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Abstract: The exact geological processes involved in the formation of subduction zone-related carbon-
atites remain ambiguous, along with their implications for crustal/carbon recycling in carbonatite
melt generation. This study provides new geochemical and stable (C, O) and radiogenic (Sr, Nd,
Pb) isotope data for Huangshuian carbonatite, located within the Lesser Qinling Orogen, with the
aim to decipher its complex petrogenetic history. The carbonatites display elevated CaO, low MgO
and alkali contents, and significant enrichments of Pb, Mo, and HREEs compared to typical carbon-
atites. The δ13CPDB (−4.6 to −4.9‰) and δ18OSMOW (+6.6 to +7.8‰) values plot within the field
of primary igneous carbonatites. The carbonatites are characterized by consistent radiogenic iso-
topic compositions [(87Sr/86Sr)i = 0.70599–0.70603; εNd = −10.4 to −12.8; 206Pb/204Pb =16.24–17.74].
These combined results suggest that the carbonatites represent late-stage differentiation products of
a parental, mantle-derived carbonatite melt. Their corresponding Sr-Nd-Pb isotopic compositions
support the hypothesis that the Lesser Qinling carbonatites originate from a heterogeneous upper
mantle source involving an EMI-like mantle component coupled with minor assimilation of the
basement rocks. The parental carbonatite melt was derived by the melting of carbonate-bearing
subcontinental lithospheric mantle metasomatized as the result of Early Triassic subduction of the
Mianlue Ocean.

Keywords: carbonatite; Lesser Qinling Orogen; Huangshuian; C-O-Sr-Nd-Pb isotope; mantle source

1. Introduction

Carbonatites are considered unique mantle-derived igneous rocks [1–3], which con-
sist of >50% carbonate minerals [4] and are most notably enriched in rare earth elements
(REEs), and other incompatible trace elements, such as Sr and Ba. Carbonatitic melts
are extremely mobile as their low viscosities facilitate their rapid ascent, transport, and
emplacement [5–7]. Their low viscosity reduces the likelihood of host rock–melt interac-
tion/contamination during their ascent through the subcontinental lithospheric mantle
and overlying crust; consequently, carbonatitic melts can preserve their inherited primary
radiogenic isotope compositions from their upper mantle sources [8]. Additionally, their
elevated Sr (>>1000 ppm) and Nd (100 s of ppm) contents buffer their mantle-inherited
radiogenic isotope signatures against crustal contamination processes [1,9]. Hence, these
combined chemical and physical properties render carbonatites as insightful probes into
deciphering the chemical nature, metasomatic history, temporal evolution, and carbon
cycle of Earth’s upper mantle [1,10–14].
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Carbonatites occur in different tectonic environments [4], but predominantly within
anorogenic settings related to intracontinental rifts (e.g., East African Rift) [11,15], and
rarely hosted within oceanic plates (e.g., Cape Verde Islands) [13,16] and orogenic domains
(e.g., Qinglin) [3,17]. Moreover, there remains much debate as to whether carbonatitic melts
are derived exclusively within the lithosphere [10], the subcontinental lithosphere [18–20],
or asthenosphere (or deeper levels of the mantle) [1,21,22]. Bell and Simonetti [1] hypothe-
sized a heterogeneous (mixed) mantle source for most carbonatites [23,24] based primarily
on the critical stable (C, O) and radiogenic (Nd, Sr, and Pb) signatures of young (<200 Ma)
carbonatites worldwide. In brief, carbonatite melts are derived from a heterogeneous
mantle source that may involve HIMU (high-µ; 238U/204Pb ratio) [25], EM I (enriched
mantle I) [26], and FOZO (FOcal ZOne) [26], and have been linked to a volatile-rich,
asthenospheric/plume mantle interacting with overlying lithosphere.

The Lesser Qinling carbonatite occurrences within the Qinling orogenic belt are sit-
uated in central China (Figure 1). Subsequent to the recognition of carbonatite-related
mineralization, multiple commodities have been exploited, including REE, Mo, Nb, and
U ores [3,27–29]. Numerous previous studies have investigated the chronology, mineraliza-
tion, petrological evolution, mantle source, and tectonic setting of the carbonatite complexes
within the Lesser Qinling [3,17,27,28,30–33]. The timing of generation and ore mineraliza-
tion associated with these carbonatites occurred between 197 Ma and 225 Ma [31,32,34–37].
Huang [31] and Cao [35] reported Re-Os ages for molybdenite from Huangshuian (HSA)
carbonatite and their record ages of 209.5 ± 4.2 Ma and 208.4 ± 3.6 Ma. A new and
similar LA-ICP-MS U-Th-Pb age of 207 ± 4 Ma was obtained for bastnäsite from this
deposit [36]. The Lesser Qinling carbonatites are unique and important mineral resources,
and host economic deposits of molybdenite with total reserves of approximately 80 × 104 t
Mo metal [27,35,38,39]. These carbonatites are associated with quartz and are character-
ized by relatively flat REE patterns with enrichment in HREEs, which is a distinct feature
compared to most carbonatites worldwide [3,17,28,40]. The enrichment in HREEs and
Mo for these carbonatites is attributed to significant crystal fractionation involving cal-
cite and non-silicate minerals (e.g., oxides and apatite) coupled with precipitation of a
C-H-O supercritical fluid enriched in HREE, Mo, Si, and sulfate [17,32,33]. In an alternative
hypothesis, the carbonatite magmas metasomatized the thickened eclogitic lower crust
that produced high levels of Mo and HREE [3]. Moreover, the late-stage alteration with
non-LREE-selective ligands (e.g., Cl−, CO3

