Aeroacoustic and Aerodynamics of Swirling Flows*

Hafiz M. Atassi

University of Notre Dame

* supported by ONR grant and OAIAC
OVERVIEW OF PRESENTATION

- Disturbances in Swirling Flows
- Normal Mode Analysis
- Application to Computational Aeroacoustics
- Vortical Disturbances
- Aerodynamic and Acoustic Blade Response
- Conclusions
Swirling Flow in a Fan
Issues For Consideration

- Effect of swirl on aeroacoustics and aerodynamics?
- Can we consider separately acoustic, vortical and entropic disturbances?
- How does swirl affect sound propagation (trapped modes)?
- How do vortical disturbances propagate?
- How strong is the coupling between pressure, vortical and entropic modes?
- What are the conditions for flow instability?
- What are the boundary conditions to be specified?
Scaling Analysis

- **Acoustic phenomena:**
 - Acoustic frequency: \(nB \Omega \)
 - Rossby number = \(\frac{nB \Omega r_t}{c_0} \gg 1 \)

- **Convected Disturbances:**
 - Convection Frequency ~ Shaft Frequency \(\Omega \)
 - Rossby number = \(\frac{\Omega r_t}{U_x} \approx O(1) \)
 - Wakes are distorted as they convect at different velocity. Centrifugal and Coriolis accelerations create force imbalance which modifies amplitude and phase and may cause hydrodynamic instability.
Mathematical Formulation

- Linearized Euler equations
- Axisymmetric swirling mean flow

\[\tilde{U}(\tilde{x}) = U_x(x, r)\tilde{c}_x + U_s(x, r)\tilde{c}_\theta \]

- Mean flow is obtained from data or computation
- For analysis the swirl velocity is taken

\[U_s = \Omega r + \frac{\Gamma}{r} \]

- The stagnation enthalpy, entropy, velocity and vorticity are related by Crocco’s equation

\[\nabla H = TVS + U \times \zeta \]
Normal Mode Analysis
A normal mode analysis of linearized Euler equations is carried out assuming solutions of the form

\[f(r)e^{i(-\omega t + m_n \theta + k_{mn} x)} \]

- Eigenvalue problem is not a Sturm-Liouville type
- A combination of spectral and shooting methods is used in solving this problem
 - Spectral method produces spurious acoustic modes
 - Shooting method is used to eliminate the spurious modes and to increase the accuracy of the acoustic modes
Comparison Between the Spectral and Shooting Methods

$M_x=0.55, M_\Gamma=0.24, M_\Omega=0.21, \omega=16$, and $m=-1$
Effect of Swirl on Eigenmode Distribution

$M_{xm} = 0.56, M_\Gamma = 0.25, M_\Omega = 0.21$
Pressure Content of Acoustic and Vortical Modes

\[M_x=0.5, \ M_\Gamma=0.2, \ M_\Omega=0.2, \ \omega=2\pi, \ \text{and} \ m=-1 \]
Summary of Normal Mode Analysis

Normal Modes

- Pressure-Dominated Acoustic Modes
 - Propagating
 - Decaying
 - Nonreflecting Boundary Conditions
- Vorticity-Dominated Nearly-Convected Modes
 - Singular Behavior

Nonreflecting Boundary Conditions
Accurate nonreflecting boundary conditions are necessary for computational aeroacoustics.
\\[p(\vec{x},t) = \int \sum_{\nu=-\infty}^{\infty} \sum_{n=0}^{\infty} c_{mn} p_{mn}(\omega, r) e^{i(-\omega t + \nu \theta + k_{mn} x)} d\omega \]
Nonreflecting Boundary Conditions (Cont.)

\[p(\vec{x}, t) = \sum_{\nu = -M/2}^{M/2} \sum_{n=0}^{N} c_{mn} p_{mn}(r) e^{i(\omega t + m_\nu \theta + k_{mn} x)} \]

\[\begin{bmatrix} p \end{bmatrix}_{L-1} = [\mathcal{R}_{L-1}] [c] \]

\[\begin{bmatrix} p \end{bmatrix}_L = [\mathcal{R}_L] [c] \]

\[\begin{bmatrix} p \end{bmatrix}_L = [\mathcal{R}_L] [\mathcal{R}_{L-1}]^{-1} [\begin{bmatrix} p \end{bmatrix}_{L-1}] \]
Application to Computational Aeroacoustics
Test Problems for Acoustic Waves

- Acoustic waves and/or a combination of acoustic and vortical waves are imposed upstream of an annular duct with swirling mean flow and nonreflecting boundary condition applied downstream.

