1969). After Wyllie (1971). The Dynamic
Earth: Textbook in Geosciences. John Wiley & Sons.
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Other, more recent experiments on melting of fertile (initially garnet-
bearing) lherzolite confirm that alkaline basalts are favored by high
P and low F
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Figure 10.11 After Kushiro (2001).



Primary magmas

o Formed at depth and not subsequently modified by
FX or Assimilation

o Criteria
Highest Mg# (100Mg/(Mg+Fe)) really — parental
magma
Experimental results of lherzolite melts
Mg# = 66-75
Cr > 1000 ppm
Ni > 400-500 ppm
Multiply saturated



Multiple saturation
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Figure 10.13 Anhydrous P-T phase relationships for
a mid-ocean ridge basalt suspected of being a
primary magma. After Fujii and Kushiro (1977).
Carnegie Inst. Wash. Yearb., 76, 461-465.
1.5
1100 1200 1300

T°C



Multiple saturation

0
o LOWP

= Ol then Plag then Cpx

as cool Mid-Ocean
Ridge Basalt

~70°C T range 05§ (@)
o ngh P g
-~ Cpx then Plag then C

Figure 10.13 Anhydrous P-T phase relationships for
a mid-ocean ridge basalt suspected of being a
primary magma. After Fujii and Kushiro (1977).
Carnegie Inst. Wash. Yearb., 76, 461-465.
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Multiple saturation
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Summary
A chemically homogeneous mantle can
yield a variety of basalt types

Alkaline basalts are favored over tholeiites
by deeper melting and by low % PM

Fractionation at moderate to high depths can
also create alkaline basalts from tholelites

At low P there Is a thermal divide that
separates the two series



Review of REE
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Review of REE
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REE data for oceanic basalts
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Figure 10.14a. REE diagram for a typical alkaline ocean island basalt (OIB) and tholeiitic mid-
ocean ridge basalt (MORB). From Winter (2001) An Introduction to Igneous and Metamorphic

Petrology. Prentice Hall. Data from Sun and McDonough (1989).



Spider dlagram for oceanic basalts
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Figure 10.14b. Spider diagram for a typical alkaline ocean island basalt (OIB) and tholeiitic mid-
ocean ridge basalt (MORB). From Winter (2001) An Introduction to Igneous and Metamorphic
Petrology. Prentice Hall. Data from Sun and McDonough (1989).
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LREE depleted
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Figure 10.15 Chondrite-normalized REE diagrams for %
spinel (a) and garnet (b) Iherzolites. After Basaltic O
Volcanism Study Project (1981). Lunar and Planetary o
Institute.




Review of Sr 1sotopes
o ’Rb > 8'Sr A=142x 10" a
» Rb (parent) conc. in enriched reservoir (incompatible)

e Enriched reservoir
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Figure 9.13. After Wilson (1989). Igneous Petrogenesis. Unwin
Hyman/Kluwer.



Review of Nd I1sotopes
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Figure 9.15. After Wilson (1989). Igneous Petrogenesis. Unwin Hyman/Kluwer.



Nd and Sr isotopes OFf Ocean Basalts
“Mantle Array”
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Figure 10.16a. Initial 143Nd/44Nd vs. 87Sr/86Sr for oceanic basalts. From Wilson (1989). Igneous Petrogenesis.
Unwin Hyman/Kluwer. Data from Zindler et al. (1982) and Menzies (1983).



Nd and Sr isotopes of Kimberlite Xenoliths
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Figure 10.16b. Initial 43Nd/*44Nd vs. 87Sr/8Sr for mantle xenoliths. From Wilson (1989). Igneous Petrogenesis.
Unwin Hyman/Kluwer. Data from Zindler et al. (1982) and Menzies (1983).



“Whole Mantle” circulation
model

Figure 10-17a After Basaltic Volcanism Study Project (1981). Lunar and Planetary Institute.



“Two-Layer” circulation model
+ Upper depleted mantle = MORB source

-~ Lower undepleted & enriched OIB source

Figure 10-17b After Basaltic Volcanism Study Project (1981). Lunar and Planetary Institute.



Experiments on melting enriched vs.

depleted mantle samples:

1. Depleted Mantle

e [holelite easily created
by 10-30% PM

e Vlore silica saturated
at lower P

e Grades toward alkalic

at higher P

Figure 10-18a. Results of partial melting experiments on depleted
Iherzolites. Dashed lines are contours representing percent partial
melt produced. Strongly curved lines are contours of the normative
olivine content of the melt. “Opx out” and “Cpx out” represent the
degree of melting at which these phases are completely consumed
in the melt. After Jaques and Green (1980). Contrib. Mineral.
Petrol., 73, 287-310.
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Experiments on melting enriched

vs. depleted mantle sam

2. Enriched Mantle

Tholelites extend to
higher P than for DM
Alkaline basalt field
at higher P yet
And lower % PM

Figure 10-18b. Results of partial melting experiments on fertile
Iherzolites. Dashed lines are contours representing percent partial
melt produced. Strongly curved lines are contours of the normative
olivine content of the melt. “Opx out” and “Cpx out” represent the
degree of melting at which these phases are completely consumed
in the melt. The shaded area represents the conditions required for
the generation of alkaline basaltic magmas. After Jaques and Green
(1980). Contrib. Mineral. Petrol., 73, 287-310.
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