2−, SO4
2−) was suggested to account for the

preferential HREE addition in the carbonatites [28].
Several previous investigations proposed that the Late Triassic Lesser Qinling car-

bonatites formed in a post-collisional extensional setting that occurred between the North
and South China Blocks [30,33,41]. It is postulated that they are the result of fractional
crystallization of primary alkaline silicate–carbonate melt derived from the partial melting
of lithospheric mantle characterized by Sr–Nd–Pb isotopic compositions of EM I-like man-
tle [17,29–32]. Notably, it is postulated that their mantle sources contain recycled crustal
materials [42] and are chemically enriched by subducted sedimentary carbonates [3,29].
Carbonate magmatism metasomatized the thickened eclogitic lower crust, which in turn
may produce an enriched subcontinental lithospheric source [3,30]. Experimental petrology
provides support for this latter hypothesis that involves the melting of carbonated eclog-
ites at pressures > 2.5 GPa [43,44]. Alternatively, Xu [45] argued that 15%–20% of lower
crustal granulites were incorporated into the subcratonic mantle beneath the Qinling region.
Çimen et al. [46] argue that the Miaoya carbonatite complex in South Qinling was derived
from an isotopically heterogeneous mantle source containing recycled crustal carbon. Direct
evidence for this interpretation is provided by the occurrence of a slab-derived eclogite
xenolith identified within the Paleoproterozoic Fengzhen carbonatite in the North China
craton [47].
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Figure 1. (a) Tectonic regions of China [30]. NCB—North China Block; SCB—South China Block. (b) 
Geological sketch map illustrating the locations of carbonatite complexes within the Qinling oro-
genic belt, including the HSA complex [30]. (c) Simplified geological maps of the HSA carbonatite 
complex [35]. 
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Figure 1. (a) Tectonic regions of China [30]. NCB—North China Block; SCB—South China Block.
(b) Geological sketch map illustrating the locations of carbonatite complexes within the Qinling
orogenic belt, including the HSA complex [30]. (c) Simplified geological maps of the HSA carbonatite
complex [35].

To date, most previous investigations have focused on carbonatites located within
anorogenic settings, whereas those related or found within collision/subduction zones
have received relatively less attention [48]. In particular, there remains a lack of clear
understanding of the geological processes involved, and systematic investigation of their
genesis, source, and impact of crustal recycling on carbonatite melt generation. Thus, this
study reports new stable (C, O) and radiogenic (Sr, Nd, Pb) isotope data, combined with
major and trace elements signatures from the collision-related HSA carbonatite complex, in
Lesser Qinling Orogen, central China (Figure 1). The geochemical and remaining isotope
signatures will be used to decipher the complex petrogenetic history of the carbonatite and
provide valuable insights into the chemical nature of its upper mantle source.
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2. Geological Setting and Sample Descriptions

The Qinling orogenic belt, located in central China, separates the South China Block
from the North China Block. It is regarded as a multistage orogenic belt recording the clo-
sure of the northernmost Paleo-Tethys Sea, the final continental collision between the North
China Craton and Yangtze Craton [49]. It can be tectonically divided into four sections
from north to south and delineated by main sutures, namely the Lesser Qinling orogenic
belt, the North Qinling orogenic belt, the South Qinling orogenic belt, and the Songpan fold
belt at the northern margin of the Yangtze Craton (Figure 1a,b) [49]. The Lesser Qinling
orogenic belt lies within the Huaxiong Block, which forms part of the southern margin
of the North China Block and comprises a crystalline basement, i.e., Mesoarchean Tai-
hua Group of amphibolite-to-granulite facies suite and Neoarchean Dengfeng Group of
granite–greenstone affinity [50]. The basement is unconformably overlain by the ~1780 Ma
Mesoproterozic intermediate to felsic volcanic rocks of the Xiong’er Group [51]. In turn, the
Xiong’er Group volcanics are overlain by the Mesoproterozoic littoral clastic and carbonate
rocks of the Guandaokou Group, the Neoproterozoic shallow marine clastic and carbonate
rocks of the Luanchuan Group, and the Cambrian to Ordovician passive marginal sedi-
ments [52]. The Mesozoic magmatic intrusions are widely distributed within the Lesser
Qinling region and were emplaced mainly at 220~190 and 160~110 Ma. The former stage
is dominated by alkaline granites, which are inferred to form in a post-collisional exten-
sional environment [53]. The latter stage is characterized by Late Jurassic–Early Cretaceous
granites and porphyries, commonly associated with Mo mineralization [54,55].