Quieting the skies: engine noise reduction for subsonic aircraft
Advanced subsonic technology program. NASA Lewis research center, Cleveland, Ohio

Acoustic and/or Vortical Mode

Nonreflecting Boundary conditions
Acoustic Normal Mode Spectrum

$M_x = 0.5$, $M_\Gamma = 0.2$, $M_\Omega = 0.2$, $\omega = 2\pi$, and $m = -1$
Density and Velocity Distribution in Uniform Flow

\[k_{-1,1} = 4.1077 \]
Density and Velocity Distribution in Swirling Flow

First Propagating Acoustic Mode

\[k_{-1,1} = 4.3942 \]
Density and Velocity Distribution in Swirling Flow

Second Propagating Acoustic Mode

\[k_{-1,2} = -2.4639 \]
Density and Velocity Distribution in Swirling Flow

Acoustic & Vortical Modes

$$k_{-1,1} = 4.3942$$
$$k_{-1,3} = 11.7626$$
Sensitivity of Numerical Solutions to Accuracy of Eigenvalue

\[M_x=0.5, \quad M_\Gamma=0.2, \quad M_\Omega=0.2, \quad \omega=2\pi, \quad \text{and} \quad m=-1 \]
Vortical Disturbances
Initial Value Solution

\[u(x, r, \theta, t) = \int_{\infty}^{\infty} \sum_{m=\infty}^{\infty} A_m(x, r) e^{i(\alpha x + m \theta - \omega t)} d\omega \]

\[\frac{D}{Dt} (\alpha x + m \theta - \omega t) = 0 \]
Wake Distortion by Swirl
Accelerating axial flow

\[U(x, r) = 85 \left(1 + \frac{\gamma}{L} \right) e_x + \frac{50}{r} e_\theta, \quad m = 10, \quad \omega = 5000 \]
Effect of viscosity

- Small scales are most affected by viscosity.
 - For large modal number m (equivalent to wave-number), viscous effects are large.
- Rapid-distortion theory assumes viscosity as a source term modifying the evolution process.
 - Slip/Non-slip boundary conditions were tested.
Effect of Reynolds number on the modes

\[U(x, r) = 85 e_x + \frac{50}{r} e_\theta, \ m = 10 \quad \text{and} \quad m = 20, \ \omega = 5000 \]

\[\beta = \frac{1}{\text{Re}_t \rho_o U_o} \]

\[\chi \approx O \left(\exp \left(-\frac{\beta m^2}{r^2} x \right) \right) \]

\[\text{Re} = 10,000 \]
Aerodynamic and Acoustic Blade Response
Aerodynamic and Acoustic Blade Response

- Swirling Mean flow + disturbance
 - Rapid distortion theory "disturbance propagation"
 - Normal mode analysis "construction of nonreflecting boundary conditions"
 - Source term on blades
 - Blade unsteady loading & radiated sound field
 - Non-reflecting boundary conditions

- Linearized Euler model
Two schemes are developed:

- **Primitive variable approach**
 - Pseudo Time Formulation.
 - Lax-Wendroff Scheme.
- **Splitting velocity field approach**
 - Help understand physics.
 - Computational time requirements reduced.
 - No singularity at leading edge.
 - Implicit scheme leads to large number of equations which must be solved using an iterative method.
 - Parallelization significantly reduces computational time.
Benchmark Test Problem

\[v_\theta(r, \theta, x) = \alpha U_x e^{i(\omega x + B\theta + h(r))} \]

\[h(r) = -\frac{2\pi q}{B} \left(\frac{r - r_{\text{hub}}}{r_{\text{tip}} - r_{\text{hub}}} \right) \]
Parameters for Benchmark Test Problem