The carbonatite complexes in Lesser Qinling Orogen include Caotan (CT), Huayangchuan
(HYC), Huanglongpu (HLP), and Huangshuian (HSA) from west to east (Figure 1b). Com-
pared to the HLP carbonatite, which was discovered earlier, the HSA carbonatite complex
also contains a similar, significant economic value. It is in Songxian county within the
western Henan Province (Figure 1c). HSA carbonatite typically occurs as dykes or veins and
intrudes into the Neoarchean Taihua Group gneiss, and these extend from <1 m to >1 km
in length and follow a main NW-trending fault [31]. The carbonatite dykes and gneiss are
locally crushed and occur as breccia, and silicification, feldspathization, sulfuration, and
carbonatization are generally common at their contact margins. Of note, carbonatite is
associated with Mo-(REE) mineralization with an estimated Mo reserve of 19.86 × 104 t
with an average grade of 0.082 wt. % [35]. Huang [31] and Bai [33] detail and summarize
the geology, petrography, geochemistry, and mineralization of the carbonatites, and their
relationship to the molybdenum deposits at HSA and HLP. These previous studies postu-
lated that these rocks were derived from extensive fractional crystallization of a common
carbonated silicate parental melt generated from an EM1-like mantle based on their REE
patterns and radiogenic isotope compositions.

The Lesser Qinling carbonatite has a complex mineral paragenetic sequence that in-
volves three mineralization stages for the carbonatite veins: 1—an early quartz K-feldspar
stage; 2—a middle sulfide–REE mineral stage, and a 3—late sulfate–biotite stage [33]. The
HSA carbonatites are generally dominated by calcite, quartz, and K-feldspar, which show
extremely uneven mineral distribution in a single dyke (Figure 2). The calcite is pink
or white in color, medium- or coarse-grained euhedral. The quartz and K-feldspar are
coarse-grained anhedral and crystallized earlier than calcite (Figure 2j,k). The mineralized
carbonatite veins commonly contain variable amounts of accessory mineral phases includ-
ing pyrite, galena, molybdenite, barite, and celestite with minor REE minerals (monazite,
bastnäsite, and parisite). Molybdenite is closely associated with REE minerals and usually
disseminated within the calcite and quartz microfractures in the form of disseminated and
veined (Figure 2l). Lastly, other accessory minerals include aegirine (Figure 2e,j), augite,
and magnetite.
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Figure 2. Photographs illustrating the textures and mineralogy of HSA carbonatite rocks investigated
here. (a) Sample 2106 showing the white carbonatite with medium-grained calcite (Cal). (b) Sample
2106 exhibiting the contact margin between carbonatite and wall rock with silicification (Q: quartz)
and sulfuration (Py: pyrite). (c) Sample 2108 representing pink carbonatite with sparsely disseminated
molybdenite. Micro-XRF images illustrating distribution of Ca (d), Fe (e), and K (f) for sample 2104;
Ce (g), Ti (h), and S (i) for sample 2108 showing the presence of calcite (Cal), fine-grained aegirine
(Aeg), and K-feldspar (Kf). Photomicrographs for samples 2104 (j), 2105 (k), and 2108 (l) displaying
the domination medium-grained calcite with early coarse-grained anhedral quartz and K-feldspar,
and late interstitial aegirine and molybdenite (Mol).

3. Analytical Methods

Semi-quantitative major element compositional maps (Si, Al, Mg, Ca, Fe, Ti, K, P, S)
for samples investigated here were produced with ~100 µm thick petrographic sections
using an Edax Orbis micro-XRF instrument (AMETEK, Inc., Berwyn, PA, USA) housed at
the Center for Environmental Science and Technology (CEST), University of Notre Dame
(UND). The chemical maps were generated using a 30 µm beam overnight (~12 h) with
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an amplification time of 12.8 µs and a fluorescent energy of 32 kV. The major element
concentrations for whole-rock sample powders were determined by ICP-OES (Inductively
Coupled Plasma–Optical Emission Spectrometry, PerkinElmer, Inc., Waltham, MA, USA)
within CEST (UND) using an external calibration technique, whereas trace element abun-
dances were obtained by ICP-MS (Inductively Coupled Plasma–Mass Spectrometry) at the
Midwest Isotope and Trace Element Research Analytical Center (MITERAC, UND). Trace
element abundances were obtained using a Nu Plasma atom High-Resolution Inductively
Coupled Plasma Mass Spectrometer (HR-ICP-MS, Nu Instruments Ltd., Wrexham, UK)
in medium-resolution mode (M/∆M ≈ 3000) housed within MITERAC. At the start of
each analytical session, the instrument was tuned and calibrated with a multi-element
1 ppb standard solution. The concentrations of the trace elements were determined by a
standard/spike addition method [56], which includes corrections for matrix effects and
instrumental drift.

The carbon and oxygen isotope analyses for calcite separates were conducted by
reacting carbonate powder with concentrated H3PO4 (100%) at 100 ◦C [57], using a Delta V
Advantage isotope ratio mass spectrometer housed at CEST. Results are reported in per
mil notation (‰) using standard delta notation relative to Peedee belemnite (PDB) and
standard mean ocean water (SMOW). The accuracy of the δ13C and δ18O values reported
here was validated by using three standards: NBS 19, YWCC, and ROYCC.

The bulk-rock Sr, Nd, and Pb isotope measurements reported here were analyzed
using a NuPlasma II MC-ICP-MS instrument at MITERAC. Sr isotope measurements
were determined using the protocols described in [58], with further details of ion ex-
change separation and collection for Sr outlined in [46]. Strontium isotope ratios were
measured using 5 Faraday collectors in static, multi-collection mode and in dry plasma
mode utilizing a DSN-100 desolating system (Nu Instruments, Wales, UK). The accuracy
and reproducibility of the Sr isotope results were verified using a 100 ppb solution of the
NIST SRM 987 strontium isotope standard, and the average value obtained for 87Sr/86Sr
ratio was 0.710153 ± 0.000027 (2σ standard deviation; n = 6); the Sr isotope ratios for the
samples were therefore normalized to the accepted value for the NIST SRM 987 standard
(87Sr/86Sr = 0.710245). The Nd isotope ratios were determined using the same MC-ICP-MS
instrument and following the analytical protocol described in [46]. REEs and Nd were
sequentially separated using ion exchange columns containing AG50W-X8 and Eichrom
Ln-Spec resins, respectively. The mass bias and drift for the instrument were calibrated
using the repeated analysis of a 100 ppb solution of the JNdi-1 standard, which yielded
an average 143Nd/144Nd value of 0.512090 ± 0.000010 (2 s standard deviation; n = 4); the
accepted 143Nd/144Nd is 0.512115 [59].

The procedure for analyzing Pb isotope compositions via solution-mode MC-ICP-
MS is described in [60]. The chemical separation and purification procedure involving
ion exchange chromatography followed the procedures described by [61]. The purified
Pb aliquot is spiked with a NIST SRM 997 Thallium standard solution (2.5 ppb) prior to
analysis in dry plasma mode for instrumental mass bias correction based on the measured
205Tl/203Tl (=2.3871) for the NIST SRM 997 Tl isotope standard using the exponential
fractionation law. Prior to sample introduction, a baseline (“on-peak-zero”) measurement
consisting of the gas and acid blank was conducted for 30 s. Throughout the two analytical
sessions, a 25 ppb solution of the standard NIST SRM 981 Pb (spiked with 6 ppb NIST
SRM 997 Tl standard) was also analyzed periodically. Repeated measurements (n = 9)
of the NIST SRM 981 + Tl standard solution yielded average values and associated (2σ)
standard deviations as follows: 206Pb/204Pb = 16.936 ± 0.021, 207Pb/204Pb = 15.491 ± 0.009,
208Pb/204Pb = 36.697 ± 0.009, which are within analytical uncertainty of the accepted values
for this standard given the associated uncertainties [62].
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4. Results
4.1. Whole-Rock Geochemistry

The major and trace element results for HSA carbonatite samples investigated here are
listed in Table S1 and trace element abundances illustrated in Figure 3. All carbonatite sam-
ples define low MgO and alkali abundances, and high and variable CaO (41.48–51.04 wt. %)
contents, which are typical for calciocarbonatite [4] with CaO/(CaO + MgO + FeO + MnO)
ratios of 96.0–96.8. The trace element signatures for HSA carbonatite reported here are
similar in general, and completely overlap those previously reported for Lesser Qinling
carbonatite except for the abundances of Mo (4.38–950 ppm), which are significantly higher
than the average calcite carbonatite value of 12 ppm (Figure 3) [33]. The HSA carbonatite
samples exhibit relatively consistent primitive mantle-normalized trace element patterns
(Figure 3a), and are characterized by the enrichment of Ba, U, Pb, and Sr and strong de-
pletion of the high-field-strength elements (HFSEs: Nb, Ta, Zr and Hf). They also display
lower Rb and higher Pb and Y abundances relative to those for typical calciocarbonatite [4].
Of particular interest is the fact that these samples contain substantially higher HREE
abundances compared to average carbonatite worldwide ([63] and references therein). The
total REE abundances range from 895 to 4760 ppm for the HAS carbonatite samples, and
chondrite normalized REE patterns display negative slopes with variable (La/Yb) N ratios
that range from 9.28 to 62.16, and lack Eu anomalies (Figure 3b).
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4.2. C and O Isotope Compositions