<table>
<thead>
<tr>
<th>窄径域</th>
<th>全径域</th>
<th>数据</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{r_{\text{tip}}}{r_{\text{hub}}})</td>
<td>1.0/0.98</td>
<td>(\frac{r_{\text{tip}}}{r_{\text{hub}}})</td>
</tr>
<tr>
<td>(\omega)</td>
<td>6.17</td>
<td>(\omega)</td>
</tr>
<tr>
<td>6.86</td>
<td>6.26</td>
<td></td>
</tr>
<tr>
<td>7.55</td>
<td>6.89</td>
<td></td>
</tr>
<tr>
<td>10.29</td>
<td>9.40</td>
<td>(M_x) (马赫数)</td>
</tr>
<tr>
<td>(\alpha) (扰动)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>(B) (叶片)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>(V) (转子叶片)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>(C) (弦长)</td>
<td>(2\pi/V)</td>
<td></td>
</tr>
<tr>
<td>(L) (长度)</td>
<td>3c</td>
<td></td>
</tr>
</tbody>
</table>
Primitive Variable Approach

- Linearized Euler Equations
- Pseudo Time Formulation

\[
\begin{bmatrix}
0 \\
0 \\
\rho' u_x \\
\rho' u_\theta \\
\rho' u_r \\
\rho' \theta
\end{bmatrix} = 0
\]

Lax-Wendroff Scheme
Unsteady Pressure Jump Across the Blade for q=1 at Different Spanwise Locations

Primitive Variable Approach

ND: real part -, imaginary part --; Schulten: real part -., imaginary part …
Unsteady Pressure Jump Across the Blade for $q=3$ at Different Chordwise Locations

Primitive Variable Approach

ND: real part -, imaginary part --; Schulten: real part -.-, imaginary part …
Acoustic Coefficients for Mode (1,0) at Different Gust Spanwise Wavenumbers

Primitive Variable Approach

Upstream

Downstream
Acoustic Coefficients for Mode (1,1) at Different Gust Spanwise Wavenumbers

Primitive Variable Approach

Upstream

Downstream
Magnitude of the Downstream Acoustic Coefficients

Primitive Variable Approach

<table>
<thead>
<tr>
<th>q</th>
<th>k</th>
<th>μ</th>
<th>Namba</th>
<th>Schulten</th>
<th>ND</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.7144E-02</td>
<td>1.4972E-02</td>
<td>1.8328E-02</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.8946E-02</td>
<td>1.7850E-02</td>
<td>1.8413E-02</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.0155E-02</td>
<td>9.9075E-03</td>
<td>1.0863E-02</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2.7500E-02</td>
<td>2.4696E-02</td>
<td>2.5465E-02</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3.3653E-03</td>
<td>3.0988E-03</td>
<td>3.6577E-03</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>6.0722E-03</td>
<td>6.6977E-03</td>
<td>6.1183E-03</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2.0496E-03</td>
<td>1.9710E-03</td>
<td>2.3436E-03</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3.7287E-03</td>
<td>4.2455E-03</td>
<td>3.9937E-03</td>
</tr>
</tbody>
</table>
Magnitude of the Upstream Acoustic Coefficients

Primitive Variable Approach

<table>
<thead>
<tr>
<th>q</th>
<th>k</th>
<th>μ</th>
<th>Namba</th>
<th>Schulten</th>
<th>ND</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.1780E-02</td>
<td>1.1745E-02</td>
<td>1.3332E-02</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.9301E-02</td>
<td>1.9064E-02</td>
<td>1.8358E-02</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.6870E-03</td>
<td>4.1793E-03</td>
<td>3.9596E-03</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.3088E-02</td>
<td>2.2913E-02</td>
<td>2.0612E-02</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>8.9005E-04</td>
<td>9.4530E-04</td>
<td>1.0867E-03</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4.8305E-03</td>
<td>3.8368E-03</td>
<td>4.4787E-03</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>5.8400E-04</td>
<td>6.5845E-04</td>
<td>7.1097E-04</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3.0332E-03</td>
<td>2.6001E-03</td>
<td>2.9529E-03</td>
</tr>
</tbody>
</table>