The C and O isotope data obtained here for calcite separates from samples of HSA
carbonatite and are summarized in Table S2 and illustrated in Figure 4. A majority of the
calcite separates from carbonatite within the HSA complex record a remarkably uniform
range of δ13CPDB (−4.6 to −4.9‰) and δ18OSMOW (+6.6 to +7.8‰) values, respectively, and
plot within the field defined for “primary igneous carbonatites” (PIC). In addition, one sam-
ple (HSA2106) exhibits lower δ13CPDB (−5.1‰) but significantly lower δ18OSMOW (+5.1‰)
values (Figure 4), and plots slightly to the left of the PIC box (Figure 4). The carbonate
investigated here from HSA carbonatite displays similar C and O isotope compositions
compared to those reported in [31,33], but has higher δ13CPDB values relative to those
recorded for carbonatite from the HLP complex [27,65].
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4.3. Sr, Nd, and Pb Isotope Compositions

The new Sr, Nd, and Pb isotopic data for samples of HSA carbonatite are listed in
Tables S3 and S4 and displayed in Figures 5 and 6. The age of 208 Ma (molybdenite Re-
Os) [35] for the HSA carbonatite has been adopted for the age corrections of measured
isotope ratios.

The initial 87Sr/86Sr isotope ratios for HSA carbonatites investigated here display a
limited range with values between 0.70599 and 0.70603, which are slightly higher com-
pared to the HLP carbonatites (Figure 5). The initial 143Nd/144Nd ratios range between
0.51171 and 0.51184, which correspond to εNd(t) values of −10.4 to −12.8, similar to the
range of values previously reported for HSA carbonatites [31], and lower than those for
HLP carbonatites [30]. The TDM Nd model ages for the carbonatites range from 1.38 to
1.80 Ga (Table S3). The initial Sr isotope ratios are relatively close to the values expected for
melts derived from an EM I (enriched mantle I) mantle component, but are more radiogenic
in nature (i.e., higher Sr and lower Nd ratios).
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carbonatites from Lesser Qinling (HSA and HLP) [30,31] and South Qinling (MY) [45,46]. These
Pb isotopic features for EACL carbonatites are from [20]. The fields for HIMU, EM I, EM II, and
DMM (depleted MORB mantle) mantle components are from [69]. The trends for U (upper crust), O
(orogenic belt), M (mantle) and L (lower crust) are from [70].

The initial Pb isotope values for samples of HSA carbonatite define the following
ranges: 206Pb/204Pb (16.24–17.73), 207Pb/204Pb (15.28–15.42), and 208Pb/204Pb (36.95–37.38),
respectively. In general, the five samples investigated here show similar Pb isotope val-
ues compared to those previously reported for HSA and HLP carbonatites from Lesser
Qinling [30,31]. Moreover, they have similar 206Pb/204Pb and 207Pb/204Pb but lower
208 Pb/204Pb ratios compared to those for the EM I mantle component (Figure 6). Of
note, sample HSA2106 is characterized by relatively low initial Pb isotope ratios (Table S4,
Figure 7) and associated with a lighter δ18OSMOW composition (Figure 5).
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Obo [72], Shandong [73], Mianning-Dechang [48], Blue River, Canada [66], Jacupirange, Brazil [74],
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5. Discussion
5.1. Petrogenesis of the HSA Carbonatites

The stable carbon and oxygen isotopic values for these Lesser Qingling carbonatites
plot mainly within the primary igneous carbonatite field (Figure 4), which is indicative
of their pristine nature and derivation from mantle sources. Moreover, due to their low
viscosity and high contents of both Sr and Nd, the feasibility of contamination of carbonatite
magma is negligible [1]. Compared to the primitive mantle, HSA carbonatites exhibit
enrichment in Sr, Ba, U, and Pb and depletion in HFSEs such as Nb, Ta, Zr, Hf and Ti. They
also display higher total REE abundances without evident chondrite-normalized, negative
Ce and Eu anomalies. They are characterized by negatively sloped chondrite-normalized
REE patterns with enrichment of LREE and more pronounced fractionation between LREE
and HREE compared to the average calciocarbonatite. Overall, these geochemical features
are generally consistent with the characteristics of typical carbonatite worldwide. HSA
carbonatites plot within the magmatic field in the Yb/La vs. Yb/Ca diagram (Figure 7).
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The exact petrogenetic origin of carbonatites is still uncertain and has been attributed
to three principal hypotheses: (1) low-degree, direct partial melting of a carbonate-bearing
mantle [76–80]; (2) extensive fractional crystallization of a carbonated silicate magma [81–84];
and (3) liquid immiscibility between silicate and carbonate melts [81,82,85–90].

The Lesser Qinling carbonatites have abundant K-feldspar, quartz, and sulfate min-
erals, and are closely associated and co-crystallized with mafic minerals that suggest a
common magmatic origin (Figure 2) [32,91]; this petrographic mineral assemblage is not
common in typical carbonatite. HSA carbonatites record high CaO and low MgO and
alkali contents (Na2O + K2O), which contrasts with primary carbonatite melt [87,92,93].
Hence, it is difficult to interpret the combined geochemical characteristics of the HSA
carbonatites, as well as those from HYC and Bayan Obo [29]. For example, experimental
results indicate that carbonatites formed by immiscibility are typically poor in alkali and
abundant in silicate [93]. However, the HSA carbonatites contain much higher silicate
contents, and are therefore not consistent with these experimental findings. Furthermore,
elements such as Mo and W tend to preferentially enter the silicate phase during the liquid
immiscibility process between carbonatite and silicate, leading to a lack of potential Mo
mineralization associated with carbonatite [32]. Additionally, typical primary igneous
carbonatites originating from metasomatized upper mantle source regions, such as the
Spitskop carbonates in South Africa [92], are commonly associated with mafic silicate rocks
and contain some specific, high-temperature/pressure minerals derived solely from the
mantle, such as Cr-rich minerals and diamonds [22]. The HAS carbonatites lack such
specific, mantle-derived minerals and contemporaneous related silicic rocks. Therefore,
given these features, liquid immiscibility most likely cannot account for the formation of
the HAS carbonatites.

Melting experiments conducted on carbonated peridotite produced low-degree partial
melts (<1%) that contained relatively high MgO and alkali contents but very low SiO2
abundances in equilibrium with mantle peridotite [94,95]. This carbonatite melt is con-
verted from magnesium to calcium by segregated crystallization and CO2 release [87,96].
The crystallization differentiation of carbonate, oxides, apatite, olivine, clinopyroxene, and
other accessory minerals was interpreted to be critical in transforming primary Mg-rich
carbonatite to Ca-rich carbonatite and significantly higher Si and Mo abundances in the
Lesser Qinling carbonatitic magmas [17,29,32]. Carbonate minerals commonly present
within carbonatites do not readily host incompatible elements such as Mo, REE, Sr, and
Ba [3], which are enriched in residual melt. HAS carbonatites are characterized by extremely
high Mo, Sr, and Ba contents, which indicates that these carbonatites do not represent the
original magma, but likely represent residual melt fractions present in the late stages of
carbonatite magma differentiation [17]. Moreover, the differentiated magnesiocarbonatite
melt is characterized by low viscosity and is therefore capable of rapid ascent. When the
pressure is <2 GPa, the melt composition changes by reacting with the surrounding rock
at mantle depth, leading to an increase in CaO/MgO value and forming a calcite-rich
composition. Wei [42] suggested that the calcite carbonatites from Caotan, which are also
located within Lesser Qinling, are the product of metasomatic interaction between primary
dolomitic melts and felsic wall rocks.

The carbonatite magmas resulting from low-degree partial melting of carbonated
mantle peridotites and subsequent liquid immiscibility are usually enriched with LREE
relative to HREE [97,98]. However, the HAS carbonatites contain higher HREE contents
compared to typical carbonatites. The HREE enrichment of the Lesser Qinling carbonatites
results in the uncommonly observed flat chondrite normalized REE pattern, and is believed
to be the result of a combination of factors. Smith [28] proposed an HREE-enrichment model
in which magmatic, HREE-enriched calcite with a relatively flat REE pattern provided a
baseline source of secondary REE mineralization. Late-stage alteration with non-LREE-
selective ligands may play an important role in forming HREE-enriched carbonatites [28].
Moreover, fractional crystallization of calcite assisted by high Si and alkaline activities
will most likely yield primary HREE enrichment in the residual melts [99–101]. Sulfate
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complexation may be a preferential ligand for the transport of REE, while the lack of free F-
greatly reduces the precipitation of LREE [28,33,101].

In summary, it is hypothesized that HSA carbonatites most likely represent residual
melts formed at the late stage of melt differentiation of the original carbonatite magma.

5.2. Source of the Carbonatite and Deep Tectonic Processes

Most young (<200 Ma) carbonatites worldwide show variable Sr, Nd, and Pb isotopic
compositions overlapping with those for oceanic island basalts (OIBs), which indicate
derivation from a heterogeneous mantle source involving HIMU, EMI, and FOZO mantle
components [1,15,17,20]. The EMI-type mantle end members are characterized by high
87Sr/86Sr, low 143Nd/144Nd, and moderate Pb isotope values [26], which may include
the component of recycled subducted oceanic crust/continental lower crust, or old conti-
nental lithospheric mantle. The HIMU-type mantle component (characterized by a high
238U/204Pb ratio) [25] is associated with recirculating ancient altered oceanic crust, or old
carbonate–metasomatic lithospheric mantle [102–104]. The FOZO-type mantle component,
with depleted Sr and Nd but fairly radiogenic Pb isotope values, is a mixed end member
representing the average components of the lower mantle [26].