Splitting Velocity Approach

\[\mathbf{u} = \mathbf{u}^R + \nabla \phi \]

\[p' = -\rho_o \frac{D_o \phi}{Dt} \quad \text{where} \quad \frac{D_o}{Dt} = \frac{\partial}{\partial t} + \mathbf{U}_o \cdot \nabla \]

\[
\begin{align*}
\frac{D_o}{Dt} & \left(\frac{1}{c_o^2} \right) \frac{D_o \phi}{Dt} - \frac{1}{\rho_o} \nabla \cdot \left(\rho_o \nabla \phi \right) = \frac{1}{\rho_o} \nabla \cdot \left(\rho_o \mathbf{u}^R \right) - \frac{\partial s'/\partial t}{2c_p} \\
\frac{D_o}{Dt} \mathbf{u}^R + \left(\mathbf{u}^R \cdot \nabla \right) \mathbf{U} &= -\left(\nabla \times \mathbf{U} \right) \times \nabla \phi - \frac{D_o \phi}{Dt} \frac{\nabla s_o}{c_p} \\
\frac{D_o}{Dt} S' + \left(\mathbf{u}' \cdot \nabla \right) s_o &= 0
\end{align*}
\]
Narrow Annulus

- $\omega_{rm}=7.55$
- Grid sensitivity study
- Pressure difference compared to LINC.

<table>
<thead>
<tr>
<th></th>
<th>Upstream</th>
<th>Downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>m=-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Namba</td>
<td>$7.58 \times 10^{-3} - 1.81 \times 10^{-3}i$</td>
<td>$-1.12 \times 10^{-2} + 5.68 \times 10^{-3}i$</td>
</tr>
<tr>
<td>Schulten</td>
<td>$7.36 \times 10^{-3} - 2.453 \times 10^{-3}i$</td>
<td>$-9.95 \times 10^{-3} + 5.87 \times 10^{-3}i$</td>
</tr>
<tr>
<td>ND</td>
<td>$7.03 \times 10^{-3} - 3.86 \times 10^{-3}i$</td>
<td>$-9.67 \times 10^{-3} + 6.58 \times 10^{-3}i$</td>
</tr>
</tbody>
</table>
Full Annulus Case: Pressure jump for $q=0$, $\omega_{rm}=9.396$. Comparison with Schulten

Splitting Approach
Spanwise Pressure Jump for $q=3$, $\omega_{rm} = 9.396$. Comparison with Schulten

Splitting Approach

\[\Delta P \text{ at } x/c=0.05 \]

\[\Delta P \text{ at } x/c=0.2 \]

\[x/c=0.9 \]
Upstream & Downstream Acoustic Coefficients.

Splitting Approach

Comparison of upstream acoustic modes

Comparison of downstream acoustic modes
Lift Coefficient for $q=0, 3$ versus ω and radius

Splitting Approach
Full Annulus Lift Distribution
Comparison with Strip Theory

Splitting Approach
Meridian Plane Approximation for Mean Flow (2D Cascade)

Actual Meanflow
20° stagger, M=0.3

Meridianal Meanflow
Unsteady Lift Comparison
Actual and Meridional Meanflows

Low Loading $C_l=0.20$

High Loading $C_l=0.92$
Conclusions

- For swirling flows, two families of normal modes exist: pressure-dominated nearly-sonic, and vorticity-dominated nearly-convected modes.
- Nonreflecting boundary conditions were derived, implemented, and tested for a combination of acoustic and vorticity waves.
- An initial-Value formulation is used to calculate incident gusts.
- Two schemes (primitive variable and splitting) have been developed for the high frequency aerodynamic and acoustic blade response. Results are in good agreement with boundary element codes.
- A meridian approximation of the mean flow gives “surprising” good unsteady results for 2D cascades.
Future Work

- The numerical code will be used to study unloaded annular cascades in swirling flows.
- Method is under development for loaded annular cascades in swirling flows using a meridian approach.
- Parallelization will significantly reduce computational time making it possible to treat broadband noise.
- Express results in term of the acoustic power radiated.