All the stable C and O isotopic values reported for the Lesser Qinling carbonatites indicate
their pristine nature and origin from the mantle. The oxygen isotopes of quartz in HLP car-
bonatites (δ18OH2O = 8.1–10.2) [32] and quartz in HSA Mo deposits (δ18OH2O = 7.4–10.1) [55]
indicate a magmatic origin, while sulfur isotopes exhibit characteristics consistent with
sulfur from the mantle. The Sr-Nd-Pb isotopic diagrams in Figures 6 and 8 display data for
the Lesser Qinling (HAS and HLP) carbonatites and are compared to those for carbonatites
worldwide (e.g., East African, North America, Brazil, Bayan Obo, Miaoya, Fengzhen and
Shandong from China). The Sr, Nd, and Pb isotopic compositions for the HSA carbonatites
are slightly more radiogenic compared to those for the HLP carbonatites. However, isotope
compositions from both complexes show characteristics similar to that of EMI-type mantle,
far removed from the depleted DMM end member (Figure 5), indicating significant in-
volvement of an enriched end member, possibly such as continental crust. The Pb isotopic
characteristics of these carbonatites are significantly distinct compared to those from the
Precambrian rocks in the North China Block, but similar to those of basement rocks in
the South Qinling [30]. The ratios of 206Pb/204Pb and 208Pb/204Pb for the Lesser Qinling
carbonatites differ from those of carbonatites from the East African Rift, but plot between
the average Pb isotope evolution curves for orogenic terranes and mantle (Figure 6a). In
Figure 6b, the carbonatites mainly plot between the Pb isotope evolution curves for the
lower crust and orogenic terranes [70], which may reflect the orogenic event associated with
the subduction of the Mianlue Ocean beneath the South Qinling orogenic belt. Overall, the
Lesser Qinling carbonatites display enriched radiogenic Sr-Nd-Pb isotopic compositions
(negative εNd values and high, relatively constant initial 87Sr/86Sr and Pb isotopic ratios)
compared to typical carbonatites globally, with the exception of the Shandong carbonatites
(Figure 8). The latter carbonatites display isotopic signatures that represent a mixture
between an EMI-like mantle source and the basement rocks (Taihua and Xiong’er Groups).
Here, the Sr-Nd-Pb isotopic compositions of Lesser Qinling carbonatites are best explained
as melts derived from an EMI-like mantle source that have subsequently experienced
minor contamination of Xiong’er and Taihua basement (Figure 8). Alternatively, the Lesser
Qinling carbonatites may have originated as low-degree partial melts from a volumetrically
small (distinct), metasomatized, and isotopically heterogeneous section of the upper mantle
within this region of the North China Block.
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Figure 8. Diagrams of initial 87Sr/86Sr vs. εNd(t) values for samples of those carbonatites from
China [30,31,45–48,72,73,105]. These are compared to initial Sr and Nd isotope data reported for
EACL carbonatites [20], Blue River carbonatites from Canada [66], and Jacupirange carbonatites from
Brazil [65]. The fields for Lete Mesozoic granites, Taihua Group, and Xiong’er Group are from [33,106].
The fields for DM, HIMU, EM I and EMII mantle components are from [69]. Binary mixing model
curves between the assumed EM I and Xiong’er Group. The εNd(t) is assumed to be −9 in the EM
I and −24 in the Xiong’er Group in the models. The (87Sr/86Sr)i of 0.705 is adopted for EM I in
3 models. The (87Sr/86Sr)i of the Xiong’er Group is taken to be 0.708, 0.709, and 0.710 in models 1, 2,
and 3, respectively. A mixture of 10% Xiong’er Group and 90% EM I is represented by 0.1.

Previous studies have proposed that most of the world’s carbonatites derive from
carbonated lithospheric mantle, and are triggered by either asthenospheric upwelling or
plume activity [1,22]. However, this tectonic model is less plausible for the generation
of carbonatite magma within orogenic belts. Recently, several studies have focused on
the genesis of carbonatite magmas within an orogenic regime and how these relate to the
subduction process [3,30,47,48,107–110]. Xu [110] proposed that the carbonatite complexes
located within orogenic belts may result from the low-degree melting of subcontinen-
tal lithospheric mantle metasomatized by melts/fluids derived from the subduction of
terrigenous carbon-rich sediments. The trace element-enriched nature of Chinese carbon-
atites found within orogenic belts indicates a contribution of recycled crustal material
to their mantle source through subduction fluid metasomatism (Figure 9). The subduc-
tion of surface carbon into the deep mantle not only provides oxygen-rich components
for a more reduced mantle source region, but also facilitates REE enrichment in parent
carbonatite magma and formation of REE deposits [3,111–113]. Recent investigations of
the B and Ca isotope compositions for carbonatite complexes worldwide are consistent
with the hypothesis that the source of the younger (<300 Ma) carbonatites records the
input of recycled crustal carbonates [3,14,114,115]. The low-Mg isotopic compositions
(δ26Mg = −1.89~−1.07‰) [3] of the HYC carbonatites overlap those of Mesozoic marine
dolomites (<−1.0‰) [116], which also suggests a recycled sedimentary contribution in
their mantle sources [3]. A recent study of an Afghanistan carbonatite occurrence proposed
that magmas can efficiently recycle sedimentary carbon from subducting slabs into the
overlying lithospheric mantle [117].

During the Early Triassic, the oceanic crust of the Mianlue Ocean subducted beneath
the South Qinling Orogen Belt, resulting in a significant influx of carbonate sediments
into the mantle peridotite [3,29,45]. The subcontinental lithospheric mantle could be
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metasomatically reworked by carbonate-rich melts derived from EMI-type recycled crust
components [30]. Subsequently, in the Middle Triassic, the collision between the QOB
and the North China Block led to the formation of a series of NW- and NWW-trending
fault zones [118–122]. In the Late Triassic period following ocean closure, post-collisional
extension induced upwelling of asthenosphere material. This led to low-degree partial
melting of carbonated mantle peridotite and subsequent formation of carbonatite magmas.
These magmas ascended along trans-lithospheric faults at craton edges resulting in the
emplacement of Lesser Qingling carbonatites including HSA, HLP, and HYC [33,36,37].

Overall, the combined Sr-Nd-Pb isotopic compositions for the HSA carbonatites
support the hypotheses that the Lesser Qinling carbonatites originate from a heterogeneous
upper mantle source involving an EMI-like mantle component and minor assimilation of
the basement rocks. The Lesser Qinling carbonatite magmas were derived from the direct
melting of the carbonated subcontinental lithospheric mantle, which metasomatized the
early subduction of the Mianlue oceanic crust during the incipient stages of the regional
orogenic regime.

Minerals 2024, 14, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 9. Diagrams of Ba (ppm) vs. Nb/Y (a) and U (ppm) vs. Nb/Y (b) for HSA carbonatite and 
other carbonatites worldwide (references after Figure 7 and Ambadongar, India [123]). 

6. Conclusions 
(1) The Huangshuian carbonatites in Lesser Qinling Orogen display elevated CaO and 

low MgO and alkali contents, as well as significant enrichments of Pb, Mo, and HREE, 
compared to typical carbonatites. The stable C and O isotope compositions suggest 
their pristine nature and derivation from mantle source(s). It is postulated that 
Huangshuian carbonatites represent residual melts of late-stage magmatic differen-
tiation from the parental carbonatite magma. 

(2) The combined Sr-Nd-Pb isotopic compositions for the carbonatites support the hy-
pothesis that the Lesser Qinling carbonatites were derived from a heterogeneous up-
per mantle source involving an EMI-like mantle component and minor assimilation 
of the basement rocks. 

(3) We propose that the Lesser Qinling carbonatite magmas were derived directly from 
the melting of the carbonate-bearing subcontinental lithospheric mantle metasoma-
tized by the subduction of the Mianlue Ocean during the early phase of the regional 
orogenic tectonism during the Early Triassic. 

Supplementary Materials: The following supporting information can be downloaded at 
www.mdpi.com/xxx/s1. Table S1: Major and trace elements compositions of the Huangshuian car-
bonatites in Lesser Qinling; Table S2: C–O isotopic compositions of the Huangshuian carbonatites 
in Lesser Qinling; Table S3: Sr–Nd isotopic compositions of the Huangshuian carbonatites in Lesser 
Qinling; Table S4: Pb isotopic compositions of the Huangshuian carbonatites in Lesser Qinling. 

Figure 9. Diagrams of Ba (ppm) vs. Nb/Y (a) and U (ppm) vs. Nb/Y (b) for HSA carbonatite and
other carbonatites worldwide (references after Figure 7 and Ambadongar, India [123]).

6. Conclusions

(1) The Huangshuian carbonatites in Lesser Qinling Orogen display elevated CaO and
low MgO and alkali contents, as well as significant enrichments of Pb, Mo, and HREE,
compared to typical carbonatites. The stable C and O isotope compositions suggest
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their pristine nature and derivation from mantle source(s). It is postulated that Huang-
shuian carbonatites represent residual melts of late-stage magmatic differentiation
from the parental carbonatite magma.

(2) The combined Sr-Nd-Pb isotopic compositions for the carbonatites support the hy-
pothesis that the Lesser Qinling carbonatites were derived from a heterogeneous
upper mantle source involving an EMI-like mantle component and minor assimilation
of the basement rocks.

(3) We propose that the Lesser Qinling carbonatite magmas were derived directly from the
melting of the carbonate-bearing subcontinental lithospheric mantle metasomatized
by the subduction of the Mianlue Ocean during the early phase of the regional
orogenic tectonism during the Early Triassic.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/min14090953/s1. Table S1: Major and trace elements compo-
sitions of the Huangshuian carbonatites in Lesser Qinling; Table S2: C–O isotopic compositions
of the Huangshuian carbonatites in Lesser Qinling; Table S3: Sr–Nd isotopic compositions of the
Huangshuian carbonatites in Lesser Qinling; Table S4: Pb isotopic compositions of the Huangshuian
carbonatites in Lesser Qinling.
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